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Abstract. An important problem in machine learning theory is to understand the approximation and general-
ization properties of two-layer neural networks in high dimensions. To this end, researchers have introduced
the Barron space Bs(Ω) and the spectral Barron space Fs(Ω), where the index s ∈ [0, ∞) indicates the smooth-
ness of functions within these spaces and Ω ⊂ Rd denotes the input domain. However, the precise relationship
between the two types of Barron spaces remains unclear. In this paper, we establish a continuous embedding
between them as implied by the following inequality: For any δ ∈ (0, 1), s ∈ N+ and f : Ω 7→ R, it holds that

δ‖ f ‖Fs−δ(Ω) .s ‖ f ‖Bs(Ω) .s ‖ f ‖Fs+1(Ω).

Importantly, the constants do not depend on the input dimension d, suggesting that the embedding is effective
in high dimensions. Moreover, we also show that the lower and upper bound are both tight.
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1 Introduction

A (scaled) two-layer neural network is given by

fm(x; θ) =
1

m

m

∑
j=1

ajσ
(
wT

j x + bj

)
, (1.1)

where σ : R 7→ R is a nonlinear activation function; aj, bj ∈R, wj ∈Rd, θ = {(aj, wj, bj)}
m
j=1,

m and d denote the network width and the input dimension, respectively. The extra scale
factor in (1.1) is introduced to facilitate our subsequent analysis and it does not change
the network’s approximation power. Additionally, throughout this paper, we assume the

input domain Ω ⊂ R
d to be compact and focus on the case of activation function ReLUs

with s ≥ 0
σ(z) = max(0, z)s.

The cases of s = 0 and s = 1 correspond to the Heaviside step function and vanilla ReLU
function, respectively. The case of s ≥ 2 has also found applications in solving PDEs
[11, 13, 26] and natural language processing [25].
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Cybenko [5] showed that functions in C(Ω) can be approximated arbitrarily well by
two-layer neural networks with respect to the uniform metric. However, the approxima-
tion can be arbitrarily slow. Pinkus [21] expanded on this by showing that for functions

belonging in Ck(Ω), the approximation by two-layer neural networks can achieve a rate

of O(m−k/d). This rate, unfortunately, is subject to the curse of dimensionality since it
diminishes as d increases. These suggest that mere continuity and smoothness are not suf-
ficient to ensure an efficient approximation in high dimensions. Then it is natural to ask:
What kind of regularity can ensure the efficient approximation by two-layer neural net-
works? Before proceeding to review previous studies attempting to answer this question.
We need a dual norm for handling the compactness of input domain.

Definition 1.1 ([1]). Given a compact set Ω, we define ‖v‖Ω = supx∈Ω |vT x|.

We begin by considering the spectral Barron spaces [3, 22, 24, 26], which are defined as
follows.

Definition 1.2. Let Ω ⊂ Rd be a compact domain. For f : Ω 7→ R and s ≥ 0, define

‖ f‖Fs(Ω) = inf
fe|Ω= f

∫

Rd
(1 + ‖ξ‖Ω)s

∣∣ f̂e(ξ)
∣∣dξ,

where the infimum is taken over all extensions of f . Let

Fs(Ω) := { f : Ω 7→ R : ‖ f‖Fs(Ω) < ∞}.

Then, the spectral Barron space is defined as Fs(Ω) equipped with the ‖ · ‖Fs(Ω) norm.

In the above definition, we consider measure-valued Fourier transform as done in [1]. It
is worth noting that Definition 1.2 bears resemblance to the Fourier-based characterization
of Sobolev spaces, denoted as

‖ f‖2
Hs

=
∫

Rd
(1 + ‖ξ‖)s| f̂ (ξ)|2 dξ.

The major distinction lies in the fact that the moment in Definition 1.2 is calculated with

respect to | f̂ (ξ)| instead of | f̂ (ξ)|2.
It was proved in [26] that if ‖ f‖Fs(Ω) < ∞, then functions in Fs(Ω) can be approx-

imated by two-layer ReLUs−1 networks without suffering the curse of dimensionality.

Specifically, the approximation error obeys the Monte-Carlo error rate O(m−1/2), where
m denotes the network width. The special case of s = 1 was first considered in the pioneer
work of Barron [1]. Subsequently, the case of s = 2 was studied in [2, 12]. More recently,
the extension to general positive integer s was provided in [3, 22, 26].

The Fourier-based characterization, while explicit, is not necessarily tight as it may ex-
clude functions that can be effectively approximated by two-layer neural networks. [19,20]
considered similar characterizations based on Radon transform instead of Fourier trans-
form, which can yield a tight characterization for the case of d = 1. Moreover, [7,8] offered
a probabilistic generalization of Barron’s analysis [1]. In these studies, functions satisfying
the following expectation representation are taken into consideration:
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fρ(x) = E(a,w,b)∼ρ

[
aσ(wT x + b)

]
, ∀ x ∈ Ω, (1.2)

where ρ ∈ P(R×R
d ×R). This can be obtained from (1.1) by taking m → ∞ and applying

the law of large numbers. One can view fρ as an infinitely-wide two-layer neural network.
It is important to note that the expectation representation in (1.2) only needs to hold in Ω

instead of the entire space Rd. Accordingly, the (probabilistic) Barron spaces are defined
as follows.

Definition 1.3. Given s ≥ 0 and f : Ω 7→ R, let

A f :=
{

ρ ∈ P(R × R
d × R) : fρ|Ω = f

}
.

Then, the Barron norm of f and the associated Barron space is defined by

‖ f‖Bs(Ω) := inf
ρ∈A f

E(a,w,b)∼ρ

[
|a|(‖w‖Ω + |b|)s

]
.

Let
Bs(Ω) = { f : Ω 7→ R : ‖ f‖Bs(Ω) < ∞}.

Then the Barron space is defined as Bs(Ω) equipped with the ‖ · ‖Bs(Ω) norm.

The above definition is a slight generalization of the one originally proposed in [8],
where only the case of s = 1 is considered. Following the proofs in [7, 8], one can eas-
ily show that approximating and estimation error for learning functions in Bs with two-

layer ReLUs networks follow the Monte-Carlo rates O(m−1/2) and O(n−1/2), respectively.
Here n denotes the number of training samples. Recently, [23] established a sharper ap-

proximation rate of O(m−1/2−(s+1/2)/d). However, it is important to note that this rate
improvement is less significant in high dimensions and additionally, the hidden constants
in [23] may have an exponential dependence on d. Compared with the Fourier-based char-
acterization in Definition 1.2, the above expectation-based characterization is more natural
and complete. Specifically, [8] provided an inverse approximation theorem, showing that
if f can be approximated by two-layer ReLU networks with bounded path norm [18], it
must lie in B1(Ω).

1.1 Our contribution

Recently, Barron-type spaces defined above have been adopted to explore various high-
dimensional problems. For instance, [4, 9, 15, 16] established some regularity theories of
high-dimensional PDEs with Barron-type spaces. Hence, it is natural to ask: What is the
relationship between them? [1,2,12,26] already showed that Fs+1(Ω) ⊆ Bs(Ω). Moreover,
[10] provided a specific example showing that F2(Ω) ( B1(Ω), implying that B1(Ω) is
strictly larger than F2(Ω). Along this line of work, our major contribution is the following
precise embedding result.

Theorem 1.1. Let Ω ⊂ Rd be a compact set. For any s ∈ N+, f ∈ Bs(Ω), δ ∈ (0, 1), we have

δ‖ f‖Fs−δ(Ω) .s ‖ f‖Bs(Ω) .s ‖ f‖Fs+1(Ω),

where s in the upper bound can take the value of 0.
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Note that the hidden embedding constants depend solely on the value of s. This sug-
gests that the embedding revealed in Theorem 1.1 is effective in high dimensions. Ad-
ditionally, as per our current proof, the smoothness index s is required to be a positive
integer, though Bs(Ω) is defined for any s in the range of [0, ∞). However, we conjecture
that analogous results would apply for any s ∈ (0,+∞) as discussed in Remark 2.1, which
we leave for future work.

Additionally, we would like to clarify that the upper bound in Theorem 1.1 has already
been implicitly established in previous works. Specifically, the case of s = 0 was proven in
the pioneering work of Barron [1] albeit presented in a different form. Subsequently, the
analysis was extended to the case of s = 1 in [2, 12], and further generalized to arbitrary
non-negative integer values of s in [22, 26]. Our major contribution is the lower bound,
which is critical for establishing the embedding between the two types of Barron spaces
and the proof is presented in Section 2.1. In Theorem 1.1, the upper bound is stated for the
sake of completeness.

We mention that [17] establishes the embedding among spectral Barron spaces and
some classical spaces such as the Sobolev space, Besov space, and Bessel potential space.
In contrast, we focus on the embedding between the Barron spaces and spectral Barron
spaces.

Tightness. For the upper bound, [3, Proposition 7.4] shows that when Ω has nonempty
interior, if Fs(Ω) ⊂ B1(Ω), then we must have s ≥ 2. This implies that the upper bound is
tight. The following proposition shows that the lower bound in Theorem 1.1 is also tight
in the sense that the value of δ cannot be taken to zero.

Proposition 1.1. Let Ω = [−1, 1] and f (x) = max(1 − |x|, 0) for x ∈ Ω. Then,

‖ f‖B1(Ω) ≤ 3, ‖ f‖F1(Ω) = +∞.

Let t(x) := max(1 − |x|, 0) for any x ∈ R be the triangular hat function (see Fig. 1.1).

Figure 1.1: The triangular function t(x) := max(1 − |x|, 0).
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We have

t̂(ξ) =
1 − cos(ξ)

πξ2
.

Note that t(·) is a zero extension of f and
∫

R

(1 + |ξ|)
∣∣t̂(ξ)

∣∣ dξ = +∞.

However, this does not directly imply ‖ f‖F1(Ω) = ∞, since the spectral Barron norm is
defined by taking the infimum over all possible extensions. We refer to Section 2.2 for
a rigorous proof.

2 Proofs

Notation. We use X .α Y to denote X ≤ CαY where Cα is a positive constant that de-

pends only on α. For a vector v, let ‖v‖p = (∑j v
p
j )

1/p. Let

S
d−1 =

{
x ∈ R

d : ‖x‖2 = 1
}

,

S
d−1
Ω

=
{

x ∈ R
d : ‖x‖Ω = 1

}
.

Denote by 1S the indicator function of the set S, satisfying 1S(x) = 1 for x ∈ S, and 0
otherwise. For a metric space X, denote by P(X) the set of probability measures over X.

Throughout this paper, we define Fourier transform as follows:

f̂ (ξ) =
1

(2π)d

∫

Rd
e−iξTx f (x)dx,

and the inverse Fourier transform is given by

f (x) =
∫

Rd
eiξTx f̂ (ξ)dξ.

Note that in these definitions, the terms f (x)dx and f̂ (ξ)dξ should be interpreted as a fi-
nite measure in a broad sense. Moreover, we will use the identity: for d = 1,

δ(ξ) =
1

2π

∫

R

e−iξx dx.

Before proceeding to the proof, we first clarify several important issues that might be
ignored. Both types of Barron functions are defined on a compact domain Ω instead of

the whole space Rd and thus, Barron norms depend on the underlying domain Ω. When
estimating Barron norms, one need to be careful with the choice of extensions. A naive
extension may yield a significantly loose bound of the Fs(Ω) norm [6] and Bs(Ω) norm.

2.1 Proof of Theorem 1.1

We start by considering the case of single neurons. For any w ∈ S
d−1
Ω

, b ∈ R, the single

neuron σw,b : Ω 7→ R is given by σw,b(x) = σ(wT x + b). Note that the domain of σw,b is Ω
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instead of Rd. In particular, when d = 1 and w = 1, we write σb = σw,b for simplicity. The
following lemma characterizes the Fourier transform of a single neuron.

Lemma 2.1. Let σw,b : Ω 7→ R with ‖w‖Ω = 1 be a single neuron and g : R 7→ R be any

extension of 1[−1,1]. Then, Gw,b(x) := σw,b(x)g(wTx) is an extension of σw,b, satisfying

∫

Rd
(1 + ‖ξ‖Ω)s

∣∣Ĝw,b(ξ)
∣∣dξ =

∫

R

(1 + |v|)s
∣∣ĥσ,b(v)

∣∣ dv, (2.1)

where hσ,b(z) = σ(z + b)g(z) is an extension of σb : [−1, 1] 7→ R.

Proof. Let Q = (w, w2, . . . , wd)
T ∈ Rd×d with w2, . . . , wd being orthonormal and wT

i w = 0

for i = 2, . . . , d. Then, by letting ξ̄ = (Q−1)Tξ, we have

Ĝw,b(ξ) =
1

(2π)d

∫

Rd
σ
(
wTx + b

)
g
(
wTx

)
e−iξTx dx

=
1

(2π)d

∫

Rd
σ(y1 + b)g(y1)e

−iξTQ−1y 1

|det Q|
dy (y = Qx)

=
1

|det Q|

(
1

2π

∫

Rd
σ(y1 + b)g(y1)e

−iξ̄1y1 dy1

) d

∏
j=2

δ(ξ̄ j)

=
1

|det Q|
ĥσ,b(ξ̄1)

d

∏
j=2

δ(ξ̄ j). (2.2)

Now, we have
∫

Rd
(1 + ‖ξ‖Ω)s

∣∣Ĝw,b(ξ)
∣∣ dξ

=
∫

Rd

(
1 + ‖QT ξ̄‖Ω

)s 1

|det Q|

∣∣ĥσ,b(ξ̄1)
∣∣

d

∏
j=2

δ
(
ξ̄ j

)
|detQ|dξ̄

=
∫

Rd

(
1 +

∥∥∥∥ξ̄1w +
d

∑
j=2

ξ̄ jwj

∥∥∥∥
Ω

)s ∣∣ĥσ,b(ξ̄1)
∣∣

d

∏
j=2

δ
(
ξ̄ j

)
dξ̄

=
∫

R

(
1 + ‖w‖Ω

∣∣ξ̄1

∣∣)s∣∣ĥσ,b

(
ξ̄1

)∣∣dξ̄1

=
∫

R

(
1 +

∣∣ξ̄1

∣∣)s∣∣ĥσ,b

(
ξ̄1

)∣∣dξ̄1, (2.3)

where the first step uses ξ = QT ξ̄ and the last step is due to ‖w‖Ω = 1.

The above lemma provides a way to estimating spectral Barron norms of single neu-
rons. What remains is to determine an extension g such that the right-hand side of the
Eq. (2.1) to be as small as possible. To this end, we first consider the one-dimensional case.

When d = 1, for any b ∈ R, let σb = σ(· + b) : [−1, 1] 7→ R. When it is clear from the
context, we also use σb denote the single neuron define on the entire space. Let χ : R 7→ R
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be a smooth cutoff function, satisfying χ ∈ C∞
c (R) and χ(z) = 1 for any z ∈ [−1, 1] and

supp χ = [−2, 2]. Given any b ∈ R, we shall consider the following extension of a single
neuron:

hσ,b(z) = χ(z)σb(z) : R 7→ R.

Lemma 2.2. Let σ(z) = max(0, z)s with s ∈ N. Then,

∣∣ĥσ,b(ξ)
∣∣ .s

(1 + |b|)s

(1 + |ξ|)s+1
.

Remark 2.1. The proof uses explicitly the condition of s ∈ N. However, according to the
relationship between the smoothness of a function and the decay of the Fourier transform,
we anticipate that the same result holds for any s ∈ [0, ∞).

Proof. Using the product rule, we have for any k ∈ N+,

h
(k)
σ,b(z) =

k

∑
i=0

(
k

i

)
σ
(i)
b (z)χ(k−i)(z),

and prove the theorem for the following two cases separately. Without lose of generality,
we consider here only the case of b ≥ 0. When b is negative, the proof is similar.

Case 1: b ≥ 2. In this case, hσ,b(·) = σb(·)χ(·) ∈ C∞(R). Without loss of generality,
we consider the case of b ≥ 1, for which

hσ,b(z) =





0, if z < −2,

(z + b)sχ(z), if z ∈ [−2, 2],

0, if z > 2.

• When z ∈ [−2, 2], we have σ
(k)
b (z) = 0 for k > s and |σ

(k)
b (z)| .s (1 + |b|)s for k ≤ s.

Hence, for any k ∈ N, we have

∣∣h(k)b (z)
∣∣ =

min{k,s}

∑
i=0

(
k

i

)
σ
(i)
b (z)χ(k−i)(z)

.s

min{k,s}

∑
i=0

∣∣σ(i)
b (z)

∣∣∣∣χ(k−i)(z)
∣∣

.s

min{k,s}

∑
k=0

∣∣σ(k)
b (z)

∣∣ .s (1 + |b|)s .

• When |z| > 2, |h
(k)
σ,b(z)| = 0 for any k ∈ N.

Combining two cases leads to for any k ∈ N,

∥∥h
(k)
σ,b

∥∥
L1(R)

=
∫ 2

−2

∣∣h(k)σ,b(z)
∣∣dz .s (1 + |b|)s .
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This implies

∣∣ĥb(ξ)
∣∣ =

∣∣∣∣
1

2π(−iξ)s+1

∫

R

h
(s+1)
σ,b (x)e−iξx dx

∣∣∣∣ .s
(1 + |b|)s

|ξ|s+1
. (2.4)

Case 2: 0 ≤ b < 2. In this case, hσ,b is piecewise smooth, given by

hσ,b(z) =

{
0, if z ≤ −b,

(z + b)sχ(z), if z > −b.

Consequently, h
(s)
σ,b(·) is bounded and has only one discontinuity point at z = −b. By

adopting the product rule in a way similar as the above, it is not hard to show that for all
k ∈ N,

h
(k)
σ,b(z) = 0, ∀ z ∈ (−∞,−b) ∪ [2,+∞),
∣∣h(k)σ,b(z)

∣∣ .s 1, ∀ z ∈ (−b, 2],
(2.5)

and limz→(−b)+ h
(s)
σ,b(z) exists with | limz→(−b)+ h

(s)
σ,b(z)| .s 1.

Noting that

ĥσ,b(ξ) =
1

2π

∫ ∞

−∞
hσ,b(z)e

−iξz dz

=
1

2π(−iξ)s

∫ ∞

−∞
h
(s)
σ,b(z)e

−iξz dz

=
1

2π(−iξ)s

∫ 2

−b
h
(s)
σ,b(z)e

−iξz dz

=
1

2π(−iξ)s

(
e−iξz

−iξ
h
(s)
σ,b(z)

∣∣∣
2

−b
+
∫ 2

−b
h
(s+1)
σ,b (z)

e−iξz

iξ
dz

)
,

and applying (2.5), we have

|ĥσ,b(ξ)| .s
1

|ξ|s+1

(
1 +

∫ 2

−b
dz

)
.

1

|ξ|s+1
.s

(1 + |b|)s

|ξ|s+1
, (2.6)

where the last step uses the assumption of |b| ≤ 2.

On the other hand, when |ξ| ≤ 1, we have for any b ∈ R that

∣∣ĥσ,b(ξ)
∣∣ ≤ 1

2π

∫

R

∣∣hσ,b(z)e
−iξz dz

∣∣ ≤ 1

2π

∫ 2

−2
|hσ,b(z)|dz .s (1 + |b|)s . (2.7)

Then, combining (2.7) with (2.4) and (2.6) yields

∣∣ĥσ,b(ξ)
∣∣ .s

(1 + |b|)s

(1 + |ξ|)s+1
.

The proof is complete.
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Lemma 2.3. Given any w ∈ S
d−1
Ω

, b ∈ R, consider the extension

Hw,b(x) := σ
(
wTx + b

)
χ
(
wTx

)
.

Then, for any δ ∈ (0, 1), we have
∫

R

(1 + ‖ξ‖Ω)s−δ
∣∣Ĥw,b(ξ)

∣∣dξ .s δ−1(1 + |b|)s . (2.8)

Proof. By Lemmas 2.1 and 2.2, we have
∫

R

(1 + ‖ξ‖Ω)s−δ
∣∣Ĥw,b(ξ)

∣∣

=
∫

R

(1 + |v|)s−δ
∣∣ĥσ,b(v)

∣∣dv

.s

∫

R

(1 + |v|)s−δ (1 + |b|)s

(1 + |v|)s+1
dv

.s (1 + |b|)s
∫

R

1

(1 + |v|)1+δ
dv .s

(1 + |b|)s

δ
.

The proof is complete.

The proof of Theorem 1.1. We are now ready to prove the main theorem. For any f∈Bs(Ω)

and ε > 0, there exists ρǫ ∈ P(R × S
d−1
Ω

× R) such that

f (x) =
∫

aσ(wT x + b)dρǫ(a, w, b), ∀ x ∈ Ω,
∫

|a|(1 + |b|)s dρǫ(a, w, b) ≤ ‖ f‖Bs(Ω) + ǫ,

where we have used the positive homogeneity of ReLUs and set w ∈ S
d−1
Ω

. Let

fe(x) =
∫

aσ(wT x + b)χ(wT x)dρǫ(a, w, b) =
∫

aHw,b(x)dρǫ(a, w, b), ∀ x ∈ R
d,

where Hw,b : Rd 7→ R is the extension of σw,b defined in Lemma 2.3. Then, fe is an exten-
sion of f and satisfies

f̂e(ξ) =
∫

aĤw,b(ξ)dρǫ(a, w, b).

According to Lemma 2.3, we have
∫

Rd
(1 + ‖ξ‖Ω)s−δ

∣∣ f̂e(ξ)
∣∣ dξ

≤
∫

|a|

(∫

Rd
(1 + ‖ξ‖Ω)s−δ

∣∣Ĥw,b(ξ)
∣∣dξ

)
dρǫ(a, w, b)

.s

∫
|a|

(1 + |b|)s

δ
dρǫ(a, w, b) ≤

1

δ
(‖ f‖Bs(Ω) + ǫ).
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By the definition of spectral Barron norm, it follows that

‖ f‖Fs−δ(Ω) .s δ−1(‖ f‖Bs(Ω) + ǫ).

Taking ǫ → 0 completes the proof. The converse direction follows from [12, 24, 26].

2.2 Proof of Proposition 1.1

Proof. Notice that f (·) can be exactly represented as a two-layer neural network for x ∈
[−1, 1]:

f (x) = σ(1)− σ(x)− σ(−x).

Hence, f is a Barron function and obviously, ‖ f‖B1(Ω) ≤ 3.
What remains is to show that

∫
(1 + |ξ|)

∣∣ f̂e(ξ)
∣∣dξ = ∞

holds for any extension fe. Suppose, to the contrary, that there exists an extension fe such
that ∫

(1 + |ξ|)
∣∣ f̂e(ξ)

∣∣ dξ < ∞.

Then f̂e dξ represents a finite measure over Rd and fe is continuous in Ω. By the Fourier
inverse theorem, we have

f (x) =
∫

eiξx f̂e(ξ)dx, ∀ x ∈ Ω.

For any x ∈ (−1/2, 0) ∪ (0, 1/2) and sufficiently small δ,

f (x + δ)− f (x)

δ
=
∫

eiξx eiξδ − 1

δ
f̂e(ξ)dξ. (2.9)

The integrand on the right side of (2.9) is bounded by |ξ|| f̂e(ξ)|, which is integrable by the
assumption. Consequently, by the dominated convergence theorem, for x ∈ (−1/2, 0) ∪
(0, 1/2), we have

f ′(x) = lim
δ→0

f (x + δ)− f (x)

δ
=
∫

eiξx lim
δ→0

eiξδ − 1

δ
f̂e(ξ)dξ =

∫
iξeiξx f̂e(ξ)dξ.

Again, by dominated convergence theorem and taking x → 0,

lim
x→0

f ′(x) = lim
x→0

∫
iξeiξx f̂e(ξ)dξ =

∫
lim
x→0

iξeiξx f̂e(ξ)dξ = i
∫

ξ f̂e(ξ)dξ.

This contradicts the fact that limx→0 f ′(x) does not exist.

3 Concluding remark

In this paper, we establish a continuous embedding for Barron-type spaces over compact
domains. Crucially, the embedding constants do not depend on the input dimension,
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implying that the embedding is effective in high dimensions. We thus establish a more
unifying perspective for understanding the high-dimensional approximation of two-layer
neural networks. This embedding result has potential implications for the analysis of
approximating solutions of high-dimensional PDEs with two-layer neural networks [4, 9,
16].

For future work, it is promising to extend our embedding result to the case of s ∈
(0, ∞) as discussed in Remark 2.1. Additionally, our proof heavily relies on the positive
homogeneity property of the ReLUs activation function. It would be interesting to extend
our analysis to Barron spaces associated with general activation functions [14].
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