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Abstract. We present a variational density matrix approach to the thermal properties of interacting fermions
in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body
unitary transformation together with a discrete probabilistic model. The unitary transformation is imple-
mented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects
via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quan-
tum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach
provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods
face severe difficulties due to the fermion sign problem. The approach is general and flexible for further ex-
tensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context
of ultracold quantum gases, condensed matter, and warm dense matter physics.
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1 Introduction

Consider an interacting quantum system of N fermions in a d-dimensional continuous
space with the generic Hamiltonian

H = −
1

2
∇2 + V(x), (1.1)

where ∇2 = ∑
N
i=1 ∇

2
i and V(x) = ∑

N
i=1 v(1)(ri)+∑

N
i<j v(2)(ri − rj) consists of one- and two-

body potentials. We use the short-hand notation x ≡ (r1, r2, · · · , rN) ∈ R
dN to collectively

denote all fermion coordinates. We also assume appropriate natural units so that con-
stants like fermion mass and the Planck constant can be omitted. We would like to study

thermodynamic properties of the system encoded in the partition function Z = Tre−βH at
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inverse temperature β = 1/kBT, which are relevant to a broad range of problems includ-
ing ultracold Fermi gases [1], condensed matter [2], and warm dense matter [3].

Unfortunately, accurate ab-initio study of Eq. (1.1) at finite temperature is generally
difficult. As a typical workhorse, quantum Monte Carlo methods suffer from the noto-
rious fermion sign problem at low temperature [4–7]. There are extensions of ground-
state quantum chemistry methods to finite temperature, e.g. [8]. On the other hand, a
fundamental principle to solve quantum systems at finite temperature is to minimize the
variational free energy

F =
1

β
Tr(ρ ln ρ) + Tr(ρH) (1.2)

with respect to a variational density matrix ρ. The two terms in Eq. (1.2) correspond to

the entropy and energy of the system, respectively. It can be shown that F > − 1
β ln Z is

a variational upper bound of the true free energy, where the equality holds only when ρ

coincides with the exact density matrix 1
Z e−βH of the system [9].

There are a number of physical constraints on the variational density matrix ρ. Besides
basic properties like Hermitian (ρ† = ρ), positive definiteness (ρ ≻ 0) and normalization

(Trρ = 1), it should also be antisymmetric 〈Px|ρ|x′〉 = (−1)P 〈x|ρ|x′〉 with respect to per-
mutations Px ≡ (rP1, rP2, · · · , rPN) of the fermion coordinates. The challenge is then to
devise a tractable computational scheme to perform optimization of ρ within such a con-
strained space. In practice, the entropy term in Eq. (1.2) often turns out to be difficult to
compute [10,11]. As a result, most of the previous variational density matrix studies resort
to an alternative imaginary-time evolution approach [10, 12–14], which is more appropri-
ate at high temperatures.

In the low-temperature regime, the variational density matrix can be reasonably repre-
sented by a truncated 1 set of low-energy many-body basis states |Ψn〉:

ρ = ∑
n

µn(φ)|Ψn(θ)〉〈Ψn(θ)|, (1.3)

where φ and θ are variational parameters. A discrete probabilistic model µn, which satis-
fies 0 < µn < 1 and ∑n µn = 1, is used to parametrize the Boltzmann distribution of the
basis states |Ψn〉. On the other hand, we choose to construct |Ψn〉 by applying a unitary
transformation to a set of reference basis states |Φn〉, e.g., the non-interacting Slater de-
terminants: |Ψn(θ)〉 = U(θ)|Φn〉. To make such an ansatz powerful enough, the unitary
transformation should have many-body nature, so that particle correlations can be effec-
tively incorporated into the reference state. In addition, it should also preserve permuta-
tion antisymmetry of the reference wavefunction, which we will refer to as the equivariance
property. Overall, the modeling of the variational density matrix in the present approach
is illustrated in Fig. 1.1.

Parametrizing and optimizing a rich family of equivariant many-body unitary trans-
formations U turn out to be a fairly nontrivial task. In this paper, we present an ele-
gant solution to this problem by constructing U as unitary representation of the canonical

1Truncation is necessary for systems in the continuum with infinite-dimensional Hilbert space. Given N fermions and M

available single-particle orbitals, the summation in Eq. (1.3) involves (M
N) terms, which is exponentially large. Nevertheless,

such summation appearing in relevant physical quantities can be estimated via Monta Carlo sampling and will not cause
big troubles in practice. See also discussions in Section 4.
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Figure 1.1: Architecture of the variational density matrix representation (1.3) of the present approach. A discrete
probabilistic model µn parametrizes the Boltzmann distribution of a many-body basis set |Ψn〉. We construct
|Ψn〉 by applying a parametrized unitary transformation to a reference basis |Φn〉. The unitary transformation
corresponds to a permutation equivariant many-body coordinate transformation implemented as a flow of fermion
coordinates.

transformation of phase space variables in classical mechanics, extending the previous
work on neural canonical transformations [15] from classical to quantum domain. The
resulting approach naturally generalizes the ground-state variational Monte Carlo (VMC)
method [16, 17] to finite temperature and is not hindered by the fermion sign problem.
Moreover, based on Born’s probabilistic interpretation of wavefunctions, the equivari-
ant unitary transformation turns out to be intimately related to equivariant normalizing
flow [18, 19], an important class of generative model developed well within the deep-
learning community. This way, one can leverage the latest technical advances in proba-
bilistic modeling to efficiently tackle the thermodynamics of strongly correlated fermions
in a fully ab-initio way.

It is worth mentioning a variety of related works to put the present contribution into a
broader perspective. First, there have been various wavefunction ansatzes for ground-state
VMC calculation of fermions, from the traditional Slater-Jastrow [20], backflow [21–24] to
more recent attempts based on neural networks [25–33]. However, unitary transforma-
tions are not considered in these ansatzes, since only a single wavefunction, instead of
a whole basis, is needed in this situation. Second, there have been quantum algorithms
for thermal properties of model Hamiltonians [34–36], which rely on quantum circuits to
construct the unitary transformation. However, they still demand advances in quantum
technologies to be practically useful. Third, variational free energy studies of statistical
mechanics and field theory problems [15, 37–42] can be regarded as the classical counter-
parts of the present approach. Last but not least, the so-called quantum flow approach [43]
also performs a learnable unitary transformation to a single-particle basis. In the many-
particle settings considered here, one has to additionally deal with the permutation anti-
symmetry by imposing equivariance property into the coordinate transformation carried
out by the normalizing flows [44–46]. In this way, normalizing flows have also precisely
addressed the open problem envisioned in [47]: ”The full use of the (coordinate) transform
to compute from first principles requires adequate approximation to the Jacobian and the
inverse transformation.”
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2 Theory

The method of constructing unitary transformations in this work is based on the fact that
one can establish a one-to-one correspondence between the group of unitary transforma-
tions in quantum mechanics and the group of canonical transformations of phase space
variables (x, p) in classical mechanics [48–51]. One can develop some basic understand-
ing of the idea by inspecting the infinitesimal structure of these two groups. In classical
mechanics, one can use an arbitrary generating function G(x, p) to define a continuous

family of canonical transformations via the symplectic evolution dx
dλ = ∂G

∂p ,
dp
dλ = − ∂G

∂x ,

where λ denotes a continuous parameter. When the canonical transformation is quan-

tized, the generating function is converted to a Hermitian operator Ĝ 2, and the corre-

sponding unitary transformation then takes the form Uλ = e−iĜλ. See Appendix A for
more details.

An important class of canonical transformation is the so-called point transformations, in
which the new generalized coordinates depend solely on the old coordinates, not on the
old momenta. The generating function of point transformation reads G = u(x) · p, where
u : (r1, · · · , rN) 7→ (u1, · · · , uN) is a function in the dN-dimensional coordinate space. The
equation of motion followed by the transformed coordinates then takes the form

dx

dλ
= u(x). (2.1)

u can be intuitively viewed as a vector field that guides all the particles to continuously
flow in the coordinate space as the parameter λ increases 3. To see this, one can con-
sider the examples of spatial translation and rotation, which can be generated by the total

momentum G = e · ∑
N
i=1 pi or angular momentum G = n · ∑

N
i=1(ri × pi) along certain

directions. The corresponding vector fields are ui = e and ui = n × ri respectively, as
illustrated in the left and center panel of Fig. 2.1. For systems with such spatial symme-
tries, these transformations would leave the Hamiltonian unaltered. We also note that
the vector fields associated with these two examples are “separable”, i.e., the vector field
experienced by one particle is independent of the positions of any other particles, thus
completely ignores the interactions among them. For practical variational calculations,
we need to seek for vector fields u that can effectively introduce particle correlations, as
illustrated in the right panel of Fig. 2.1.

To study the unitary transformation induced by a general point transformation, we
simply employ an anticommutator to make the quantized generator Hermitian [52]:

Ĝ = 1
2{u(x̂), p̂}. Given a set of basis states Φn(x), the transformed basis wavefunction

Ψn(x, λ) ≡ (UλΦn)(x) then reads

Ψn(x, λ) = 〈x|e−
i
2 {u(x̂),p̂}λ|Φn〉. (2.2)

To obtain a physical interpretation, it is instructive to differentiate both sides of Eq. (2.2)

2Note that we have put a hat ˆ on operators somewhere in this section to avoid possible confusions.
3Most generally, the vector field u(x, λ) can also depend on the continuous parameter λ. The resulting symplectic evo-

lution followed by the particles is then “time-inhomogeneous”.
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Figure 2.1: Schematic plot of three different vector fields u experienced by the particles. (a) Spatial translation.
(b) Spatial rotation. (c) A “many-body” vector field involving interdependence among the particles. Evolution
under such a vector field will introduce correlation effects.

with respect to λ to get

∂

∂λ
|Ψn(x, λ)|2 +∇ ·

(

|Ψn(x, λ)|2u(x)
)

= 0, (2.3)

which has the form of a continuity equation of probability density. See Appendix A for
the derivation details. Pictorially, starting from a family of orthonormal reference states
such as Slater determinants, the probability mass of each many-body wavefunction will
undergo a continuous evolution guided by the many-body vector field u. During this pro-
cess, the particles constantly repel or attract each other and correlation effects are gradu-
ally cumulated. Crucially, these states remain orthonormal thanks to the unitary nature of
the transformation. We thus obtain a correlated many-body basis in the end of the evolu-
tion, which can be used to build up the variational density matrix ansatz Eq. (1.3). Note
the particles follow deterministic advection in Eq. (2.3) rather than random diffusion. In
practice, one should integrate the differential equation for a finite amount of time instead
of seeking for steady state solutions as in diffusion-based approaches [53–55].

Transforming probability density continuously in the coordinate space is precisely
the idea of continuous normalizing flow [39, 54, 56, 57]. Specifically, the probability
pn(z) ≡ |Φn(z)|2 associated with the reference state is known as the base distribution,
while the model distribution qn(x) ≡ |Ψn(x)|2 is obtained from the base by applying a
learnable diffeomorphism f : z 7→ x in the dN-dimensional coordinate space. Note we
have omitted λ in the notation to avoid cluttering. In the present settings, one builds
the diffeomorphism f by integrating the ordinary differential equation (ODE) (2.1). By
making use of the change-of-variable formula, the model probability qn(x) can be written
as

qn(x) = pn( f−1(x))

∣

∣

∣

∣

det

(

∂ f−1(x)

∂x

)∣

∣

∣

∣

. (2.4)

Taking the square root of both sides yields a more explicit expression for the basis wave-
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function 4:

Ψn(x) = Φn( f−1(x))

∣

∣

∣

∣

det

(

∂ f−1(x)

∂x

)∣

∣

∣

∣

1
2

. (2.5)

Albeit not so evident at the first sight, Eqs. (2.5) and (2.2) are completely equivalent, which
can be rigorously proved by more formally establishing the unitary representation of point
transformations; see Appendix A. In practice, the diffeomorphism f can be constructed by
composing a sequence of point transformations, which is similar to the iterative backflow
approach in ground-state variational calculations [58, 59]. However, an important differ-
ence of Eq. (2.5) from the ground-state backflow wavefunction ansatzes is the presence
of a Jacobian determinant factor. This factor is crucial to guarantee orthonormality of the
basis states, which is an essential ingredient for the present finite-temperature approach.

Finally, as a many-fermion wavefunction, Ψn(x) should satisfy the permutation anti-
symmetry property. Since this property holds already for the base Φn(z), the only require-
ment is the unitary transformation appearing in Eq. (2.2) being permutation equivariant: that
is, it should commute with the particle permutation operator. This can be achieved sim-
ply by requiring the many-body vector field u to be equivariant too, which means that the
permutation of particle positions will result in the same permutation of the vector fields
they experience:

u(Px) = Pu(x). (2.6)

Intuitively, the indistinguishability of the particles is maintained throughout the continu-
ous flow in the coordinate space, since one cannot label them by using the vector fields
they experience at any time. The probability density qn(x) = |Ψn(x)|2 associated with
the transformed wavefunction, on the other hand, is invariant under particle permuta-
tions [44–46]. Another notable feature is that qn(x) inherits nodal lines from the fermionic
reference state pn(z) = |Φn(z)|2, up to a deformation induced by the flow transformation.

To parametrize the permutation equivariant vector field u, one can leverage many re-
cent advances in natural language processing [60], molecular simulation [44, 61, 62], and
point set modeling [45, 46]. Moreover, permutation equivariant functions have also been
used in various ground-state VMC calculations [24, 27, 28]. Consequently, one can natu-
rally port these efforts into the present framework almost without any modifications: just
use the permutation equivariant layer as the vector field u to drive the flow.

3 Implementation

Substitution of the density matrix ansatz (1.3) into Eq. (1.2) yields the following estimator
of the variational free energy:

F = E
n∼µn

[

1

β
ln µn + E

x∼qn(x)

[

Eloc
n (x)

]

]

. (3.1)

4Such a sloppy “derivation” is fairly intuitive, yet not satisfying enough for mathematical rigor. In particular, Eq. (2.5)
implicitly assumes the wavefunction ansatz Ψn(x) has exactly the same phase as Φn(z), up to a spatial deformation brought
by the transformation z → x. Fortunately, this is indeed the case. One easy way to see this is from Eq. (2.2): note p̂ = −i∇,
thus the exponential operator acting on the base wavefunction Φn is actually real valued.
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Notice the entropy term depends solely on the state occupation probability µn and can be
easily computed, which is a direct consequence of orthonormality of the basis states (2.5).
The second term consists of the local energy associated with each basis state:

Eloc
n (x) ≡

HΨn(x)

Ψn(x)

= −
1

4
∇2 ln qn(x)−

1

8
(∇ ln qn(x))2 + V(x). (3.2)

In Eq. (3.1) the two-fold expectations correspond to classical thermal average of the Boltz-
mann distribution and quantum expectation according to the Born rule of wavefunction
amplitudes. In the limit β → ∞, only the energy term survives and one naturally restores
the ground-state VMC method.

The gradients of Eq. (3.1) with respect to the parameters φ and θ, which appear in the
classical and quantum distributions µn and qn(x) respectively, have the following forms:

∇φF = E
n∼µn

[(

1

β
ln µn + E

x∼qn(x)

[

Eloc
n (x)

]

)

∇φ ln µn

]

, (3.3a)

∇θF = E
n∼µn

E
x∼qn(x)

[

Eloc
n (x)∇θ ln qn(x)

]

. (3.3b)

For both estimators we employ the control variate method [36, 38, 63] to further reduce
their variances. An important observation is that only the non-negative probability den-
sity qn(x) = |Ψn(x)|2 associated with the wavefunction is involved in the calculation. This
is a satisfying feature of working directly in the continuum rather than on a finite basis set
or lattice [29, 64]: one can deal with the quantum many-body problem completely within
the framework of probabilistic modeling. Nevertheless, the sign structure of the fermion
wavefunction Ψn(x) is still important and relevant for the calculation of off-diagonal phys-
ical observables such as correlation function and momentum distribution.

In practice, Eqs. (3.1) and (3.3) are estimated by sampling a batch of pairs (n, x) from
the joint distribution µnqn(x) following the ancestral sampling strategy. In particular, to
sample coordinates x, one can start from samples z from the prior distribution pn(z) (e.g.,
via Markov chain Monte Carlo) and evolve them according to the ODE (2.1). The log-
likelihood ln qn(x) appearing in the local energy (3.2) and gradient estimators (3.3) is eval-
uated by integrating Eq. (2.1) jointly with the following ODE [39, 57]:

d ln qn

dλ
= −∇ · u(x). (3.4)

To understand this, one can rewrite the continuity equation (2.3) in the form
(

∂

∂λ
+ u(x) · ∇

)

ln qn(x, λ) = −∇ · u(x) (3.5)

and note that d
dλ ≡ ∂

∂λ + u(x) · ∇ is the material derivative associated with the sample
x. Furthermore, the gradient and Laplacian operations appearing in (3.2) and (3.3) can
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be accurately and efficiently computed by differentiating through the ODE integration
using automatic differentiation [65], where the adjoint method with constant memory cost
turns out to be useful [57]. Our code implementation based on PyTorch [66] is publicly
available [67].

4 Application: Electrons in two-dimensional quantum dot

We demonstrate the capability of the present approach by studying electrons in a two-
dimensional quantum dot. The one- and two-body potentials take the form of a harmonic
trap and repulsive Coulomb interaction, respectively:

v(1)(r) =
1

2
r2, v(2)(r − r′) =

κ

|r − r′|
, (4.1)

where κ > 0 is the interaction strength. Despite its simplicity, this model shows rich phe-
nomena due to the interplay of interaction and temperature effects. In particular, as κ
increases, the Fermi liquid picture based on the concept of quasiparticles would eventu-
ally break down. The resulting phase is usually characterized as a Wigner molecule [2],
where the kinetic motion of electrons is largely frozen, and the spatial density distribution
would typically exhibit a shell structure. There have been a large number of numeri-
cal studies focusing on its ground-state [70–72] and finite-temperature properties [73–76].
However, there have been no reliable method that work for the entire interaction range at
low temperature. Thus, such a system offers an ideal playground for the present method.

We consider the spin polarized case. The base wavefunctions Φn(z) are chosen to be
Slater determinants of single-electron orbitals obtained simply by eliminating the two-

body term v(2). Such Slater determinants constitute an exponentially large set of basis
of the many-body Hilbert space. Focusing on low-temperature properties of the system,
we carry out a truncation of the basis by including only those within an energy cutoff
Ecut relative to the non-interacting ground state. In the considered parameter region, we
found that Ecut 6 4 is sufficient to capture most of the finite-temperature effects. Since the
corresponding number of basis states is no more than 2000, we choose to adopt a simple

parametrization of the state probabilities µn(φ) = eφn

∑m eφm based on the softmax function.

Nevertheless, we note that this is not a limiting factor of the present approach because
one can capture exponentially large number of basis states by utilizing more sophisticated
discrete probabilistic models [38, 77–79].

The wavefunction ansatz Ψn(x) is generated from the base Φn(z) by the continuous
flow guided by a many-body vector field u. We take u to be of the backflow form [21–24]
for simplicity and clear physical interpretation:

ui = ξ(|ri|)ri +
N

∑
j 6=i

η(|ri − rj|)(ri − rj). (4.2)

The many-body nature and permutation equivariance of this vector field can be easily
confirmed by inspection. The scalar functions ξ and η can be referred to as the one- and
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Figure 4.1: Energy E versus inverse temperature β for 6 spin-polarized electrons in a two-dimensional quantum
dot with κ = 0.5. The green and blue points are benchmark data from two different variants of PIMC [68, 69],
while the red points are results of the present approach, including the zero-temperature limit.

two-body “backflow potential”, which capture the “mean field” and electron correlation
effects, respectively. Note for a given distance r, η(r) > 0 stands for a repulsive interaction
between two electrons, and vice versa; similarly for ξ(r). We parametrize the potentials
by two independent neural networks with single hidden layer. Initially, the backflow
potentials are set to zero and µn to Boltzmann distribution of the non-interacting base
states Φn(z). The optimization is performed on a batch of 8000 samples using the Adam
stochastic gradient descent algorithm [80] for 3000 iteration steps.

As the first benchmark, Fig. 4.1 shows the temperature dependence of the energy for a
system of N = 6 spin-polarized electrons with κ = 0.5. For such a weak interaction, the
standard path integral Monte Carlo (PIMC) method is severely hindered by the fermion
sign problem, since the electrons are largely delocalized and subject to exchange effects.
Consequently, it provides reliable results only at relatively high temperatures β . 1.5 [6].
Variants of PIMC with alleviated fermion sign problem can access slightly lower temper-
atures [68, 69], where our results agree nicely with the benchmark data as shown in the
figure. The slight discrepancy at β = 2 is likely due to insufficiently large Ecut in our
calculation. On the other hand, the present approach can easily reach even lower tem-
peratures, including the zero-temperature limit β → ∞. We note that alternative Monte
Carlo methods based on expansions in the Fock space [81,82] can work more favorably for
such weak interactions, but will again suffer from the fermion sign problem in the strong
coupling region.

Overall, the present approach serves as a valuable complement of conventional
quantum Monte Carlo methods for studying the thermal properties of fermion sys-
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Figure 4.2: Energy E versus interaction strength κ for 10 spin-polarized electrons in a two-dimensional quantum
dot with β = 6. The inset shows the electron density profiles for κ = 0.5 and 8.

tems, especially for low temperature, large particle number and intermediate interaction
strength [83]. To demonstrate this, we perform systematic calculations of N = 10 spin-
polarized electrons at β = 6 for a wide range of κ from 0.5 to 8. For more benchmark data,
see Appendix B. Fig. 4.2 shows the energy dependence on κ, together with electron den-
sity profiles at the end points κ = 0.5 and 8. Notice the density centers around the origin
of the trap in the weak coupling regime. On the other hand, stronger repulsive interaction
smears out the electron cloud and induces a shell structure, indicating the emergence of
the Wigner molecule phase. The observed spatial configuration consisting of two shells for
the present parameter settings also agrees with the analysis in the classical limit κ → ∞ [2],
where quantum fluctuations arising from the kinetic term in Eq. (1.1) are ignored. Reach-
ing this result in the strong interaction regime where the density profile is qualitatively
different from the weak coupling case is a stringent test to the present method.

To obtain the density profiles as shown in Fig. 4.2, one starts from the density of non-
interacting reference state consisting of a large number of electron coordinate samples z,
then evolves them according to the continuous flow specified by the ODE (2.1) towards
the final spatial distribution of x, as described previously in Section 3. The initial and final
values of the continuous parameter λ are conventionally chosen to be 0 and 1, respec-
tively, which are treated as fixed hyperparameters of the model. The many-body vector
field u governing such an evolution process is determined by the backflow potentials ξ
and η, which are shown in Fig. 4.3. Notice the interactions arising from one- and two-
body backflow potentials are both repulsive, which can be viewed as the manifestation
of electron repulsion at the level of mean field and two-body correlations, respectively.
The overall evolution of the electrons is, nevertheless, jointly determined by the two po-
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Figure 4.3: The optimized one- and two-body backflow potentials ξ and η, respectively, as functions of the
distance r, for various values of interaction strength κ in a quantum dot of N = 10 spin-polarized electrons with
β = 6.

Figure 4.4: Several equally-spaced snapshots of the electron density along the continuous flow of coordinates at
λ = 0, 1/8, 2/8, · · · , 1. The system parameters are N = 10, β = 6 and κ = 8. Starting from the non-interacting
reference state, the electron correlation effects can be gradually introduced, and one can finally reproduce the
shell structure characteristic of a Wigner molecule in the strong interaction regime.

tentials together. Fig. 4.3 also shows that in the strong interaction regime, the backflow
potentials deviate largely from the values of zero in the non-interacting case. To visualize
how such strong potentials affect the evolution of electron coordinates, Fig. 4.4 shows sev-
eral density snapshots along the continuous flow at λ = 0, 1/8, 2/8, · · · , 1 for κ = 8. The
cumulation of electron correlations and onset of the shell structure is clear.

5 Discussions

In essence, this work belongs to the large family of canonical transformation approaches
for quantum many-body systems, except that the transformation is directly carried out
upon particle coordinates instead of a many-body Fock space within the formulation of
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second quantization [84–86]. Although the framework of neural canonical transforma-
tion is general, we have technically restricted to the subgroup of point transformations to

make the calculation tractable, which corresponds to the specific choice Ĝ = 1
2{u(x̂), p̂}

of the generator. The generalization to arbitrary generators, such as the Hamiltonian H in
Eq. (1.1), seems fairly nontrivial in practice. In fact, the tractability of such a general calcu-

lation implies that it is possible to accurately simulate the real-time evolution e−iHt|Φ〉 of
any many-body systems. In this perspective, the present approach can also be understood
as a short-time variational approximation of adiabatic time evolution towards the thermal
equilibrium.

One can take a different view of the limit of the present approach by inspecting the ba-
sis wavefunction representation Eq. (2.5). Compared to ground-state variational ansatzes,
the coordinate transformation f in this work is implemented by continuous normaliz-
ing flow and subject to further limitations due to its invertibility [87–90]. Moreover, the
continuous flow can only deform the nodal surface of reference states without changing
its topology [24, 91, 92]. One example is the number of nodal cells of the ground-state
wavefunction, which is conjectured to be always two for spatial dimensions d higher than
one [92–95]. Similar conjecture has also been proposed for thermal density matrices at low
temperature [95]. More thorough characterization of fermion nodes like possible topolog-
ical obstructions is still lacking and worth further study [96,97]. In practice, one may rem-
edy these issues by improving expressibility of the reference states Φn(z). For example,
one can use more physically plausible reference states than the Slater determinants [98,99],
or introduce additional parameters into the reference state which are pretrained or trained
jointly with the flow transformation.

Although we have made use of continuous normalizing flow in this work, it should
be possible to use other classes of permutation equivariant normalizing flows [18]. Some
examples are the partitioned flow [62] and the invertible residual network [100], which
can be more efficient than the present ODE-based implementation. One can also directly
carry out Monte Carlo sampling of the electron coordinates other than transforming sam-
ples of the reference states. The local energy Eq. (3.2) resembles the score matching loss
function [101] in training generative models, which is known to be expensive to compute.
In light of this, advances in efficient score matching training might be beneficial to further
reduce the computational efforts when scaling up to larger systems [102].

Building on these technical improvements in the implementation, a promising future
direction is to scale up to larger particle number N and study other correlated fermion sys-
tems of fundamental importance, such as the homogeneous electron gas [103] and dense
hydrogen [10]. Moreover, similar to what was shown in [36], one can also obtain informa-
tion about the low-lying excited states of these systems as a byproduct of the thermody-
namic calculation.
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A Unitary representation of canonical transformations

We elaborate on the one-to-one correspondence between the group of unitary transfor-
mations in quantum mechanics and the group of canonical transformations in classical
mechanics. Special emphasis will be placed on the subgroup of point transformations,
which is the focus of the present work.

A.1 Basic formulation

In classical mechanics, a canonical transformation is a smooth bijection from the original
set of phase space variables (x, p) to a new one (X(x, p), P(x, p)) satisfying the so-called
symplectic condition, which is equivalent to saying that all Poisson brackets among the
new variables are preserved [104]. To study its implication in the realm of quantum me-
chanics, we should convert the new (as well as old) variables into Hermitian operators
(X , P) → (X̂ , P̂) following certain quantization procedure. As a result, (X̂ , P̂) should sat-
isfy the usual commutation relations of coordinate and momenta as (x̂, p̂). This largely
motivates us to reasonably expect the existence of a unitary transformation U that con-
nects the two set of operators together:

X̂ = U† x̂U, P̂ = U† p̂U. (A.1)

U can thus be viewed as the unitary representation of the given canonical transformation.
To further clarify the nature of U, it is instructive to consider the eigenstate |x) of the

new coordinate operators X̂ defined as

X̂ |x) = x|x). (A.2)

The essential point is that |x) constitutes a different coordinate basis from the old ones
x̂|x〉 = x|x〉, which is why a slightly different Dirac notation has been used in Eq. (A.2). By
making use of these two basis, the unitary transformation U can then be formally defined
as [48, 49]

U|x) = |x〉. (A.3)

It is then straightforward to verify the operator transformation relations Eq. (A.1).
The transformation behavior of U upon the wavefunction Ψ(x) of any given quantum

state reads

(UΨ)(x) = 〈x|U|Ψ〉

= (x|Ψ〉 =
∫

dx′(x|x′〉Ψ(x′). (A.4)

The essential ingredient in evaluating this expression is the state overlap 〈x′|x), which
can be shown to be uniquely determined (up to a phase factor) by the following set of
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equations [49, 50]:

X̂

(

x′,−i
∂

∂x′

)

〈x′|x) = x〈x′|x), (A.5a)

P̂

(

x′,−i
∂

∂x′

)

〈x′|x) = i
∂

∂x
〈x′|x). (A.5b)

Unfortunately, for a general canonical transformation, the computation procedure out-
lined in Eqs. (A.4) and (A.5) above can be fairly difficult. We will thus restrict ourselves in
the subgroup of point transformations, which can be constructed by the type-2 generating
function F2(x, P) = f (x) · P via the following implicit relations [104]:

X =
∂F2

∂P
, p =

∂F2

∂x
. (A.6)

The resulting transformation formula can be obtained by some simple manipulations:

X = f (x), P =

(

∂ f

∂x

)−T

p. (A.7)

In other words, the new coordinates depend only on the old coordinates through a bi-
jective map f , while the momenta are transformed in a covariant way so as to preserve
the Poisson brackets. When such a point transformation is quantized, the corresponding
expression for the state overlap 〈x′|x) turns out to be simple:

〈x′|x) = δ
(

x′ − f−1(x)
)

∣

∣

∣

∣

det

(

∂ f−1(x)

∂x

)
∣

∣

∣

∣

1
2

. (A.8)

The correctness of this result can of course be verified by plugging it into Eq. (A.5).
One can, however, get the intuitive feeling by noting that X̂ ≡ f (x̂) shares the same
set of eigenstates as x̂, i.e., the Dirac delta function, while the additional Jacobian de-
terminant factor is present to make the integration measure in the completeness relation
∫

dx|x)(x| = 1 as expected. By substituting (A.8) into Eq. (A.4), we finally obtain the
transformed wavefunction through a point transformation as follows:

(UΨ)(x) = Ψ
(

f−1(x)
)

∣

∣

∣

∣

det

(

∂ f−1(x)

∂x

)
∣

∣

∣

∣

1
2

. (A.9)

This result is essentially Eq. (2.5) in the main text, where it is intuitively obtained from the
perspective of normalizing flow.

A.2 Infinitesimal unitary transformations

The characteristics of the unitary representation of canonical transformations formulated
above can be more clearly revealed by studying the infinitesimal behavior in the vicinity
of identity transformation, which is a common practice in physics and of great theoretical
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importance. An infinitesimal canonical transformation can be constructed by the type-2
generating function F2(x, P) = x ·P+ dλ G(x, P), where the two terms correspond to iden-
tity transformation and infinitesimal perturbation, respectively. Substituting this expres-
sion into Eq. (A.6) and retaining only lowest-order contributions, one could then obtain a
continuous family (x(λ), p(λ)) of canonical transformations specified by the Hamilton’s
equations of motion:

dx

dλ
=

∂G

∂p
,

dp

dλ
= −

∂G

∂x
. (A.10)

The function G(x, p) is usually also called the generating function. When such a canonical
transformation is quantized, Eq. (A.10) is naturally replaced by the Heisenberg equations
of motion. This observation is essential: in light of Eq. (A.1), the corresponding unitary
transformation can be immediately recognized as

U = e−iĜλ, (A.11)

where the generator Ĝ should be ensured to be Hermitian by the quantization procedure.
Eq. (A.11) is clearly a more explicit and meaningful characterization of the unitary

transformation than the formal definition (A.3). In particular, the state overlap appear-

ing in Eq. (A.4) corresponds precisely to the propagator (x|x′〉 = 〈x|e−iĜλ|x′〉. Such a
propagator is difficult to evaluate in general cases, so we again concentrate only on point
transformations as in the previous section. Within the formulation presented here, a point
transformation corresponds to the choice G(x, p) = u(x) · p, which leads to the type-2
generating function

F2(x, P) = (x + dλ u(x)) · P. (A.12)

To obtain the corresponding unitary representation, we employ a simple operator sym-

metrization Ĝ = 1
2{u(x̂), p̂} to make the generator Hermitian, as mentioned in the main

text. Comparing Eq. (A.12) with the form F2(x, P) = f (x) · P discussed in the pre-
vious section, one can readily reach the conclusion that the transformed wavefunction

(UΨ)(x) = 〈x|e−
i
2{u(x̂),p̂}λ|Ψ〉 can be equivalently written in the form of Eq. (A.9), where

the coordinate bijection f is specified by the ODE

dx

dλ
= u(x). (A.13)

We thus rigorously show the equivalence of the two basis wavefunction expressions
Eqs. (2.2) and (2.5), which lies at the core of the finite-temperature approach in this work.

Finally, we give a few guidelines for the derivation of the continuity equation (2.3) from
Eq. (2.2) in the main text for readers’ convenience. Note that p̂ = −i∇, we have

∂

∂λ
Ψn(x, λ) = −

i

2
{u(x̂), p̂}Ψn(x, λ)

= −
1

2

[

u(x) · ∇Ψn(x, λ) +∇ · (u(x)Ψn(x, λ))

]

= −u(x) · ∇Ψn(x, λ)−
1

2
Ψn(x, λ)∇ · u(x). (A.14)
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To obtain Eq. (2.3), simply multiply Eq. (A.14) by Ψ∗
n(x, λ) and add the resulting equation

to its own complex conjugate.

B Some more benchmark data for 2D quantum dot

The following table summarizes our results for the energy of a two-dimensional quantum
dot at β = 10, for various electron number N and interaction strength κ. PIMC results
from [74] are also listed when available. All data correspond to the fully spin-polarized
case. Our finite-temperature calculations indicate that the entropy is negligible for a tem-
perature as low as β = 10, so our energy results can be treated as variational. We antic-
ipate these results (as well as those presented in the main text) can be further improved
by adopting better model architecture and optimization schemes. We also note the results
reported in Figure 4.8 of [83] for β = 10, N = 3, κ = 2 show that the data in [74] may be
subject to slight systematic errors.

N κ This work [74]

3 2 8.331(3) 8.37(1)

3 4 11.070(4) 11.05(1)

3 6 13.495(6) 13.43(1)

3 8 15.653(7) 15.59(1)

4 2 14.336(4) 14.30(5)

4 4 19.517(7) 19.42(1)

4 6 24.060(9) 23.790(12)

4 8 28.178(12) 27.823(11)

6 0.5 18.179(4) –

6 1 22.003(6) –

6 1.5 25.600(8) –

6 2 28.994(9) –

6 3 35.241(10) –

6 4 41.012(11) –

6 5 46.385(13) –

6 6 51.448(13) –

6 7 56.270(16) –

6 8 60.837(15) 60.42(2)
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[40] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457), 2019.

[41] M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based generative models for markov chain Monte
Carlo in lattice field theory. Phys. Rev. D, 100:034515, Aug 2019.

[42] Gurtej Kanwar, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Sébastien Racanière,
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