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Abstract. We prove a general Embedding Principle of loss landscape of deep neural networks (NNs) that
unravels a hierarchical structure of the loss landscape of NNs, i.e., loss landscape of an NN contains all critical
points of all the narrower NNs. This result is obtained by constructing a class of critical embeddings which
map any critical point of a narrower NN to a critical point of the target NN with the same output function.
By discovering a wide class of general compatible critical embeddings, we provide a gross estimate of the
dimension of critical submanifolds embedded from critical points of narrower NNs. We further prove an
irreversibility property of any critical embedding that the number of negative/zero/positive eigenvalues of
the Hessian matrix of a critical point may increase but never decrease as an NN becomes wider through
the embedding. Using a special realization of general compatible critical embedding, we prove a stringent
necessary condition for being a “truly-bad” critical point that never becomes a strict-saddle point through any
critical embedding. This result implies the commonplace of strict-saddle points in wide NNs, which may be
an important reason underlying the easy optimization of wide NNs widely observed in practice.
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1 Introduction

The loss landscape of a deep neural network (NN) is important to both its optimization
dynamics and generalization performance, hence is a key issue in deep learning theory. It
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has been realized for a long time that it is important to quantify exactly how the loss land-
scape looks like [1, 2]. This problem is difficult since various visualization methods show
that the NN loss landscape is very complicated [3, 4]. Moreover, its non-convexity, high
dimensionality and the dependence on data, model and the specific form of loss function
make it very difficult to obtain a general understanding through empirical study. There-
fore, though it has been extensively studied over the years, it remains an open problem to
provide a clear picture about the general structure of a DNN loss landscape, e.g., critical
points/submanifolds, their output functions and other properties.

Our work is inspired by the following empirical observations. From the aspect of op-
timization, it is often observed that wider NNs are easier for training. This phenomenon
not only holds in a neural tangent kernel (NTK) regime [5], where the gradient descent
training can find the global minimum with a linear convergence rate [6–9], but also hap-
pens in highly nonlinear regimes beyond NTK [10, 11]. From the aspect of generalization,
the puzzle that over-parameterized NNs often generalize well seems to contradict the con-
ventional learning theory [12, 13]. The frequency principle [14–19] shows that NNs, over-
parameterized or not, tend to fit the training data by a low-frequency function, which
suggests that the learned function by an NN is often of much lower complexity than the
NN’s capacity. Specifically, with small initialization, e.g., in a condensed regime, weights
of an NN are empirically found to condense on isolated directions resulting in an output
function mimicking that of a narrower NN [11, 20]. These observations raise a question
that in which sense learning of a wide NN is not drastically different from a narrower NN
despite potentially huge difference in their numbers of parameters. From the aspect of
pruning, empirical works propose a “lottery ticket hypothesis” that a substantially smaller
sub-network can achieve the same accuracy as the original large network [21]. However,
it is not yet clear about the mechanism of redundancy in a learned wide NN, which makes
a drastic pruning possible in practice.

All above empirical observations, though relevant to different aspects of NN, are in
essence pointing towards an intrinsic similarity between narrow and wide NNs. In this
work, focusing on the loss landscape, we address the following problem: What are the re-
lations of critical points and the corresponding output functions of loss landscape among
NNs with different widths. The significance of studying the critical points and their out-
put functions of the NN loss landscape is as follows. From the optimization perspective,
NN parameters trained by gradient descent provably converge to a critical point, which in
general is not necessarily a global minimum or local minimum. Moreover, even for these
saddle points which can be escaped, e.g., strict-saddle points [22], they may still attract the
training trajectory (points nearby with a higher loss will first come close and then move
away), contributing to the implicit regularization of NNs, say towards a simpler fitting
(i.e., a fitting that can be realized by a narrower NN). We are specifically interested in out-
put functions corresponding to critical points, named as critical functions for convenience.
Studying these critical functions that potentially attract the learning of NN is clearly im-
portant for a deeper understanding of the learning process of an NN.

Our key finding in this work is the following general principle about critical
points/functions of NN loss landscape intuitively stated as follows:
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Embedding principle: the loss landscape of an NN contains all critical points/functions of all
the narrower NNs.

The Embedding Principle shows that any NN loss landscape contains a hierarchical struc-
ture of critical points/functions with different complexities from NNs of different widths.
Specifically, it ensures existence of “simple” critical functions that can be represented by
narrow NNs. Therefore, combining with the phenomenon of Frequency Principle and con-
densation, we conjecture that nonlinear training of NNs may be implicitly biased towards
these “simple” critical functions. We will carefully look into this conjecture in our future
works.

To prove the Embedding Principle, we first construct one-step critical embeddings
which map any parameters of a narrow network to that of an one-neuron wider NN pre-
serving the output function and criticality. With these embeddings, critical points of a nar-
row network loss landscape is mapped to 1-d critical affine subspaces of an one-neuron
wider network loss landscape with the same output function. These one-step critical em-
beddings are constructed by adding a null neuron or splitting an existing neuron. By
composition of one-step embeddings, any critical point of a narrow network loss land-
scape can be mapped to a critical point of any wider network loss landscape preserving
the output function. Importantly, we further propose a wide class of general compatible
critical embeddings, where one-step embeddings or their composition are its special cases.
Note that, all critical points of a wide NN embedded from a critical point of a narrower
NN by all possible general compatible critical embeddings, form high-dimensional critical
submanifolds which in general are not affine subspaces for three-layer or deeper NNs.

The critical embeddings naturally link critical points of NNs of different widths, thus
providing a means to track how properties of these critical points may change as the width
of the NN increases. Using these critical embeddings as a tool, we obtain rich information
about the general structure of an NN loss landscape.

We show that the degeneracy of a critical point substantially increases when it is em-
bedded to a wider network, due to the fact that a critical point can be mapped to a
high-dimensional critical submanifold through a class of critical embeddings. This de-
generacy of critical points arises from the neuron redundancy of the wide NN in rep-
resenting certain simple critical functions from narrower NNs, which is different from
over-parameterization induced degeneracy studied in [23]. We also study the property
of Hessian of critical points through critical embedding, e.g., the number of its negative
eigenvalues, which determines whether the corresponding critical point is a strict-saddle
that enables easy optimization [22]. We prove an irreversibility of critical embedding that
the number of negative eigenvalues of Hessian matrix may increase but never decrease as
an NN becomes wider through critical embedding. Moreover, we introduce a notion of
“truly-bad” critical point which never becomes a strict-saddle point through any critical
embedding. We prove a stringent necessary condition for being a “truly-bad” critical point
that requires an important ingredient of its Hessian matrix being a zero matrix. This result
implies the commonplace of strict-saddle points in the high-dimensional critical subman-
ifolds of wide NNs, which may be an important reason underlying the easy optimization
of wide NNs widely observed in practice.

In summary, the following general understanding of an NN loss landscape is obtained
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by the embedding principle in this work:

(i) It contains a hierarchical structure of critical points/functions with different complex-
ities from that of all narrower NNs;

(ii) Critical functions from narrower NNs in general forms a high-dimensional critical
submanifold with a gross estimate of the dimension: K + ∑k∈[L] KlKl−1, where Kl is
the difference in neuron number in layer l between the target NN and the narrower
NN.

(iii) If it has critical points other than the global minima that are not strict-saddle points,
they mostly can become strict-saddle points in wider NNs through critical embed-
ding, which means the embedded critical points become more optimization-friendly
in a wider NN. Remark that, other than the embedded critical points, further study
is needed to better understand the optimization property of these new critical points
arising in wider NNs.

2 Related works

In our previous conference paper [24], we prove the Embedding Principle inspired by ex-
perimental observations and study one-step embeddings and their multi-step composition
for general deep NNs. Note that, similar results on composition embedding are studied
in other works, e.g., for shallow NNs [25] and deep NNs [26, 27]. As a comprehensive
extension of [24], this work mathematically formalizes the notion and the study of critical
embedding, proposing the general compatible embedding for the first time, and further
analyzing the transition of hessian of critical points through the critical embedding. Other
than above works focusing on universal properties of the NN loss landscape, many re-
searches study the loss landscape in detail for specific settings, e.g., shallow NNs with
specific activations [28–30].

Simple gradient-descent-based optimization on the complex loss landscape of NN [1,4]
often finds solutions that generalize well. Many works study the geometry of the NN loss
landscape at critical points in relation to its generalization ability. For example, empirical
works show that SGD [31] and dropout [32] training can find a flat minimizer, which may
explain why such stochastic training can find solution that generalize better. [33] further
suggest that the volume of basin of attraction of good (flat) minima may dominate over
that of poor (sharp) minima in practical problems. [34] show that at a local minimum there
exist many asymmetric directions such that the loss increases abruptly along one side, and
slowly along the opposite side. [35] prove that for any multi-layer network with generic
input data and non-linear activation functions, sub-optimal local minima can exist, no
matter how wide the network is. When the network width increases towards infinity, the
loss landscape may become simpler and the training can avoid spurious valleys with high
probability in an over-parameterized regime [36]. In an extremely over-parameterized
regime with a large initialization, i.e., the linear regime identified in [11] with the NTK
regime as its special case [5], the gradient descent training can find the global minimum
with a linear convergence rate [6–9, 11].
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The starting point of this work originates from our work in [11], where we identify a
highly nonlinear condensed regime far beyond the NTK regime that weights condense
in isolated directions during the training. Moreover, neural networks of different width
often exhibit similar condensed behavior, e.g., stagnating at similar loss with almost the
same output function, which is illustrated in experiments in our conference paper [24].
The condensation is a highly nonlinear feature learning process important to implicit reg-
ularization and generalization of NNs. The condensation transforms a large network to a
network of only a few effective neurons, leading to an output function with low complex-
ity. Such learning process is consistent with another line of research, that is, the complex-
ity of NN output gradually increases during the training [14–18, 37–42]. For example, the
Frequency Principle [14, 15] states that NNs often fit target functions from low to high fre-
quencies during the training. A series of works study the mechanism of condensation at
an initial training stage, such as for ReLU network [20,43] and network with continuously
differentiable activation functions [44].

This work in some sense serves as our attempt to uncover the theoretical structure un-
derlying the condensation phenomenon from the perspective of loss function by proving a
general Embedding Principle. In another aspect, the condensation phenomenon also con-
firms the value of Embedding Principle in understanding the highly nonlinear training
behavior in practice.

The Embedding Principle provides a structural mechanism underlying the degeneracy
as a very common property for critical points [45, 46]. Thus it complements the under-
standing that global minima of NNs typically form a high dimensional manifold due to
over-parameterization [23].

3 Preliminary

3.1 Deep neural networks

Consider L-layer (L ≥ 2) fully-connected NNs with a general differentiable activation
function. We regard the input as the 0-th layer and the output as the L-th layer. Let ml

be the number of neurons in the l-th layer. In particular, we also set m0 = d and mL = d′.
For any i, k ∈ N and i < k, we denote [i : k] = {i, i + 1, · · · , k}. In particular, we denote
[k] := {1, 2, · · · , k}. For a matrix A, we use (A)i,j to denote its (i, j)-th entry. We will

also define (A)i,[j:k] :=
(
(A)i,j, (A)i,j+1, · · · , (A)i,k

)
as part of the i-th row vector. Similarly,

(A)[j:k],i is a part of the i-th column vector. For a vector a, we use (a)i to denote its i-th

entry, we also define (a)[j:k] :=
(
(a)j, (a)j+1, · · · , (a)k

)
as part of the vector. Given weights

W [l] ∈ R
ml×ml−1 and bias b[l] ∈ R

ml for l ∈ [L], we define the collection of parameters θ as
a 2L-tuple (an ordered list of 2L elements) whose elements are matrices or vectors

θ :=
(

θ|1, · · · , θ|L
)

:=
(

W [1], b[1], · · · , W [L], b[L]
)

, (3.1)

where the l-th layer parameters of θ is the ordered pair θ|l :=
(
W [l], b[l]

)
, l ∈ [L]. We may

misuse our notations and do not distinguish θ from its vectorization vec(θ) ∈ R
M with
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M := ∑
L−1
l=0 (ml + 1)ml+1. Moreover, we call the collection of tuples of length 2L the tuple

class, whose elements are matrices {W [l]}L
l=1 with W [l] ∈ R

ml×ml−1, or vectors {b[l]}L
l=1

with b[l] ∈ R
ml , and denoted by Tuple{m0,··· ,mL}

, i.e.,

Tuple{m0,··· ,mL}

:=
{

θ|θ =
(

W [1], b[1], · · · , W [L], b[L]
)

, W [l] ∈ R
ml×ml−1, b[l] ∈ R

ml , l ∈ [L]
}

.

Since the tuple class inherits the structure of Euclidean spaces, obviously it is a linear
space. We set 0 as the zero element in the tuple class, i.e.

0 =
(

0m1×m0
, 0m1×1, · · · , 0mL×mL−1

, 0mL×1

)
∈ Tuple{m0,··· ,mL}

,

and we abuse the notation 0 from time to time to denote zero elements belonging to differ-
ent tuple classes.

We further define the upper bracket [L − 1] by limiting ourselves to the first 2L − 2
element of the tuple, i.e.,

θ[L−1] := (W [1], b[1], · · · , W [L−2], b[L−2], W [L−1], b[L−1]) ∈ Tuple{m0,··· ,mL−2,mL−1}
, (3.2)

and given M[L−1] := ∑
L−2
l=0 (ml + 1)ml+1, θ[L−1] ∈ R

M[L−1]
.

Given parameters θ, the neural network function fθ(·) can be defined in a recursive

way. First, we write f
[0]
θ (x) := x for the input x ∈ R

d, then for l ∈ [L − 1], f
[l]
θ is defined

recursively as

f
[l]
θ (x) := σ(W [l] f

[l−1]
θ (x) + b[l])

with f [l] ∈ R
ml , where σ(·) : R → R is the activation function applied coordinate-wisely,

with slight abuse of notation. Finally, we denote

fθ(x) := f (x, θ) := f
[L]
θ (x) := W [L] f

[L−1]
θ (x) + b[L], (3.3)

and for simplicity, sometimes we may drop the subscript θ in f
[l]
θ for l ∈ [0 : L].

3.2 Loss function

The set of training data is denoted by S := {(xi, yi)}
n
i=1, where xi ∈ R

d, yi ∈ R
d′ . Here

we assume that there exists a function f ∗(·) : R
d → R

d′ satisfying f ∗(xi) = yi for i ∈ [n].
We remark that this assumption helps simplify the notation in our work, however, it is not
essential for our results. The empirical risk reads as

RS(θ) :=
1

n

n

∑
i=1

ℓ( f (xi, θ), yi) := ESℓ( f (x, θ), f ∗(x)), (3.4)
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where the expectation ES is defined for any function h(·) : R
d → R as

ESh(x) :=
1

n

n

∑
i=1

h(xi),

and the loss function ℓ(·, ·) : R
d′ ×R

d′ → R in (3.4) is differentiable in both variables, and
the derivative of ℓ(·, ·) with respect to its first argument is denoted by ∇ℓ(y, y∗). In this
paper, we always take derivatives/gradients of ℓ(·, ·) in its first argument with respect to
any possible parameter.

For each l ∈ [L], we define the error vectors as

z
[l]
θ := ∇ f [l]ℓ

with z
[l]
θ ∈ R

ml , and the feature gradients as

g
[L]
θ := 1, and g

[l]
θ := σ(1)

(
W [l] f

[l−1]
θ + b[l]

)
for l ∈ [L − 1]

with g
[l]
θ ∈ R

ml , where we use σ(1)(·) for the first derivative of σ(·). Moreover, we call

f
[l]
θ the feature vectors, and we denote the collections of feature vectors, feature gradients,

and error vectors {z
[l]
θ }L

l=1 respectively by

Fθ := { f
[l]
θ }L

l=1, Gθ := {g
[l]
θ }L

l=1, Zθ := {z
[l]
θ }L

l=1.

Moreover, using backpropagation, we can derive the following relations concerning the
above quantities

z
[L]
θ = ∇ℓ, (3.5a)

z
[l]
θ = (W [l+1])⊺

(
z
[l+1]
θ ◦ g

[l+1]
θ

)
, l ∈ [L − 1], (3.5b)

∇W [l]ℓ =
(

z
[l]
θ ◦ g

[l]
θ

)
( f

[l−1]
θ )⊺, l ∈ [L], (3.5c)

∇b[l]ℓ = z
[l]
θ ◦ g

[l]
θ , l ∈ [L], (3.5d)

where we use ◦ for the Hadamard product [47] of two matrices of the same dimension.
Specifically, for simplicity of gradient computation, we define another group of error

vectors for l ∈ [L]

e
[l]
θ := z

[l]
θ ◦ g

[l]
θ

with e
[l]
θ ∈ R

ml , and we denote {e
[l]
θ }L

l=1 by Eθ := {e
[l]
θ }L

l=1.
Directly from relation (3.5), we obtain that

e
[l]
θ = z

[l]
θ ◦ g

[l]
θ =

(
(W [l+1])⊺

(
z
[l+1]
θ ◦ g

[l+1]
θ

))
◦ g

[l]
θ =

(
(W [l+1])⊺e

[l+1]
θ

)
◦ g

[l]
θ . (3.6)
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3.3 Hessian

Given a scalar loss function ℓ(·, ·) : R
d′ × R

d′ → R, twice differentiable in both variables,
and an activation function σ(·) : R → R, also twice differentiable, we denote that

RS(θ) = ESℓ( f (x, θ), f ∗(x)), (3.7)

vS(θ) := ∇θRS(θ) = ES∇ℓ( f (x, θ), f ∗(x))⊺∇θ fθ(x) =
mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ( fθ)i, (3.8)

where ∂iℓ( fθ, f ∗) is the i-th element of ∇ℓ( f (x, θ), f ∗(x)), and ( fθ)i is the i-th element of
vector fθ. Then for the Hessian matrix HS(θ), we have

HS(θ) :=∇θ∇θRS(θ)

=
mL

∑
i=1

ES∇θ (∂iℓ( fθ, f ∗))∇θ( fθ)i +
mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i)

=
mL

∑
i,j=1

ES∂ijℓ( fθ, f ∗)∇θ( fθ)i

(
∇θ( fθ)j

)⊺
+

mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i) ,

where ∂ijℓ( fθ, f ∗) is the (i, j)-th element of ∇∇ℓ( f (x, θ), f ∗(x)), with HS(θ) ∈ R
M × R

M.

We define matrices H
(1)
S (θ) and H

(2)
S (θ) as follows:

H
(1)
S (θ) :=

mL

∑
i,j=1

ES∂ijℓ( fθ, f ∗)∇θ( fθ)i

(
∇θ( fθ)j

)⊺
, (3.9)

H
(2)
S (θ) :=

mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i) , (3.10)

then obviously H
(1)
S (θ), H

(2)
S (θ) ∈ R

M×M, and

HS(θ) = H
(1)
S (θ) + H

(2)
S (θ).

3.4 Assumptions and conventions of notations

We begin this part by introducing several assumptions that will be used throughout this
paper:

Assumptions.
(i) We choose the L-layer (L ≥ 2) fully-connected deep neural networks (NNs) as our
model.

(ii) Our training data is S = {(xi, yi)}
n
i=1, n ∈ Z

+.

(iii) We use the empirical loss RS(θ) = ESℓ( fθ(x), y).

(iv) Loss function ℓ(·, ·) and activation function σ(·) are (weakly) differentiable. (Remark:
twice differentiable is required for the computation of Hessian)

OPEN ACCESS

DOI https://doi.org/10.4208/jml.220108 | Generated on 2024-10-16 08:22:20



J. Mach. Learn., 1(1):60-113 68

After stating out the assumptions, we would also like to introduce some conventions
of notations that are frequently used in this paper in the following.

We write NN({ml}
L
l=0) for a fully-connected L-layer network with width (m0, · · · , mL),

by which the tuple class of its parameters θ ∈ Tuple{m0,··· ,mL}
is determined whereas its

activation σ(·) is not provided. When σ(·) is given, the output of NN({ml}
L
l=0) is denoted

by fθ(x) with θ ∈ Tuple{m0,··· ,mL}
.

Note that, if given two NNs, NN({ml}
L
l=0) and NN({m′

l}
L
l=0), their corresponding pa-

rameters belong to different tuple classes except when m′
l = ml for all l ∈ [0 : L]. Therefore,

in this work, fθ(x) and RS(θ) may correspond to output and loss landscape of different
NNs distinguished by θ of different tuple classes.

Given two NNs, NN({ml}
L
l=0) and NN({m′

l}
L
l=0) with m′

0 = m0, m′
L = mL, and m′

l ≥

ml for any l ∈ [L − 1], then for K = ∑
L−1
l=1 (m

′
l − ml) ∈ Z

+, we say that NN({m′
l}

L
l=0) is

K-neuron wider than NN({ml}
L
l=0), and conversely, NN({ml}

L
l=0) is K-neuron narrower

than NN({m′
l}

L
l=0).

As long as we have two NNs, NN({ml}
L
l=0) and NN({m′

l}
L
l=0), given in the context of

Definitions, Theorems, Propositions, Lemmas etc., we always assume that NN({m′
l}

L
l=0) is

wider than NN({ml}
L
l=0), i.e., m′

0 = m0, m′
L = mL, and m′

l ≥ ml for any l ∈ [L− 1]. We also

denote M = ∑
L−1
l=0 (ml + 1)ml+1 and M′ = ∑

L−1
l=0 (m

′
l + 1)m′

l+1, and consequently, M′ ≥ M.
We denote the parameters of a narrower network by θnarr, and the counterpart of a wider
network by θwide. Then, given the data S, loss ℓ(·, ·) and activation σ(·), the collection
of critical points of narrower NN and wider NN can be found respectively and denoted
by Θ

c
narr := {θ|∇θRS(θnarr) = 0} and Θ

c
wide := {θ|∇θRS(θwide) = 0}. Furthermore,

F c
narr := { fθ|θ ∈ Θ

c
narr} and F c

wide := { fθ|θ ∈ Θ
c
wide} are denoted for the function spaces

induced by critical points accordingly.
Finally, a neuron, say the i-th neuron in layer l, is termed a null neuron if its output is

a constant independent of input x for any activation, i.e., ( f [l])i(·) ≡ Const for any σ(·).
Otherwise, we call this neuron an effective neuron.

4 Embedding Principle

In this section, we prove the Embedding Principle by constructing critical embeddings.
First, we define a critical embedding operation. Then, by constructing one-step critical
embeddings and their composition, we prove the Embedding Principle that critical points
of the loss landscape of a narrow network can be embedded to critical affine subspaces of
the loss landscape of any wider network while preserving the output function. Finally, we
emphasize the importance of Embedding Principle in understanding the implicit regular-
ization and generalization of NNs.

We begin with the concepts of embedding, affine embedding and critical embedding.

Definition 4.1 (Embedding and affine embedding). Given an NN({ml}
L
l=0) and

NN({m′
l}

L
l=0), an embedding is an injective operator T : Tuple{m0,··· ,mL}

→ Tuple{m′
0,··· ,m′

L}
,

i.e., T (θ1) 6= T (θ2) for θ1, θ2 ∈ Tuple{m0,··· ,mL}
and θ1 6= θ2. In addition, T is an affine
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embedding if T̃ (θ) := T (θ)− T (0) is a linear operator, i.e., T̃ (θ1) + T̃ (θ2) = T̃ (θ1 + θ2)
and T̃ (βθ) = βT̃ (θ) for any θ, θ1, θ2 ∈ Tuple{m0,··· ,mL}

and β ∈ R.

Remark 4.1. For any given affine embedding T , it is associated with a matrix A ∈ R
M′×M

and a vector c ∈ R
M′

such that vec(T (θ)) = Avec(θ) + c, where M = ∑
L−1
l=0 (ml + 1)ml+1

and M′ = ∑
L−1
l=0 (m

′
l + 1)m′

l+1. As noted before, we do not distinguish tuple θ from its

vectorization vec(θ) in the following. Hence, T (θ) = Aθ+ c.

Definition 4.2 (Critical embedding). Given an NN({ml}
L
l=0) and NN({m′

l}
L
l=0), a critical

embedding is an affine embedding T : Tuple{m0,··· ,mL}
→ Tuple{m′

0,··· ,m′
L}

, which maps any set

of its network parameters θnarr ∈ Tuple{m0,··· ,mL}
to that of a wider NN θwide = T (θnarr) ∈

Tuple{m′
0,··· ,m′

L}
satisfying that: For any given data S, loss function ℓ(·, ·), activation function

σ(·),

(i) output preserving: fθnarr(x) = fθwide
(x) for any x ∈ R

d;

(ii) representation preserving:

span

{{(
f
[l]
θnarr

(·)
)

j

}

j∈[ml ]
∪ {1}

}

=span

{{(
f
[l]
θwide

(·)
)

j′

}

j′∈[m′
l ]
∪ {1}

}
, for any l ∈ [L],

where { f
[l]
θnarr

}L
l=1 and { f

[l]
θwide

}L
l=1 are feature vectors of NN({ml}

L
l=0) and NN({m′

l}
L
l=0), and

1 : R
d → R is the constant function, i.e., 1(·) ≡ 1;

(iii) criticality preserving: If θnarr is a critical point of RS(θ), i.e., ∇θRS(θnarr) = 0, then θwide

is also a critical point of RS(θ), i.e., ∇θRS(θwide) = 0.

Specifically, if an embedding is a critical embedding with NN({m′
l}

L
l=0) one-neuron wider than

NN({ml}
L
l=0), we call it one-step critical embedding.

4.1 One-step critical embedding

In this subsection, we introduce two types of one-step critical embeddings. we start with
the definition of one-step null embedding. Intuitively, a one-step null embedding adds a
null neuron to the NN, whose output is a constant independent of input x for any activa-
tion.

Definition 4.3 (One-step null embedding). Given an NN({ml}
L
l=0) and its parameter θ =

(W [1], b[1], · · · , W [L], b[L]) ∈ Tuple{m0,··· ,mL}
, then for any l ∈ [L − 1], we define the operators

Tl,0 and Vl,0 applying on θ as follows

Tl,0(θ)|k = θ|k, k 6= l, l + 1,

Tl,0(θ)|l =

([
W [l]

01×ml−1

]
,

[
b[l]

0

])
,
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null embedding

one-step

zero
weight

any 

bias

Figure 4.1: Illustration of one-step null embedding. The purple neuron is added with both input and output

weights as zero and an arbitrary bias α.

Tl,0(θ)|l+1 =
([

W [l+1], 0ml+1×1

]
, b[l+1]

)
,

Vl,0(θ)|k =
(
0mk×mk−1

, 0mk×1

)
, k 6= l, l + 1,

Vl,0(θ)|l =

(
0(ml+1)×ml−1

,

[
0ml×1

1

])
,

Vl,0(θ)|l+1 =
(

0ml+1×(ml+1), 0ml+1×1

)
.

We define one-step null embedding T α
l,0 as: For any θ ∈ Tuple{m0,··· ,mL}

,

T α
l,0(θ) = (Tl,0 + αVl,0)(θ).

Note that the neuron added by the above one-step null embedding has zero output
weights, zero input weights and an arbitrary bias α. An illustration is shown in Fig. 4.1.

We proceed to the definition of one-step splitting embedding.

Definition 4.4 (One-step splitting embedding). Given an NN({ml}
L
l=0) and its parameter

θ = (W [1], b[1], · · · , W [L], b[L]) ∈ Tuple{m0,··· ,mL}
, then for any l ∈ [L − 1] and s ∈ [ml ], we

define the operators Tl,s and Vl,s applying on θ as follows

Tl,s(θ)|k = θ|k, k 6= l, l + 1,

Tl,s(θ)|l =

([
W [l]

W
[l]
s,[1:ml−1]

]
,

[
b[l]

b
[l]
s

])
,

Tl,s(θ)|l+1 =
([

W [l+1], 0ml+1×1

]
, b[l+1]

)
,

Vl,s(θ)|k =
(
0mk×mk−1

, 0mk×1

)
, k 6= l, l + 1,

Vl,s(θ)|l =
(

0(ml+1)×ml−1
, 0(ml+1)×1

)
,

Vl,s(θ)|l+1 =
([

0ml+1×(s−1),−W
[l+1]
[1:ml+1],s

, 0ml+1×(ml−s), W
[l+1]
[1:ml+1],s

]
, 0ml+1×1

)
.

We define one-step splitting embedding T α
l,s as: For any θ ∈ Tuple{m0,··· ,mL}

,

T α
l,s(θ) = (Tl,s + αVl,s)(θ).
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Figure 4.2: Illustration of one-step splitting embedding. The blak neuron in the left network is split into the

blue and purple neurons in the right network. The red (green) output weight of the blak neuron in the left net

is split into two red (green) weights in the right net with ratio (1 − α) and α, respetively. This is also illustrated

in [24℄.

An illustration of one-step splitting method is shown in Fig. 4.2.

Remark 4.2. The parameters T α
l,0(θ) and T α

l,s(θ) correspond to a L-layer NN with width

(m0, · · · , ml−1, ml + 1, ml+1, · · · , mL) since T α
l,0 and T α

l,s are one-step embeddings.

Remark 4.3. We observe that T α
l,0 and T α

l,s can be applied on the neural network parameter

θ of any given NN({ml}
L
l=0) of proper depth and width, hence the domain of T α

l,0 and T α
l,s

is not limited to a specific Tuple{m0,··· ,mL}
. Instead, the extended domain of T α

l,0 and T α
l,s

assembles all possible tuple class, i.e., if we denote the extended domain of T α
l,0 by Dl,0,

then
Dl,0 :=

⊔

l<L

Tuple{n0,··· ,nL}
, (4.1)

and if we denote the extended domain of T α
l,s by Dl,s, then

Dl,s :=
⊔

l<L,s≤nl

Tuple{n0,··· ,nL}
, (4.2)

where
⊔

refers to the disjoint union of different tuple classes.

By the above remark, we may extend T α
l,0 and T α

l,s to their extended domains, and we

identify
T α

l,0 : Dl,0 → Dl,0, T α
l,s : Dl,s → Dl,s,

with their restrictions on Tuple{m0,··· ,mL}
for some given NN({ml}

L
l=0).

Theorem 4.1. One-step null embedding and one-step splitting embedding are critical embeddings.

In order to prove Theorem 4.1, we need Lemma 4.1 and Lemma 4.2, where Lemma 4.2
has already been presented previously in our conference paper [24, Lemma 1].
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Lemma 4.1. For any one-step null embedding T α
l,0, given any NN({ml}

L
l=0) and its parameters

θnarr ∈ Tuple{m0,··· ,mL}
with Tuple{m0,··· ,mL}

∈ Dl,0, we have θwide := T α
l,0(θnarr) satisfies the

following conditions: given any data S, loss ℓ(·, ·) and activation σ(·), for any l ∈ [L − 1],

(i) feature vectors in

Fθwide
: f

[l′ ]
θwide

= f
[l′ ]
θnarr

, for l′ ∈ [L] and l′ 6= l, f
[l]
θwide

=
[
( f

[l]
θnarr

)⊺, σ(α)
]
⊺

;

(ii) feature gradients in

Gθwide
: g

[l′]
θwide

= g
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l, g
[l]
θwide

=
[
(g

[l]
θnarr

)⊺, σ(1)(α)
]⊺

;

(iii) error vectors in

Zθwide
: z

[l′]
θwide

= z
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l, z
[l]
θwide

=
[
z
[l]
θnarr

, 0
]
⊺

;

(iv) T α
l,0 is injective for all α;

(v) T α
l,0 is an affine embedding for all α.

Lemma 4.2 (Lemma 1 in [24]). For any one-step splitting embedding T α
l,s, given any

NN({ml}
L
l=0) and its parameters θnarr ∈ Tuple{m0,··· ,mL}

with Tuple{m0,··· ,mL}
∈ Dl,s, we have

θwide := T α
l,s(θnarr) satisfies the following conditions: given any data S, loss ℓ(·, ·) and activation

σ(·), for any l ∈ [L − 1],

(i) feature vectors in

Fθwide
: f

[l′ ]
θwide

= f
[l′ ]
θnarr

, for l′ ∈ [L] and l′ 6= l, f
[l]
θwide

=
[
( f

[l]
θnarr

)⊺, ( f
[l]
θnarr

)s

]⊺
;

(ii) feature gradients in

Gθwide
: g

[l′]
θwide

= g
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l, g
[l]
θwide

=
[
(g

[l]
θnarr

)⊺, (g
[l]
θnarr

)s

]
⊺

;

(iii) error vectors in

Zθwide
: z

[l′]
θwide

= z
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l,

z
[l]
θwide

=

[(
z
[l]
θnarr

)⊺
[1:s−1]

, (1 − α)(z
[l]
θnarr

)s,
(

z
[l]
θnarr

)⊺
[s+1:ml]

, α(z
[l]
θnarr

)s

]⊺
;

(iv) T α
l,s is injective for all α.

(v) T α
l,s is an affine embedding for all α.
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Directly from Lemma 4.1 and Lemma 4.2, we obtain that both one-step null embed-
ding (Proposition 4.1) and one-step splitting embedding (Proposition 4.2) satisfy the prop-
erty of output preserving and representation preserving, and all we need is to check the
property of criticality preserving. We remark that Proposition 4.2 has also been presented
previously in our conference paper [24, Proposition 1].

Proposition 4.1. For any one-step null embedding T α
l,0, given any NN({ml}

L
l=0) and its parame-

ters θnarr ∈ Tuple{m0,··· ,mL}
with Tuple{m0,··· ,mL}

∈ Dl,0, we have θwide := T α
l,0(θnarr) satisfies

the following conditions: given any data S, loss ℓ(·, ·) and activation σ(·), if ∇θRS(θnarr) = 0,
then ∇θRS(θwide) = 0.

Proposition 4.2. For any one-step splitting embedding T α
l,s, given any NN({ml}

L
l=0) and its pa-

rameters θnarr ∈ Tuple{m0,··· ,mL}
with Tuple{m0,··· ,mL}

∈ Dl,s, we have θwide := T α
l,s(θnarr) sat-

isfies the following conditions: given any data S, loss ℓ(·, ·) and activation σ(·), if ∇θRS(θnarr) =
0, then ∇θRS(θwide) = 0.

Combining altogether Lemma 4.1, Lemma 4.2, Proposition 4.1 and Proposition 4.2, we
finish our proof for Theorem 4.1.

4.2 Composition of one-step embeddings and the Embedding Principle

We firstly define the composition of two embeddings, which readily leads to the multi-step
embedding operation. (A formal definition of the composition of two embeddings can be
found in Appendix C.)

Definition 4.5 (Composition of two embeddings, Informal). For any two embeddings T and
T ′, for any θ in the domain of T , the operator T ′T defined as T ′T (θ) := T ′(T (θ)) is also an
embedding, and we term T ′T the composition of T ′ and T .

For simplicity, for any K ∈ Z
+, K ≥ 2, we denote hereafter ∏

K
l=1 Tl := TK · · · T1 as the

composition of K individual embeddings {Tl}
K
l=1. For K = 1, ∏

1
l=1 Tl := T1.

Definition 4.6 (K-step (Multi-step) composition embedding). Suppose we have two vectors

l = (lk)
K
k=1, lk ∈ [L − 1], α = (αk)

K
k=1 ⊂ R

K, and a sequence {m
(0)
l }L

l=1 with m
(0)
l := ml for

l ∈ [L]. Then given an NN({ml}
L
l=0) and its parameters θ, a K-step composition embedding,

T : Tuple{m0,··· ,mL}
→ Tuple{m′

0,··· ,m′
L}

with K = ∑
L−1
l=1 m′

j − ∑
L−1
l=1 ml, is defined recursively by

the composition of K one-step null embeddings or one-step splitting embeddings.
Formally speaking, a K-step composition embedding T α

l,s is defined recursively as follows:

For n = 1, choose s1 ∈ [m
(0)
l1

] ∪ {0}, then

T
α,(1)

l,s := T α1
l1,s1

= Tl1,s1
+ α1Vl1,s1

.

Update the sequence from {m
(0)
l }L

l=1 to {m
(1)
l }L

l=1 following: m
(1)
l = m

(0)
l for l ∈ [L − 1]\{l1},

and m
(1)
l1

= m
(0)
l1

+ 1;
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Then inductively, for n = k, choose sk ∈ [m
(k−1)
lk

] ∪ {0}, then

T
α,(k)

l,s := T
αk

lk,sk
T

α,(k−1)
l,s .

Update the sequence from {m
(k−1)
l }L

l=1 to {m
(k)
l }L

l=1 following: m
(k)
l = m

(k−1)
l for l ∈ [L −

1]\{lk}, and m
(k)
lk

= m
(k−1)
lk

+ 1.

Finally, T := T α
l,s := T

α,(K)
l,s .

Remark 4.4. For each i ∈ [K], T
αi

li,si
is regarded as its restriction on the tuple class

Tuple
{m

(i−1)
0 ,··· ,m

(i−1)
L }

∈ Dli,si
, hence

T αi
li,si

: Tuple
{m

(i−1)
0 ,··· ,m

(i−1)
L }

→ Tuple
{m

(i)
0 ,··· ,m

(i)
L }

.

Theorem 4.2. A K-step composition embedding is a critical embedding.

The composition of one-step embeddings renders a feasible method to embedding any
critical point of the loss landscape of a narrow NN to a critical point with the same output
function of any wider NN, therefore, we have the following Embedding Principle.

Theorem 4.3 (Embedding Principle). Given any NN and any K-neuron wider NN, there exists
a K-step composition embedding T satisfying that: For any given data S, loss function ℓ(·, ·),
activation function σ(·), given any critical point θc

narr of the narrower NN, θc
wide := T (θc

narr) is
still a critical point of the K-neuron wider NN with the same output function, i.e., fθc

narr
= fθc

wide
.

Proof. Existence of a K-step composition embedding T can be seen from the K-step con-
struction given in Definition 4.6, and we finish the proof.

Moreover, we obtain a corollary from Theorem 4.3 stating the Embedding Principle for
the critical functions.

Corollary 4.1 (Embedding Principle of critical functions). Given any NN and any wider NN,
for any given data S, loss function ℓ(·, ·) and activation function σ(·),

F c
narr ⊂ F c

wide, (4.3)

where F c
narr = { fθ|θ ∈ Θ

c
narr} and F c

wide = { fθ|θ ∈ Θ
c
wide} are the sets of critical functions.

4.3 Importance of Embedding Principle

Mathematically speaking, Embedding Principle is a natural result of an embedding op-
eration that preserves output function and criticality. However, we must emphasize the
importance of stating and proving it explicitly in this work. For a long time, researchers
study the loss landscape of NN from an optimization perspective focusing specifically on
its property in the parameter space. Lots of works make effort in tackling problems like
whether bad local minima exist, whether local minima are also global minima and whether
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(a)

(b) (c)

Figure 4.3: (a) The training loss of a two-layer tanh neural network with 500 hidden neurons. (b, ) Red solid:

the DNN output at a training step, where the blue dot and the orange dot in (a) orresponds to (b) and (),

respetively; Blak dashed: the output of the global minimum of the width-1 NN in (b) and the width-3 NN in

(), respetively; Blue dots: training data. This is also illustrated in [24℄.

all saddle points are strict-saddle points, etc. However, because the loss landscape of NN
also has profound impact on its implicit regularization and generalization performance, it
is important to look into the loss landscape from the perspective of function spaces.

Motivated by the phenomena of Frequency Principle [14–18] and condensation [11],
we are very interested in the question of what are the critical functions of an NN loss
landscape that may attract the training trajectory in the function space. Specifically, we
care about whether there are “simple” critical functions in wide NNs that may implicitly
regularize the training to help avoid overfitting. For example, in our experiments shown
in Fig. 4.3, we clearly observe that the training of a width-500 two-layer tanh-NN in fit-
ting 50 data points experiences two stages. At the first stage, it learns an output function
close to the best fitting of the width-1 tanh-NN and stays for a while, seemingly that it
encounters a saddle point. At the second stage, it converges to an output function close
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(a) (b)

(c)

Figure 4.4: Illustration of the Embedding Priniple for the ritial funtions of (a) two-layer width-m NN and (b)

three-layer width-{m1, m2} NN. () Some ritial funtions of width-500 tanh-NN predited by the Embedding

Priniple for experiments in Fig. 4.3.

to the best fitting of the width-3 tanh-NN, which interpolates all the data points. Clearly,
the complexity of the output function of the width-500 NN gradually increases during
the training, leading to a non-overfitting interpolation of data despite of possessing over-
fitting capability. However, before studying the universality of such training behavior
clearly relevant to generalization, it is important to have a theoretical answer to whether
such “simple” critical functions always exist even in very wide NNs.

By stating and proving the Embedding Principle explicitly, we provide a clear answer
of “YES” to above question. Moreover, we unravel the exact meaning of “simple” critical
functions—critical functions of narrower networks. An illustration of critical functions of
a two-layer width-m NN and a three-layer width-{m1, m2} NN predicted by the Embed-
ding Principle are shown in Fig. 4.4(a), (b), respectively. Critical functions of the width-500
tanh-NN for experiments in Fig. 4.3 are illustrated in Fig. 4.4(c). Note that, by Frequency
Principle [14–18], we consider functions dominated by low frequency components as “sim-
ple” functions that training of an NN is implicitly biased to. Here, by Embedding Principle,
“simple” functions are those critical functions of narrow NNs, which signify a hierarchical
structure of fittings of training data with different complexities indicated by the narrowest
NN a critical function belongs to. Combining with empirical observations of Frequency
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Principle and condensation, we conjecture that nonlinear training of an NN is implicitly
biased towards these “simple” critical functions. It is clearly important to look further into
this conjecture in the future works.

5 General compatible critical embedding

Understanding the critical points/manifolds and their geometry of NN loss landscape is
an important open problem in deep learning theory. To further advance our study along
this direction, the Embedding Principle proven above inspires us to treat NN loss land-
scape of different widths and their critical points/manifolds as a unified object linked by
the critical embeddings. These explicit critical submanifolds embedded from narrower
NNs are subsets of the critical point set of a given NN. The study of them could provide
lower bounds of important geometric properties of the critical point set such as dimen-
sions of critical submanifolds (associated to the degeneracy of critical points). Clearly,
the more critical embeddings we discover, the larger embedded critical submanifolds we
uncover explicitly, and the tighter lower bound estimation we may obtain.

To define a general compatible embedding from a narrow NN to a wide NN, we first
define mappings that establish the relation between neuron indices of the narrow NN and
neuron indices of the wide NN.

Definition 5.1 (Pull-back index mapping and total index mapping ). Given an
NN({ml}

L
l=0) and a wider NN({m′

l}
L
l=0), a pull-back index mapping I := {Il}

L
l=0 from

the wider NN to the narrower NN is defined as follows: For any fixed l ∈ [L − 1], Il maps a
neuron index s′ ∈ [m′

l ] of the wider NN({m′
l}

L
l=0) in layer l to a neuron index s ∈ [ml ] ⊔ {0} in

the same layer of the narrower NN({ml}
L
l=0). As for the case of l = 0 and l = L, I0 and IL are

always the identity maps since their indices are fixed once data is given with m′
0 = m0 = d and

m′
L = mL = d′. To sum up

I0 : [m′
0] → [m0], Il : [m′

l ] → [ml ] ⊔ {0} for l ∈ [L − 1], IL : [m′
L] → [mL]. (5.1)

Moreover, for any nonzero index s 6= 0, if I−1
l (s) 6= ∅ for all l ∈ [0 : L], we say that I = {Il}

L
l=0

is a total (pull-back) index mapping.

Lemma 5.1. For any affine embedding T : Tuple{m0,··· ,mL}
→ Tuple{m′

0,··· ,m′
L}

satisfying the

output preserving property, if there exists a total index mapping I = {Il}
L
l=0 from NN({m′

l}
L
l=0)

to NN({ml}
L
l=0) and auxiliary variables β =

{
β
[l]
j ∈ R| l ∈ [0 : L], j ∈ [m′

l ]\I
−1
l (0)

}
, such

that for any given neuron belonging to NN({m′
l}

L
l=0), located in layer l with index j, the following

two statements hold:

(i) If Il(j) 6= 0, ( f
[l]
θwide

)j = ( f
[l]
θnarr

)Il(j) and (e
[l]
θwide

)j = β
[l]
j (e

[l]
θnarr

)Il(j),

(ii) If Il(j) = 0, ( f
[l]
θwide

)j = Const and (e
[l]
θwide

)j = 0,

then T is a critical embedding.
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Next, we propose a general compatible embedding method, where above embedding
methods including one-step embedding and K-step composition embedding are its special
cases.

Definition 5.2 (General compatible embedding). Given an NN({ml}
L
l=0) and a wider

NN({m′
l}

L
l=0), then for any total index mapping I = {Il}

L
l=0 from NN({m′

l}
L
l=0) to

NN({ml}
L
l=0), and for any tuple α := {α[1], α

[1]
b , · · · , α[L], α

[L]
b } ∈ Tuple{m′

0,··· ,m′
L}

satis-

fying some compatibility conditions (see Condition 1 and Condition 2), we define a gen-
eral embedding T α

I : Tuple{m0,··· ,mL}
→ Tuple{m′

0,··· ,m′
L}

as: For any parameters θnarr =

(W
[1]
narr, b

[1]
narr, · · · , W

[L]
narr, b

[L]
narr) ∈ Tuple{m0,··· ,mL}

,

T α
I (θnarr) :=

(
α[1] ◦W

[1]
inter, α

[1]
b + b

[1]
inter, · · · ,

α[l] ◦ W
[l]
inter, α

[l]
b + b

[l]
inter, · · · ,

α[L] ◦ W
[L]
inter, α

[L]
b + b

[L]
inter

)
,

where

W
[l]
inter :=

[(
W

[l]
narr

)
Il(i),Il−1(j)

]
, b

[l]
inter :=

((
b
[l]
narr

)
Il(k)

)

for l ∈ [L] with i, k ∈ [m′
l ], j ∈ [m′

l−1], and ◦ is the Hadamard product.

Remark 5.1. Since Il : [m′
l ] → [ml ] ⊔ {0} for l ∈ [L − 1], and the components in W

[l]
narr

and b
[l]
narr are not defined for zero indices, i.e., no definitions can be found for (W

[l]
narr)0j,

(W
[l]
narr)i0, (b

[l]
narr)0, for any l ∈ [L − 1] with i ∈ [ml ] and j ∈ [ml−1] ⊔ {0}, for convenience

of expression, we set (W
[l]
narr)0j = 1, (W

[l]
narr)i0 = 1, and (b

[1]
narr)0 = 0, with i ∈ [ml ] and

j ∈ [ml−1] ⊔ {0}.

Now we proceed to state out the certain conditions for the tuple

α = {α[1], α
[1]
b , · · · , α[L], α

[L]
b } ∈ Tuple{m′

0,··· ,m′
L}

(5.2)

in Definition 5.2.

Condition 1 (Compatibility conditions I (see Fig. 5.1 for illustration)). The elements

{α[l]}L
l=1 in (5.2) satisfy that: there exists a collection of auxiliary variables

β :=
{

β
[l]
j ∈ R| l ∈ [0 : L], j ∈ [m′

l ]\I
−1
l (0)

}

such that

• β
[L]
k = 1 for k ∈ [m′

L]. (Since IL is the identity map, I−1
L (0) = ∅).

• Forward conditions:
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Figure 5.1: Illustration of forward and bakward ompatibility onditions I for α[l]
.

– Effective neurons I−1
l−1(s) forward to an effective neuron i: For i /∈ I−1

l (0), s ∈

[ml−1], we have ∑j∈I−1
l−1

(s) α
[l]
ij = 1;

– Effective neurons I−1
l−1(s) forward to a null neuron i: For i ∈ I−1

l (0), s ∈ [ml−1],

we have ∑j∈I−1
l−1(s)

α
[l]
ij = 0.

• Backward conditions:

– Effective neurons I−1
l (k) backpropagate to an effective neuron j: For j /∈

I−1
l−1(0), k ∈ [ml ], we have ∑i∈I−1

l (k) β
[l]
i α

[l]
ij = β

[l−1]
j ;

– Effective neurons I−1
l (k) backpropagate to a null neuron j: For j ∈ I−1

l−1(0),

k ∈ [ml ], we have ∑i∈I−1
l

(k) β
[l]
i α

[l]
ij = 0.

The compatibility conditions for {α
[l]
b }L

l=1 is stated in the following. In order for that,

we need another collection of auxiliary variables B∗ :=
{
(b

[l]
∗ )i ∈ R| l ∈ [0 : L], i ∈

I−1
l (0)

}
. We term B∗ the effective biases for null neurons.

Condition 2 (Compatibility conditions II (see Fig. 5.2 for illustration)). The rest of the

elements in α, i.e., {α
[l]
b }L

l=1 satisfy that: There also exists a collection of auxiliary variables,
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Figure 5.2: Illustration of ompatibility onditions II for α
[l]
b .

termed the effective biases of null neurons

B∗ :=
{
(b

[l]
∗ )i ∈ R| l ∈ [0 : L], i ∈ I−1

l (0)
}

,

we have

• Effective neurons: (α
[l]
b )i = 0 for any l ∈ [L] with i /∈ I−1

l (0);

• Null neurons I−1
l−1(0) forward to a null neuron i: for i ∈ I−1

l (0), s = 0, we have
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Figure 5.3: Illustration of the forward onditions for split neurons in ompatibility onditions I. The sum of the

input weights from neurons that are split from the same previous neuron to a post neuron should be equal to the

weight from the previous to the post neuron.

∑j∈I−1
l−1(0)

α
[l]
ij σ((b

[l−1]
∗ )j) + (α

[l]
b )i = (b

[l]
∗ )i;

• Null neurons I−1
l−1(0) forward to an effective neuron i: for i /∈ I−1

l (0), s = 0, we

have ∑j∈I−1
l−1(0)

α
[l]
ij σ((b

[l−1]
∗ )j) + (α

[l]
b )i = 0.

We then illustrate the general compatible embedding as follows. First, we illustrate an
example of the general compatible embedding without null neurons through the forward
conditions in Fig. 5.3 and the backward conditions in Fig. 5.4. Second, we illustrate the
conditions related to null neurons in Fig. 5.5.
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Figure 5.4: Illustration of the bakward onditions for split neurons in ompatibility onditions I. The gradient

of the loss w.r.t. to the neuron output of the wide network is proportional to the gradient of the loss w.r.t. the

orresponding neuron in the narrow network.

Theorem 5.1. General compatible embedding is a critical embedding.

Remark that we later name it as general compatible critical embedding in this work.

5.1 Special cases of general compatible critical embedding

In the following, we present some special cases of general compatible critical embedding.
Specifically, the three-fold global splitting embedding is the key to the proof of a necessary
condition of a “truly-bad” critical point in Section 6.
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Figure 5.5: Illustration of ompatibility onditions for null neurons. Red: The input from e�etive neurons split

from the same neuron should anel out. Yellow: the e�etive bias of a null neuron is the sum of its bias (an

be any value) and its input from other null neurons. Purple: The added null neurons have onstant input to

the e�etive neuron, whih would be added a bias orretion to anel the onstant input. Purple+Green: the

bakward ondition of a null neuron leads to the zero gradient.

Definition 5.3 (Splitting embedding). For a general compatible critical embedding T α
I , if there

is no null neuron in the embedded NN, i.e., I−1
l (0) = ∅ for any l ∈ [L − 1], then we call T α

I a
splitting embedding.

Definition 5.4 (Null embedding). For a general compatible critical embedding T α
I , if only null

neurons are added, i.e., #I−1
l (0) = m′

l −ml for any l ∈ [L − 1], hence there is no neuron splitting,

i.e., #I−1
l (s) = 1 for any l ∈ [L − 1], s ∈ [ml ], then we call T α

I a null embedding.

Remark 5.2. One-step null embedding and its multi-step composition are special cases of
null embedding. Similarly, one-step splitting embedding and its multi-step composition
are special cases of splitting embedding. Multi-step embedding composed by a mixture
of one-step null and splitting embedding is a special case of general compatible critical
embedding.

Example 5.1 (A three-fold global splitting embedding). We define the operator Tglobal ap-
plying on θ as follows

Tglobal(θ)|1 =






W [1]

W [1]

W [1]


,




b[1]

b[1]

b[1]




 ,
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Tglobal(θ)|l =








W [l] 0 0

0 W [l] 0

0 0 W [l]



,




b[l]

b[l]

b[l]







 , l ∈ [2 : L − 1],

Tglobal(θ)|L =
([

W [L], W [L],−W [L]
]

, b[L]
)

.

Remark 5.3. For this global splitting embedding, m′
l = 3ml and I−1

l (s) = {s, s + ml, s +
2ml} for any l ∈ [L − 1] and s ∈ [ml ]. Moreover, for l = 1,

α[1] =




1m1×m0

1m1×m0

1m1×m0



 ,

α
[1]
b = 03m1×1,

and for l ∈ [2 : L − 1], we have

α[l] =




1ml×ml−1
0ml×ml−1

0ml×ml−1

0ml×ml−1
1ml×ml−1

0ml×ml−1

0ml×ml−1
0ml×ml−1

1ml×ml−1


 ,

α
[l]
b = 03ml×1,

and

α[L] =
[
1mL×mL−1

1mL×mL−1
−1mL×mL−1

]
,

α
[L]
b = 0mL×1.

Moreover, for any l ∈ [L − 1], β
[l]
j = 1 when j ∈ [2ml ] and β

[l]
j = −1 when j ∈ [2ml + 1 :

3ml ]. It is a special case of splitting embedding.

Example 5.2 (A two-fold global null embedding). We define the operator TGN applying
on θ as follows

TGN(θ)|1 =

([
W [1]

0

]
,

[
b[1]

b
[1]
∗∗

])
,

TGN(θ)|l =

([
W [l] 0

0 0

]
,

[
b[l]

b
[l]
∗∗

])
,

TGN(θ)|L =
([

W [L], 0
]

, b[L]
)

,

where b
[l]
∗∗ takes an arbitrary real vector of the same dimension as b[l] for any l ∈ [L − 1].

Remark 5.4. For this global null embedding, m′
l = 2ml, I

−1
l (s) = {s} and I−1

l (0) =
[ml + 1 : 2ml] for any l ∈ [L − 1] and s ∈ [ml ]. Then for l = 1,

α[1] =

[
1m1×m0

0m1×m0

]
,
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α
[1]
b =

[
0m1×1

b
[1]
∗∗

]
,

and for l ∈ [2 : L − 1], we have

α[l] =

[
1ml×ml−1

0ml×ml−1

0ml×ml−1
0ml×ml−1

]
,

α
[l]
b =

[
0ml×1

b
[l]
∗∗

]
,

and

α[L] =
[
1mL×mL−1

0mL×mL−1

]
,

α
[L]
b = 0mL×1.

Moreover, for any l ∈ [L − 1], (b
[l]
∗ )i = (b

[l]
∗∗)i−ml

for i ∈ [ml + 1 : 2ml]. It is a special case
of null embedding.

6 Analysis of critical points/submanifolds by critical

embeddings

6.1 Degeneracy of critical points/submanifolds

A key observation to the critical embeddings proposed above is that it is not unique. Ac-
tually, given any NN and a wider NN, there is a class of critical embeddings. Therefore,
any critical point can be embedded to a set of critical points in a wider NN. By a K-step
composition embedding, because embedding T αi

li,si
at each step i has one degree of free-

dom parameterized by αi given li and si, one critical point in general can be embedded
to a K-dimensional critical affine subspace, which provides a lower bound to the degener-
acy of embedded critical points. Precisely, in [24], we prove the following theorem using
composition of one-step splitting embeddings.

Theorem 6.1 (Theorem 2 in [24]). Given an NN({ml}
L
l=0) and a K-neuron wider

NN({m′
l}

L
l=0), then for any critical point θc

narr =
(
W [1], b[1], · · · , W [L], b[L]

)
satisfying W [l] 6=

0 for each l ∈ [L], θc
narr can be critically embedded to a K-dimensional critical affine subspace

Mwide = {θwide + ∑
K
i=1 αiµi|αi ∈ R} of loss landscape of NN({m′

l}
L
l=0). Here θwide :=

(∏K
l=1 Tll ,sl

)(θnarr) and µi := TlK ,sK
· · · Vli,si

· · · Tl1,s1
(θnarr), where sl 6= 0 for all l ∈ [K]. (The

definitions of Vll ,sl
and Tll ,sl

can be found in Definition 4.4).

In addition, in this work, as we propose above a wider class of general compatible
critical embeddings, we attempt to obtain a better estimate of the dimension of critical
submanifolds corresponding to any given critical function fθc

narr
of a narrow NN. A gross

estimate yields the following heuristic argument.
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Heuristic argument. Given any total index mapping I , the degree of freedom of all
possible α for general compatible critical embedding T α

I to a K-neuron wider NN is
K + ∑l∈[L] KlKl−1, where Kl := m′

l − ml, and K := ∑l∈[L−1] Kl.

Justification. By the definition of general compatible critical embedding, {α[l]}L
l=1 and

auxiliary variables β =
{

β
[l]
j ∈ R| l ∈ [L], j ∈ [m′

l ]\I
−1
l (0)

}
with β

[L]
k = 1 satisfy forward

and backward compatibility conditions.

Step 1: We first observe that ∑i∈I−1
l (s) β

[l]
i = 1 for any s ∈ [ml ]. Thus, β has K − mnull

degrees of freedom, where mnull is the number of null neurons.

Step 2: Given any such β, we now consider the degrees of freedom for {α[l]}L
l=1. Note

that forward and backward conditions are not independent of one another because

∑
j∈I−1

l−1(s)

∑
i∈I−1

l (k)

β
[l]
i α

[l]
ij = ∑

i∈I−1
l (k)

β
[l]
i = 1 = ∑

j∈I−1
l−1(s)

β
[l−1]
j

automatically holds for the given β. Therefore, there are m′
lml−1 + mlm

′
l−1 − mlml−1 in-

dependent linear equations for m′
lm

′
l−1 parameters in α[l] for each layer l, resulting in

∑l∈[L] KlKl−1 degrees of freedom in total.

Step 3: Given any effective biases B∗ as auxiliary variables for all null neurons and

any α[l] satisfying forward and backward conditions, (α
[l]
b )i is uniquely determined for all

neurons in the wide NN. Therefore, there are mnull degrees of freedom in B∗.

In the end, the degrees of freedom in α is the summation of degrees of freedom in

auxiliary variables β, degrees of freedom in {α[l]}L
l=1 given β and additional degrees of

freedom in B∗ for all null neurons, which add up to K + ∑l∈[L] KlKl−1 degrees of freedom.

Intuitively, degrees of freedom in critical embedding T transform into dimensions
of critical submanifolds, resulting in a higher estimate of degrees of degeneracy K +
∑l∈[L] KlKl−1 in comparison to K obtained by multi-step composition embedding in [24].
We note that the nonlinear coupling between α and β in general results in non-affine
curved critical submanifolds for three-layer or deeper NNs containing the correspond-
ing K-dimensional critical affine subspaces identified in Theorem 6.1. A more rigorous
estimate requires careful handling of the nonlinear coupling. We leave it to later works.

6.2 Irreversible transition to strict-saddle point

In this subsection, we look further into the transition between different types of critical
points, e.g., local minima, saddle points, through critical embeddings. We are specifically
interested in the transition of a critical point to a strict-saddle point due to its good opti-
mization guarantee detailed in [22]. Strict-saddle point is defined as follows.

Definition 6.1 (Strict-saddle). θ is a strict-saddle point of loss landscape RS(·) if

(i) ∇RS(θ) = 0;

(ii) Hessian matrix HS(θ) has at least one negative eigenvalue.
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Based on above definition, we prove the following irreversibility property for any criti-
cal embedding, which guarantees that a strict-saddle point always embeds to strict-saddle
points.

Theorem 6.2. Given an NN({ml}
L
l=0) and any of its parameters θ ∈ R

M, for any critical em-

bedding T : R
M → R

M′
to any wider NN({m′

l}
L
l=0), the number of positive, zero, negative

eigenvalues of HS(T (θ)) is no less than the counterparts of HS(θ).

6.3 “Truly-bad” critical point

The above irreversibility property of any critical embedding provokes the following
thought about a conventional bad local minimum: for any bad local minimum of a given
NN, if it can become a strict-saddle point in wider NNs, then it should not be a problem
as we can simply use a wider NN in practice. However, there is still a “truly-bad” situa-
tion in which a critical point may never become a strict-saddle point through any critical
embedding. In the following, through proving a stringent necessary condition for such a
“truly-bad” critical point defined below, we justify its rarity, hence providing a potential
mechanism to understand the easy optimization of wide NNs widely observed in practice.

We denote hereafter that A � B if and only if A − B is a semi-positive definite matrix,
and A ≻ B if and only if A − B is a strictly positive definite matrix.

Definition 6.2 ("Truly-bad" critical point). Given any data S, loss ℓ(·, ·) and activation σ(·),
for any NN, if there exists a critical point θc ∈ Θ

c satisfying that:

(i) θc is not a strict-saddle point [22, Definition 1];

(ii) For any critical embedding T , T (θc) is also not a strict-saddle point,

then we term this critical point a "truly-bad" critical point.

We would like to introduce some additional notations in order to state Lemma 6.1 and
Lemma 6.2. We denote

H
(1),[L−1]
S (θ) :=

mL

∑
i,j=1

ES∂ijℓ( fθ, f ∗)∇θ[L−1]( fθ)i

(
∇θ[L−1]( fθ)j

)⊺
,

and

H
(2),[L−1]
S (θ) :=

mL

∑
i,j=1

ES∂iℓ( fθ, f ∗)W
[L]
i,j ∇θ[L−1]∇θ[L−1]

(
f
[L−1]
θ

)
j
.

We denote further that H
[L−1]
S (θ) := H

(1),[L−1]
S (θ) + H

(2),[L−1]
S (θ). Obviously, H

(1),[L−1]
S (θ),

H
(2),[L−1]
S (θ), H

[L−1]
S (θ) ∈ R

M[L−1]×M[L−1]
, and we state Lemma 6.1 and Lemma 6.2 as fol-

lows.

Lemma 6.1. Given any data S, loss ℓ(·, ·) and activation σ(·), for any NN, if a critical point
θc ∈ Θ

c satisfies:

(i) HS(θ
c) � 0;
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(ii) H
(2),[L−1]
S (θc) 6= 0,

then there exists a general compatible critical embedding T , such that T (θc) is a strict-saddle
point.

Lemma 6.2. Given any data S, loss ℓ(·, ·) and activation σ(·), for any NN, if a critical point
θc ∈ Θ

c satisfies:

(i) HS(θ
c) � 0;

(ii) H
(2),[L−1]
S (θc) = 0;

(iii) H
(2)
S (θc) 6= 0,

then there exists a general compatible critical embedding T , such that T (θc) is a strict-saddle
point.

Theorem 6.3. Given any data S, loss ℓ(·, ·) and activation σ(·), for any NN, if a critical point θc

with HS(θ
c) � 0 satisfies H

(2)
S (θc) 6= 0, then there exists a general compatible critical embedding

T such that T (θc) is a strict-saddle point, i.e., HS(T (θc)) has at least one negative eigenvalue.

Proof. This can be directly obtained by Lemmas 6.1 and 6.2.

Theorem (short version of Theorem 6.3). H
(2)
S (θc) = 0 is a necessary condition for a critical

point θc being a "truly-bad" critical point.

7 Conclusion and discussion

In this work, we prove the Embedding Principle that loss landscape of an NN contains
all critical points/functions of all the narrower NNs. We define the critical embedding,
which serves as the key tool not only to the proof of Embedding Principle but also to
the study of the general geometry of loss landscape. Importantly, we discover a wide
class of general compatible embedding, by which we obtain rich understanding about the
critical points/submanifolds, e.g., lower bound of their degree of degeneracy, their easy
and irreversible transition to strict-saddle points.

The general compatible embedding proposed in this work unravels that the critical em-
bedding in general is not limited to the composition of one-step embeddings, but instead,
it can be a collective operation. As a consequence, all critical points embedded from a nar-
rower NN form high-dimensional critical submanifolds, which in general are not affine
subspaces for three-layer or deeper NNs. It is interesting and important. However, it re-
mains a problem for the future study about whether the general compatible embeddings
in certain sense are all the critical embeddings.

Embedding Principle provides an integrated view about loss landscapes of NNs with
different widths. Specifically, it informs us that a specific bad local minimum in a NN
with a fixed width may not be a big deal for optimization as long as it can become a strict-
saddle point in wider NNs, i.e., not a “truly-bad” critical point. In this work, we prove a
stringent necessary condition for a “truly-bad” critical point. Still, it remains a problem
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about whether non-trivial “truly-bad” critical points indeed exist, and whether they are
indeed a headache for optimization. We remark that complementary to the study of the
“truly-bad” critical points, we also need to further study whether NNs can generate new
bad local-minima forever when they become wider and wider to better understand the
easy optimization of wide NNs.

We emphasize that Embedding Principle provides a function space view on the criti-
cal points /submanifolds of loss landscape, which is of great importance for studying the
implicit regularization and generalization of NNs. In recent years, it has been more and
more clear that optimization and generalization are heavily intertwined with one another
for deep learning. Therefore, one can not expect to develop a deep learning theory with
optimization theory and generalization theory established separately. Yet, for a long time,
the study of loss landscape focuses mainly on the parameter space in pursuit of an opti-
mization guarantee. On the other hand, the study of generalization focuses mainly on the
function space, failing to incorporate the geometry of loss landscape in parameter space
which is key to the training. Now, by the Embedding Principle, we see a hierarchical struc-
ture of critical functions of different complexities of the loss landscape, which originate
from loss landscape with clear optimization implication while being amenable to the anal-
ysis of complexity with clear generalization implication. Such a critical function hierarchy
reflects the degree of matching between the NN architecture and data, i.e., if critical func-
tions of narrow NNs attain low training error, then the NN architecture well matches the
target function and may obtain a well generalized solution through training like in Fig.
4.3. Even though more works need to be done to unravel the full details and implication
of this critical function hierarchy, we believe it is an important piece and may be a key to
the deep learning theory.
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A Theoretical details

Lemma (Lemma 4.1 in main text.). For any one-step null embedding T α
l,0, given any

NN({ml}
L
l=0) and its parameters θnarr ∈ Tuple{m0,··· ,mL}

with Tuple{m0,··· ,mL}
∈ Dl,0, we

have θwide := T α
l,0(θnarr) satisfies the following conditions: given any data S, loss ℓ(·, ·)
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and activation σ(·), for any l ∈ [L − 1],

(i) feature vectors in

Fθwide
: f

[l′ ]
θwide

= f
[l′ ]
θnarr

, for l′ ∈ [L] and l′ 6= l, f
[l]
θwide

=
[
( f

[l]
θnarr

)⊺, σ(α)
]
⊺

;

(ii) feature gradients in

Gθwide
: g

[l′]
θwide

= g
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l, g
[l]
θwide

=
[
(g

[l]
θnarr

)⊺, σ(1)(α)
]⊺

;

(iii) error vectors in

Zθwide
: z

[l′]
θwide

= z
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l, z
[l]
θwide

=
[
z
[l]
θnarr

, 0
]⊺

;

(iv) T α
l,0 is injective for all α;

(v) T α
l,0 is an affine embedding for all α.

Proof. (i) By the construction of θwide, it is clear that f
[l′ ]
θwide

= f
[l′ ]
θnarr

for all l′ ∈ [l − 1]. Then

f
[l]
θwide

= σ

([
W [l]

01×ml−1

]
f
[l−1]
θnarr

+

[
b[l]

α

])
=

[
f
[l]
θnarr

σ(α)

]
. (A.1)

Note that since

α
[
0ml+1×(ml+1)

] [
f
[l]
θnarr

σ(α)

]
= 0ml+1×1.

Thus

f
[l+1]
θwide

= σ

([
W [l+1], 0ml+1×1

] [
f
[l]
θnarr

σ(α)

]
+ 0ml+1×1 + b[l+1] + α 0ml+1×1

)
= f

[l+1]
θnarr

. (A.2)

Next, by the construction of θwide, it is clear that f
[l′ ]
θwide

= f
[l′ ]
θnarr

for any l′ ∈ [l + 1 : L].

(ii) The results for feature gradients g
[l′]
θwide

= g
[l′]
θnarr

for l′ ∈ [L] can be calculated in a

similar way except by replacing σ(·) with σ(1)(·).

(iii) By the backpropagation and the above facts in (i), we have

z
[L]
θwide

= ∇ℓ( f
[L]
θwide

, y) = ∇ℓ( f
[L]
θnarr

, y) = z
[L]
θnarr

.

Recall the recurrence relation for l′ ∈ [l + 1 : L − 1], then we recursively obtain the follow-
ing equality for l′ from L − 1 down to l + 1:

z
[l′]
θwide

= (W [l′+1])⊺
(

z
[l′+1]
θwide

◦ g
[l′+1]
θwide

)
= (W [l′+1])⊺

(
z
[l′+1]
θnarr

◦ g
[l′+1]
θnarr

)
= z

[l′]
θnarr

. (A.3)
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Next,

z
[l]
θwide

=
([

W [l+1], 0ml+1×1

]
+ α

[
0ml+1×(ml+1)

])⊺ (
z
[l+1]
θwide

◦ g
[l+1]
θwide

)

=

[
z
[l]
θnarr

0

]
+
[
0(ml+1)×1

]
=
[
z
[l]
θnarr

, 0
]⊺

. (A.4)

Finally,

z
[l−1]
θwide

=
[

W [l]⊺, 0ml−1×1

] ([
z
[l]
θnarr

0

]
◦

[
g
[l]
θnarr

σ(1)(α)

])

= (W [l])⊺
(

z
[l]
θnarr

◦ g
[l]
θnarr

)
+ 0ml−1×1 = z

[l−1]
θnarr

. (A.5)

This with the recurrence relation once again leads to z
[l′]
θwide

= z
[l′ ]
θnarr

for all l′ ∈ [l − 1].

(iv) If for θ1, θ2 ∈ Tuple{m0,··· ,mL}
and θ1 6= θ2, since T α

l,0|k for k 6= l, l + 1 is the identity

map, then if there exists some k0 6= l, l + 1, such that W
[k0]
1 6= W

[k0]
2 or b

[k0]
1 6= b

[k0]
2 , then

obviously T α
l,0(θ1) 6= T α

l,0(θ2). If k0 = l or k0 = l + 1, by similar reasoning, T α
l,0(θ1) 6=

T α
l,0(θ2).

(v) For θ0 = (W
[1]
0 , b

[1]
0 , · · · , W

[L]
0 , b

[L]
0 ) ∈ Tuple{m0,··· ,mL}

, we have

T̃ α
l,0(θ0)

:=T α
l,0(θ0)− T α

l,0(0)

=

(
W

[1]
0 , b

[1]
0 , · · · ,

[
W

[l]
0

01×ml−1

]
,

[
b
[l]
0
0

]
,
[
W

[l+1]
0 , 0ml+1×1

]
, b

[l+1]
0 , · · · , W

[L]
0 , b

[L]
0

)
,

obviously T̃ α
l,0 is a linear operator, thus T α

l,0 is an affine operator.

Lemma (Lemma 4.2 in main text). For any one-step splitting embedding T α
l,s, given any

NN({ml}
L
l=0) and its parameters θnarr ∈ Tuple{m0,··· ,mL}

with Tuple{m0,··· ,mL}
∈ Dl,s, we

have θwide := T α
l,s(θnarr) satisfies the following conditions: given any data S, loss ℓ(·, ·)

and activation σ(·), for any l ∈ [L − 1],

(i) feature vectors in

Fθwide
: f

[l′ ]
θwide

= f
[l′ ]
θnarr

, for l′ ∈ [L] and l′ 6= l, f
[l]
θwide

=
[
( f

[l]
θnarr

)⊺, ( f
[l]
θnarr

)s

]⊺
;

(ii) feature gradients in

Gθwide
: g

[l′]
θwide

= g
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l, g
[l]
θwide

=
[
(g

[l]
θnarr

)⊺, (g
[l]
θnarr

)s

]⊺
;
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(iii) error vectors in Zθwide
: z

[l′]
θwide

= z
[l′]
θnarr

, for l′ ∈ [L] and l′ 6= l,

z
[l]
θwide

=

[(
z
[l]
θnarr

)
⊺

[1:s−1]
, (1 − α)(z

[l]
θnarr

)s,
(

z
[l]
θnarr

)
⊺

[s+1:ml]
, α(z

[l]
θnarr

)s

]⊺
;

(iv) T α
l,s is injective for all α;

(v) T α
l,s is an affine embedding for all α.

Proof. (i) By the construction of θwide, it is clear that f
[l′ ]
θwide

= f
[l′ ]
θnarr

for all l′ ∈ [l − 1]. Then

f
[l]
θwide

= σ

([
W [l]

W
[l]
s,[1:ml−1]

]
f
[l−1]
θnarr

+

[
b[l]

b
[l]
s

])
=

[
f
[l]
θnarr

( f
[l]
θnarr

)s

]
. (A.6)

Note that

α
[
0ml+1×(s−1),−W

[l+1]
[1:ml+1],s

, 0ml+1×(ml−s), W
[l+1]
[1:ml+1],s

] [ f
[l]
θnarr

( f
[l]
θnarr

)s

]
= 0ml+1×1.

Thus

f
[l+1]
θwide

= σ

([
W [l+1], 0ml+1×1

] [ f
[l]
θnarr

( f
[l]
θnarr

)s

]
+ 0ml+1×1 + b[l+1] + α 0ml+1×1

)
= f

[l+1]
θnarr

.

(A.7)

Next, by the construction of θwide, it is clear that f
[l′ ]
θwide

= f
[l′ ]
θnarr

for any l′ ∈ [l + 1 : L].

(ii) The results for feature gradients g
[l′]
θwide

= g
[l′]
θnarr

for l′ ∈ [L] can be calculated in a

similar way except by replacing σ(·) with σ(1)(·).

(iii) By the backpropagation and the above facts in (i), we have

z
[L]
θwide

= ∇ℓ( f
[L]
θwide

, y) = ∇ℓ( f
[L]
θnarr

, y) = z
[L]
θnarr

.

Recall the recurrence relation for l′ ∈ [l + 1 : L − 1], then we recursively obtain the follow-
ing equality for l′ from L − 1 down to l + 1:

z
[l′]
θwide

= (W [l′+1])⊺
(

z
[l′+1]
θwide

◦ g
[l′+1]
θwide

)
= (W [l′+1])⊺

(
z
[l′+1]
θnarr

◦ g
[l′+1]
θnarr

)
= z

[l′]
θnarr

. (A.8)

Next,

z
[l]
θwide

=
([

W [l+1], 0ml+1×1

]
+ α

[
0ml+1×(s−1),−W

[l+1]
[1:ml+1],s

, 0ml+1×(ml−s),

W
[l+1]
[1:ml+1],s

])⊺ (
z
[l+1]
θwide

◦ g
[l+1]
θwide

)
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=

[
z
[l]
θnarr

0

]
+




0(s−1)×1

−α(z
[l]
θnarr

)s

0(ml−s)×1

α(z
[l]
θnarr

)s




=
[
(z

[l]
θnarr

)⊺
[1:s−1]

, (1 − α)(z
[l]
θnarr

)s, (z
[l]
θnarr

)⊺
[s+1:ml ]

, α(z
[l]
θnarr

)s

]⊺
. (A.9)

Finally,

z
[l−1]
θwide

=
[
(W [l])⊺, (W [l])⊺

s,[1:ml−1]

]






[
z
[l]
θnarr

0

]
+




0(s−1)×1

−α(z
[l]
θnarr

)s

0(ml−s)×1

α(z
[l]
θnarr

)s





 ◦

[
g
[l]
θnarr

(g
[l]
θnarr

)s

]



= (W [l])⊺
(

z
[l]
θnarr

◦ g
[l]
θnarr

)
+ 0ml−1×1 = z

[l−1]
θnarr

. (A.10)

This with the recurrence relation once again leads to z
[l′]
θwide

= z
[l′ ]
θnarr

for all l′ ∈ [l − 1].

(iv) If for θ1, θ2 ∈ Tuple{m0,··· ,mL}
and θ1 6= θ2, since T α

l,s|k for k 6= l, l + 1 is the identity

map, then if there exists some k0 6= l, l + 1, such that W
[k0]
1 6= W

[k0]
2 or b

[k0]
1 6= b

[k0]
2 , then

obviously T α
l,s(θ1) 6= T α

l,s(θ2). If k0 = l or k0 = l + 1, by similar reasoning, T α
l,s(θ1) 6=

T α
l,s(θ2).

(v) For θ0 = (W
[1]
0 , b

[1]
0 , · · · , W

[L]
0 , b

[L]
0 ) ∈ Tuple{m0,··· ,mL}

, we have

T̃ α
l,s(θ0) :=T α

l,s(θ0)− T α
l,s(0)

=
(

W
[1]
0 , b

[1]
0 , · · · ,

[
W

[l]
0

(W
[l]
0 )s,[1:ml−1]

]
,

[
b
[l]
0

(b
[l]
0 )s

]
,
[
(W

[l+1]
0 )[1:ml+1],[1:s−1],

(1 − α)(W
[l+1]
0 )[1:ml+1],s

, (W
[l+1]
0 )[1:ml+1],[s+1:ml ]

, α(W
[l+1]
0 )[1:ml+1],s

]
,

b
[l+1]
0 , · · · , W

[L]
0 , b

[L]
0

)
,

obviously T̃ α
l,s is a linear operator, thus T α

l,s is an affine operator.

Directly from Lemma 4.1 and Lemma 4.2, we obtain that both one-step null embedding
and one-step splitting embedding satisfy the property of output preserving and represen-
tation preserving, and all we need is to check the property of criticality preserving.

Proposition (Proposition 4.1 in main text). For any one-step null embedding T α
l,0, given

any NN({ml}
L
l=0) and its parameters θnarr ∈ Tuple{m0,··· ,mL}

with Tuple{m0,··· ,mL}
∈ Dl,0,

we have θwide := T α
l,0(θnarr) satisfies the following conditions: given any data S, loss ℓ(·, ·)

and activation σ(·), if ∇θRS(θnarr) = 0, then ∇θRS(θwide) = 0.
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Proof. Gradient of loss with respect to network parameters of each layer can be computed
from F, G, and Z as follows

∇
W [l′]RS(θ) = ∇

W [l′]ESℓ( fθ(x), y) = ES

((
z
[l′ ]
θ ◦ g

[l′]
θ

)
( f

[l′−1]
θ )⊺

)
,

∇
b[l

′]RS(θ) = ∇b[l]ESℓ( fθ(x), y) = ES

(
z
[l′]
θ ◦ g

[l′]
θ

)
.

Then, by Lemma 4.1, we have for l′ 6= l, l + 1,

∇
W [l′]RS(θwide) = ∇

W [l′]RS(θnarr) = 0,

and
∇

b[l
′]RS(θwide) = ∇

b[l
′]RS(θnarr) = 0.

Also, for any j ∈ [ml+1], k ∈ [ml ], since

(z
[l+1]
θwide

)j = (z
[l+1]
θnarr

)j, (g
[l+1]
θwide

)j = (g
[l+1]
θnarr

)j, ( f
[l]
θwide

)k = ( f
[l]
θnarr

)k,

and W
[l+1]
j,(ml+1)

≡ 0, we obtain that

∇
W

[l+1]
j,k

RS(θwide) = ∇
W

[l+1]
j,k

RS(θnarr) = 0,

∇
W

[l+1]
j,(ml+1)

RS(θwide) = 0,

∇
b
[l+1]
j

RS(θwide) = ∇
b
[l+1]
j

RS(θnarr) = 0.

Similarly, for any j ∈ [ml ], k ∈ [ml−1], since

(z
[l]
θwide

)j = (z
[l]
θnarr

)j, (g
[l]
θwide

)j = (g
[l]
θnarr

)j, ( f
[l−1]
θwide

)k = ( f
[l−1]
θnarr

)k,

and W
[l]
(ml+1),k

≡ 0, we have

∇
W

[l]
j,k

RS(θwide) = ∇
W

[l]
j,k

RS(θnarr) = 0,

∇
W

[l]
(ml+1),k

RS(θwide) = 0,

∇
b
[l]
j

RS(θwide) = ∇
b
[l]
j

RS(θnarr) = 0.

Moreover, by Lemma 4.1, the output function f
[L]
θwide

= f
[L]
θnarr

is independent of the hyper-

parameter α, and RS(θwide) = RS(θnarr), then since b
[l]
(ml+1)

= α, we have

∇
b
[l]
(ml+1)

RS(θwide) =
∂

∂α
RS(θnarr) = 0.

Collecting all the above relations, we obtain that ∇θRS(θwide) = 0.
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Proposition (Proposition 4.2 in main text). For any one-step splitting embedding T α
l,s,

given any NN({ml}
L
l=0) and its parameters θnarr ∈ Tuple{m0,··· ,mL}

with Tuple{m0,··· ,mL}
∈

Dl,s, we have θwide := T α
l,s(θnarr) satisfies the following conditions: given any data S, loss

ℓ(·, ·) and activation σ(·), if ∇θRS(θnarr) = 0, then ∇θRS(θwide) = 0.

Proof. Gradient of loss with respect to network parameters of each layer can be computed
from F, G, and Z as follows

∇
W [l′]RS(θ) = ∇

W [l′]ESℓ( fθ(x), y) = ES

((
z
[l′ ]
θ ◦ g

[l′]
θ

)
( f

[l′−1]
θ )⊺

)
,

∇
b[l

′]RS(θ) = ∇b[l]ESℓ( fθ(x), y) = ES

(
z
[l′]
θ ◦ g

[l′]
θ

)
.

Then, by Lemma 4.2, we have for l′ 6= l, l + 1,

∇
W [l′]RS(θwide) = ∇

W [l′]RS(θnarr) = 0,

and
∇

b[l
′]RS(θwide) = ∇

b[l
′]RS(θnarr) = 0.

Also, for any j ∈ [ml+1], k ∈ [ml ], since

(z
[l+1]
θwide

)j = (z
[l+1]
θnarr

)j, (g
[l+1]
θwide

)j = (g
[l+1]
θnarr

)j,

( f
[l]
θwide

)k = ( f
[l]
θnarr

)k, ( f
[l]
θwide

)ml+1 = ( f
[l]
θnarr

)s,

we obtain

∇
W

[l+1]
j,k

RS(θwide) = ∇
W

[l+1]
j,k

RS(θnarr) = 0,

∇
W

[l+1]
j,(ml+1)

RS(θwide) = 0,

∇
b
[l+1]
j

RS(θwide) = ∇
b
[l+1]
j

RS(θnarr) = 0.

Similarly, for any j ∈ [ml ]\{s},

(z
[l]
θwide

)j = (z
[l]
θnarr

)j, (z
[l]
θwide

)s = (1 − α)(z
[l]
θnarr

)s, (z
[l]
θwide

)(ml+1) = α(z
[l]
θnarr

)s,

and for any i ∈ [ml ],

(g
[l]
θwide

)i = (g
[l]
θnarr

)i, (g
[l]
θwide

)(ml+1) = (g
[l]
θnarr

)s,

and for k ∈ [ml−1],

( f
[l−1]
θwide

)k = ( f
[l−1]
θnarr

)k,

hence for any j ∈ [ml ]\{s}, k ∈ [ml−1]:

∇
W

[l]
j,k

RS(θwide) = ∇
W

[l]
j,k

RS(θnarr) = 0,

∇
b
[l]
j

RS(θwide) = ∇
b
[l]
j

RS(θnarr) = 0,
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∇
W

[l]
s,k

RS(θwide) = (1 − α)∇
W

[l]
s,k

RS(θnarr) = 0,

∇
W

[l]
(ml+1),k

RS(θwide) = α∇
W

[l]
s,k

RS(θnarr) = 0,

∇
b
[l]
s

RS(θwide) = (1 − α)∇
b
[l]
s

RS(θnarr) = 0,

∇
b
[l]
(ml+1)

RS(θwide) = α∇
b
[l]
s

RS(θnarr) = 0.

Collecting all the above relations, we obtain that ∇θRS(θwide) = 0.

Combining altogether Lemma 4.1, Lemma 4.2, Proposition 4.1 and Proposition 4.2, we
finish our proof for Theorem 4.1.

Theorem (Theorem 4.2 in main text). A K-step composition embedding is a critical em-
bedding.

Proof. We shall prove it using induction.
For K = 1, Proposition 4.2 holds since both one-step null embedding and one step

splitting embedding are critical embeddings.
Assume that Proposition 4.2 holds for K = l − 1, we want to show that it also holds for

K = l.
From the induction hypothesis, we only need to show that if given two critical embed-

dings T1, T2, then T2T1 is also a critical embedding.

(i) T2T1 is injective:

For θ1 and θ2 belonging to a same tuple class but θ1 6= θ2, since T1 is injective, then
T1(θ1) 6= T1(θ2). Since T2 is injective, then T2T1(θ1) 6= T2T1(θ2).

(ii) T2T1 is an affine embedding:

We use the fact that the composition of two affine operators is affine and hence we finish
our proof.

(iii) T2T1 satisfies the property of output preserving:

Since T1 satisfies the property of output preserving, then for any θ, fT1(θ)
= fθ. Similarly

for T2, we have fT2T1(θ)
= fT1(θ)

, hence fT2T1(θ)
= fθ.

(iv) T2T1 satisfies the property of representation preserving:

Similar reasoning in (iii).

(v) T2T1 satisfies the property of criticality preserving:

Since θ is a critical point of RS(θ), so is T1(θ), and T2T1(θ) as well, we finish the proof.

Lemma (Lemma 5.1 in main text). For any affine embedding T : Tuple{m0,··· ,mL}
→

Tuple{m′
0,··· ,m′

L}
satisfying the output preserving property, if there exists a total index map-

ping I = {Il}
L
l=0 from NN({m′

l}
L
l=0) to NN({ml}

L
l=0) and auxiliary variables β =

{
β
[l]
j ∈

R| l ∈ [0 : L], j ∈ [m′
l ]\I

−1
l (0)

}
, such that for any given neuron belonging to NN({m′

l}
L
l=0),

located in layer l with index j, the following two statements hold:

(i) If Il(j) 6= 0, ( f
[l]
θwide

)j = ( f
[l]
θnarr

)Il(j) and (e
[l]
θwide

)j = β
[l]
j (e

[l]
θnarr

)Il(j),
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(ii) If Il(j) = 0, ( f
[l]
θwide

)j = Const and (e
[l]
θwide

)j = 0,

then T is a critical embedding.

Proof. For any critical point θc
narr ∈ Θ

c
narr, we set θwide := T (θc

narr). Then, since we have
for any l′ ∈ [L]

∇
W [l′]RS(θ) = ∇

W [l′]ESℓ( fθ(x), y) = ES

((
z
[l′ ]
θ ◦ g

[l′]
θ

)
( f

[l′−1]
θ )⊺

)
,

∇
b[l

′]RS(θ) = ∇b[l]ESℓ( fθ(x), y) = ES

(
z
[l′]
θ ◦ g

[l′]
θ

)
.

Hence for Il(i), Il−1(j) 6= 0

∇
(W

[l]
wide)ij

RS(θwide) = ES(e
[l]
θwide

)i( f
[l−1]
θwide

)j

= ESβ
[l]
i (e

[l]
θc

narr
)Il(i)

( f
[l−1]
θc

narr
)Il−1(j)

= β
[l]
i ∇

(W
[l]
narr)Il (i),Il−1(j)

RS(θ
c
narr) = 0,

∇
(b

[l]
wide)i

RS(θwide) = ES(e
[l]
θwide

)i

= ESβ
[l]
i (e

[l]
θc

narr
)Il(i)

= β
[l]
i ∇

(b
[l]
narr)Il(i)

RS(θ
c
narr) = 0.

By condition (ii), these gradients are obviously 0 for Il(i) = 0 or Il−1(j) = 0. Therefore,
θwide is also a critical point and T is criticality preserving.

Since I is a total index mapping, for any feature vector of NN({ml}
L
l=0), the component

of which is also the output function of at least a neuron in the wide NN by condition (i).
Moreover, any neuron output function of a neuron in the wide NN is either constant or
output function of a neuron in the narrow NN by condition (i) and (ii). Therefore, T is
representation preserving. Then T is a critical embedding.

Theorem (Theorem 5.1 in main text). General compatible embedding is a critical embed-
ding.

Remark that we later name it as general compatible critical embedding in this work.

Proof. We need to prove four properties one by one.

1. T α
I is output preserving and representation preserving;

2. T α
I is an injective operator;

3. T α
I is an affine embedding;

4. T α
I is criticality preserving.
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(i) We prove output preserving and representation preserving by doing induction on
layers.

For the first layer, i.e., l = 1, we have for i ∈ [m′
1],

( f
[1]
θwide

)i = σ



 ∑
j∈[m′

0]

(W
[1]
wide)ijxj + (b

[1]
wide)i





= σ


 ∑

j∈[m0]

α
[1]
ij (W

[1]
narr)I1(i),j

xj + (α
[1]
b )i + (b

[1]
narr)I1(i)


 ,

then for i /∈ I−1
l (0), for each j ∈ [m0], since α

[1]
ij = ∑s∈I−1

0 (j) αis = 1, (α
[1]
b )i = 0, hence

( f
[1]
θwide

)i = ( f
[1]
θnarr

)I1(i)
.

Otherwise, for i ∈ I−1
1 (0), we have α

[1]
ij = 0 and (α

[1]
b )i = (b

[1]
∗ )i, then

( f
[1]
θwide

)i = σ
(
(b

[1]
∗ )i

)
,

which is a constant function playing the same role as the bias term in the next layer.

Suppose for layer l − 1, we have for i /∈ I−1
l−1(0)

( f
[l−1]
θwide

)i = ( f
[l−1]
θnarr

)Il−1(i)
,

and for i ∈ I−1
l−1(0),

( f
[l−1]
θwide

)i = σ
(
(b

[l−1]
∗ )i

)
.

Then we want to show that this is also the case for layer l.
We obtain that

( f
[l]
θwide

)i = σ


 ∑

j∈[m′
l−1]

(W
[l]
wide)ij( f

[l−1]
θwide

)j + (b
[l]
wide)i




= σ


 ∑

s∈[ml−1]∪{0}
∑

j∈I−1
l−1(s)

α
[l]
ij (W

[l]
narr)Il(i),s

( f
[l−1]
θwide

)j + (α
[l]
b )i + (b

[l]
narr)Il(i)




= σ

(

∑
s∈[ml−1]

(W
[l]
narr)Il(i),s

( f
[l−1]
θnarr

)s ∑
j∈I−1

l−1(s)

α
[l]
ij + ∑

j∈I−1
l−1(0)

α
[l]
ij σ
(
(b

[l−1]
∗ )j

)

+ (α
[l]
b )i + (b

[l]
narr)Il(i)

)
.
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For i /∈ I−1
l (0), we have

( f
[l]
θwide

)i = σ



 ∑
s∈[ml−1]

(W
[l]
narr)Il(i),s

( f
[l−1]
θnarr

)s + (b
[l]
narr)Il(i)



 = ( f
[l]
θnarr

)Il(i)
.

Otherwise, for i ∈ I−1
l (0), we have

( f
[l]
θwide

)i = σ
(
(b

[l]
∗ )i

)
.

Then, for any layer l, we have for i /∈ I−1
l (0),

( f
[l]
θwide

)i = ( f
[l]
θnarr

)Il(i)
,

and for i ∈ I−1
l (0),

( f
[l]
θwide

)i = σ
(
(b

[l]
∗ )i

)
.

Hence, we have proved already that T α
I is output preserving and representation preserv-

ing.

(ii) We prove that T α
I is injective.

If for θnarr,1, θnarr,2 ∈ Tuple{m0,··· ,mL}
and θnarr,1 6= θnarr,2, then there exists some l ∈ [L],

such that W
[l]
narr,1 6= W

[l]
narr,2 or b

[l]
narr,1 6= b

[l]
narr,2.

Then, if T α
I is not injective, there exists θnarr,1 6= θnarr,2, such that θwide,1 = θwide,2,

where θwide,1 := T α
I (θnarr,1) and θwide,2 := T α

I (θnarr,2), and we want to show that this will
never happen.

Since there exists l ∈ [L], such that W
[l]
narr,1 6= W

[l]
narr,2 or b

[l]
narr,1 6= b

[l]
narr,2. For the case

W
[l]
narr,1 6= W

[l]
narr,2, we obtain that there exists i ∈ [ml+1], j ∈ [ml ], such that

(
W

[l]
narr,1

)
i,j

6=
(
W

[l]
narr,2

)
i,j

. We observe that W
[l]
wide,1 = α[l] ◦ W

[l]
inter,1, and W

[l]
wide,2 = α[l] ◦ W

[l]
inter,2. Then,

since I is a total index mapping, then for i, j 6= 0, I−1
l (i), I−1

l−1(j) 6= ∅, hence for any

k ∈ I−1
l (i) and l ∈ I−1

l−1(j),

(
W

[l]
wide,1

)
k,l

= α
[l]
k,l

(
W

[l]
narr,1

)
i,j

,

and (
W

[l]
wide,2

)
k,l

= α
[l]
k,l

(
W

[l]
narr,2

)
i,j

.

If W
[l]
wide,1 = W

[l]
wide,2, then

∑
s∈I−1

l−1(j)

(
W

[l]
wide,1

)
k,s

= ∑
s∈I−1

l−1(j)

(
W

[l]
wide,2

)
k,s

,
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hence

∑
s∈I−1

l−1(j)

α
[l]
k,s

(
W

[l]
narr,1

)
i,j
= ∑

s∈I−1
l−1(j)

α
[l]
k,s

(
W

[l]
narr,2

)
i,j

,

and since ∑s∈I−1
l−1(j) α

[l]
k,s = 1, we obtain that

(
W

[l]
narr,1

)
i,j
=
(

W
[l]
narr,2

)
i,j

,

which contradicts θnarr,1 6= θnarr,2.

For the case where b
[l]
narr,1 6= b

[l]
narr,2, since (α

[l]
b )i = 0 for any l ∈ [L] with i /∈ I−1

l (0).

Then for any k ∈ I−1
l (j), j 6= 0,

(
b
[l]
wide,1

)

k
= α

[l]
b +

(
b
[l]
narr,1

)

j
=
(

b
[l]
narr,1

)

j
,

and (
b
[l]
wide,2

)
k
= α

[l]
b +

(
b
[l]
narr,2

)
j
=
(

b
[l]
narr,2

)
j
,

hence b
[l]
wide,1 6= b

[l]
wide,2, and we finish the injection proof.

(iii) We prove that T α
I is affine.

It is obvious that T α
I is affine since for any θ ∈ Tuple{m0,··· ,mL}

, T̃ α
I (θ) := T α

I (θ)−T α
I (0)

puts the weights and biases of null neuron as zero, and multiplies the weights and biases
of effective by some constant, thus T̃ α

I is a linear operator.

(iv) We prove that T α
I is criticality preserving.

We only need to check whether or not the conditions in Lemma 5.1 are satisfied. More-
over, we want to show that the collection of auxiliary variables

β :=
{

β
[l]
j ∈ R| l ∈ [0 : L], j ∈ [m′

l ]\I
−1
l (0)

}

in Condition 1 are exactly the auxiliary variables

β =
{

β
[l]
j ∈ R| l ∈ [0 : L], j ∈ [m′

l ]\I
−1
l (0)

}

in Lemma 5.1. We show them using induction.
For layer L, by definition

e
[L]
θwide

= z
[L]
θwide

◦ g
[L]
θwide

,

since T α
I is output preserving for any activation, then

e
[L]
θwide

= z
[L]
θwide

◦ g
[L]
θwide

= z
[L]
θnarr

◦ g
[L]
θnarr

= e
[L]
θnarr

,

hence for i ∈ [mL], (e
[L]
θwide

)i = β
[L]
i (e

[L]
θnarr

)i, since β
[L]
i = 1 for i ∈ [mL].
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For any l ∈ [L], suppose for layer l, we have for i /∈ I−1
l (0),

(
e
[l]
θwide

)

i
= β

[l]
i

(
e
[l]
θnarr

)

Il(i)
,

and for i ∈ I−1
l (0), (

e
[l]
θwide

)
i
= 0.

Then for layer l − 1, we have

(e
[l−1]
θwide

)j = (g
[l−1]
θwide

)j ∑
i∈[m′

l]

(W
[l]
wide)ij(e

[l]
θwide

)i

= (g
[l−1]
θwide

)j ∑
k∈[ml]∪{0}

∑
i∈I−1

l
(k)

α
[l]
ij (W

[l]
inter)ij(e

[l]
θwide

)i

= (g
[l−1]
θwide

)j ∑
k∈[ml]

(W
[l]
narr)k,Il−1(j)(e

[l]
θnarr

)k ∑
i∈I−1

l (k)

α
[l]
ij β

[l]
i ,

from Condition 1, we observe that β
[l−1]
j := ∑i∈I−1

l
(k) α

[l]
ij β

[l]
i , then

(e
[l−1]
θwide

)j = (g
[l−1]
θwide

)jβ
[l−1]
j ∑

k∈[ml]

(W
[l]
narr)k,Il−1(j)(e

[l]
θnarr

)k.

Since the choice of activation σ(·) is arbitrary, we may follow the same argument used for

f
[l]
θwide

and f
[l]
θnarr

in item (i), where for i /∈ I−1
l (0),

( f
[l]
θwide

)i = ( f
[l]
θnarr

)Il(i)
,

and for i ∈ I−1
l (0),

( f
[l]
θwide

)i = σ
(
(b

[l]
∗ )i

)
.

Similarly, for i /∈ I−1
l (0),

(g
[l]
θwide

)i = (g
[l]
θnarr

)Il(i)
,

and for i ∈ I−1
l (0),

(g
[l]
θwide

)i = σ(1)
(
(b

[l]
∗ )i

)
.

Hence for j /∈ I−1
l−1(0),

(e
[l−1]
θwide

)j = (g
[l−1]
θwide

)jβ
[l−1]
j ∑

k∈[ml ]

(W
[l]
narr)k,Il−1(j)(e

[l]
θnarr

)k

= β
[l−1]
j (g

[l−1]
θnarr

)Il−1(j) ∑
k∈[ml ]

(W
[l]
narr)k,Il−1(j)(e

[l]
θnarr

)k

= β
[l−1]
j (e

[l−1]
θnarr

)j.
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Otherwise, for j ∈ I−1
l−1(0), we set β

[l−1]
j = 0, then

(e
[l−1]
θwide

)j = β
[l−1]
j σ(1)

(
(b

[l−1]
∗ )j

)
(z

[l−1]
θnarr

)Il−1(j) = 0.

From the above proof, we find out that the variables

β :=
{

β
[l]
j ∈ R| l ∈ [0 : L], j ∈ [m′

l ]\I
−1
l (0)

}

in Condition 1 are exactly the variables in Lemma 5.1, hence we finish our proof.

Theorem (Theorem 6.2 in main text). Given an NN({ml}
L
l=0) and any of its parameters θ ∈

R
M, for any critical embedding T : R

M → R
M′

to any wider NN({m′
l}

L
l=0), the number of

positive, zero, negative eigenvalues of HS(T (θ)) is no less than the counterparts of HS(θ).

Proof. Because T is a critical embedding, therefore, it is an affine injective operator asso-

ciated with A ∈ R
M′×M, c ∈ R

M′
, such that T (θ) = Aθ + c. By the output preserving

property of T , we have
RS(θ) ≡ RS(Aθ+ c).

Hence,
∇θ∇θRS(θ) ≡ ∇θ∇θRS(Aθ+ c).

Then
A⊺HS(Aθ+ c)A ≡ HS(θ).

Given any θ0, if HS(θ0) has k negative eigenvalues {λ
neg
j }k

j=1 with associated orthonormal

eigenvectors {e
neg
j }k

j=1, then {Ae
neg
j }k

j=1 satisfies, for any e
neg
j ,

(Ae
neg
j )⊺HS(Aθ0 + c)Ae

neg
j =

(
e

neg
j

)
⊺

HS(θ)e
neg
j = λ

neg
j < 0. (A.11)

By full rankness of A, we have

dim

(
span

({
Ae

neg
j

}k

j=1

))
= k.

Thus, HS(Aθ0 + c) has at least k negative eigenvalues. Similarly, we can prove this result
for the number of zero and positive eigenvalues.

Hence, in particular, for any critical embedding T , the number of negative eigenvalues
of HS(θ) is no more than the counterpart of HS(T (θ)).

We would like to introduce some additional notations in order to state Lemma 6.1 and
Lemma 6.2. In order to calculate the Hessian HS(θ) = ∇θ∇θRS(θ), we need to compute
vS(θ):

vS(θ) := ES∇ℓ( f (x, θ), f ∗(x))⊺∇θ fθ(x) =
mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ( fθ)i,
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where ∂iℓ( fθ, f ∗) is the i-th element of ∇ℓ( f (x, θ), f ∗(x)), and ( fθ)i is the i-th element of
vector fθ, then for the Hessian HS(θ), we have

HS(θ) = ∇θ∇θRS(θ)

=
mL

∑
i=1

ES∇θ (∂iℓ( fθ, f ∗))∇θ( fθ)i +
mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i)

=
mL

∑
i,j=1

ES∂ijℓ( fθ, f ∗)∇θ( fθ)i

(
∇θ( fθ)j

)⊺
+

mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i) ,

where ∂ijℓ( fθ, f ∗) is the (i, j)-th element of ∇∇ℓ( f (x, θ), f ∗(x)).

Hence H
(1)
S (θ) and H

(2)
S (θ) respectively becomes

H
(1)
S (θ) :=

mL

∑
i,j=1

ES∂ijℓ( fθ, f ∗)∇θ( fθ)i

(
∇θ( fθ)j

)⊺
, (A.12)

and

H
(2)
S (θ) :=

mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i) . (A.13)

Obviously, we observe that

HS(θ) = H
(1)
S (θ) + H

(2)
S (θ). (A.14)

We observe that for i ∈ [mL], j ∈ [mL−1],

( fθ)i =
mL−1

∑
j=1

(W [L])i,j

(
f
[L−1]
θ

)
j
+ (b[L])i,

hence we obtain that, for any i ∈ [mL],

∂( fθ)i

∂W [L]
=




0(i−1)×mL−1(
f
[L−1]
θ

)
j

0(mL−i)×mL−1


 , j ∈ [mL−1],

∂( fθ)i

∂b[L]
=




0(i−1)×1

1
0(mL−i)×1


 .

(A.15)

Finally, given an NN({ml}
L
l=0) and its parameter

θ = (W [1], b[1], · · · , W [L], b[L]) ∈ Tuple{m0,··· ,mL}
,

we remind the readers once again that the collection of parameters θ is a 2L-tuple. We
denote that the upper bracket [L − 1] by limiting ourselves to the first 2L − 2 element of
the tuple, i.e.,

θ[L−1] := (W [1], b[1], · · · , W [L−2], b[L−2], W [L−1], b[L−1]) ∈ Tuple{m0,··· ,mL−2,mL−1}
, (A.16)
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and similarly, we identify θ[L−1] with its vectorization vec(θ[L−1]) ∈ R
M[L−1]

with M[L−1] =

∑
L−2
l=0 (ml + 1)ml+1. Then, we denote hereafter the expressions

H
(2),[L−1]
S (θ) :=

mL

∑
i,j=1

ES∂iℓ( fθ, f ∗)W
[L]
i,j ∇θ[L−1]∇θ[L−1]

(
f
[L−1]
θ

)

j
,

H
(1),[L−1]
S (θ) :=

mL

∑
i,j=1

ES∂ijℓ( fθ, f ∗)∇θ[L−1]( fθ)i

(
∇θ[L−1]( fθ)j

)⊺
,

and H
[L−1]
S (θ) := H

(1),[L−1]
S (θ) + H

(2),[L−1]
S (θ).

Lemma (Lemma 6.1 in main text). Given any data S, loss ℓ(·, ·) and activation σ(·), for any
NN, if a critical point θc ∈ Θ

c satisfies:

(i) HS(θ
c) � 0;

(ii) H
(2),[L−1]
S (θc) 6= 0,

then there exists a general compatible critical embedding T , such that T (θc) is a strict-
saddle point.

Proof. We consider the three-fold global splitting embedding Tglobal defined in Example
5.1. Obviously, Tglobal is a general compatible critical embedding. After choosing a critical

point θc
narr ∈ Θ

c, and we have that θc
wide := Tglobal(θ

c
narr).

θc
narr and θc

wide are tuples, and we misuse these notations and identify them with their

vectorizations, i.e., θc
narr ∈ R

M and θc
wide ∈ R

M′
for some M and M′. More specifically, we

set

θc
narr =

(
vec(W [1])⊺, · · · , vec(W [L−2])⊺, vec(W [L−1])⊺,

b[1]⊺, · · · , b[L−1]⊺, vec(W [L])⊺, b[L]⊺
)⊺

,

θc
wide =

(
θ1, θ2, θ3, 01×(M′−3M+2mL)

, vec(W [L])⊺, vec(W [L])⊺, vec(−W [L])⊺, b[L]⊺
)⊺

,

with

θ1 := θ2 := θ3 :=θ[L−1]

=
(

vec(W [1])⊺, · · · , vec(W [L−2])⊺, vec(W [L−1])⊺, b[1]⊺, · · · , b[L−1]⊺
)

,

then we observe that

θc
narr =

(
θ1, vec(W [L])⊺, b[L]⊺

)⊺
,

and we are able to do some computations:

H
[L−1]
S (θc

wide) =
mL

∑
i,j=1

ES∂ijℓ( fθwide
, f ∗)∇

θ
[L−1]
wide

( fθwide
)i

(
∇

θ
[L−1]
wide

( fθwide
)j

)⊺

+
mL

∑
i,j=1

ES∂iℓ( fθwide
, f ∗)

(
W

[L]
wide

)
i,j
∇

θ
[L−1]
wide

∇
θ
[L−1]
wide

(
f
[L−1]
θwide

)
j
, (A.17)
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Then for the first part

mL

∑
i,j=1

ES∂ijℓ( fθwide
, f ∗)∇

θ
[L−1]
wide

( fθwide
)i

(
∇

θ
[L−1]
wide

( fθwide
)j

)⊺

,

we have

mL

∑
i,j=1

ES∂ijℓ( fθwide
, f ∗)∇

θ
[L−1]
wide

( fθwide
)i

(
∇

θ
[L−1]
wide

( fθwide
)j

)⊺

=




A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


 ,

with

Ap,q := ES

mL

∑
i,j=1

∂ijℓ( fθwide
, f ∗)∇θp( fθwide

)i

(
∇θq( fθwide

)j

)⊺
,

for p ∈ [3] and q ∈ [3].
For the second part

mL

∑
i,j=1

ES∂iℓ( fθwide
, f ∗)W

[L]
i,j ∇

θ
[L−1]
wide

∇
θ
[L−1]
wide

(
f
[L−1]
θwide

)

j
,

we have

mL

∑
i,j=1

ES∂iℓ( fθwide
, f ∗)W

[L]
i,j ∇

θ
[L−1]
wide

∇
θ
[L−1]
wide

(
f
[L−1]
θwide

)
j
=




B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3


 ,

with

Bp,q := ES

mL

∑
i,j=1

∂iℓ( fθwide
, f ∗)W

[L]
i,j ∇θp∇θq

(
f
[L−1]
θwide

)
j
,

for p ∈ [3] and q ∈ [3].
Moreover,

∇θ1

(
fθwide

(x)
)

i
=

mL−1

∑
j=1

(
W

[L]
wide

)

i,j
∇θ1

(
f
[L−1]
θwide

)

j
, i ∈ [mL], (A.18a)

∇θ2

(
fθwide

(x)
)

i
=

2mL−1

∑
j=mL−1+1

(
W

[L]
wide

)

i,j
∇θ2

(
f
[L−1]
θwide

)

j
, i ∈ [mL], (A.18b)

∇θ3

(
fθwide

(x)
)

i
=

3mL−1

∑
j=2mL−1+1

(
W

[L]
wide

)

i,j
∇θ3

(
f
[L−1]
θwide

)

j
, i ∈ [mL], (A.18c)

hence by construction of Tglobal, we obtain that

∇θ1

(
fθwide

(x)
)

i
= ∇θ2

(
fθwide

(x)
)

i
= −∇θ3

(
fθwide

(x)
)

i
.
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And for the Hessian, we have

∇θ1
∇θ1

(
fθwide

(x)
)

i
=

mL−1

∑
j=1

(
W

[L]
wide

)
i,j
∇θ1

∇θ1

(
f
[L−1]
θwide

)
j
, i ∈ [mL], (A.19a)

∇θ2
∇θ2

(
fθwide

(x)
)

i
=

2mL−1

∑
j=mL−1+1

(
W

[L]
wide

)

i,j
∇θ2

∇θ2

(
f
[L−1]
θwide

)

j
, i ∈ [mL], (A.19b)

∇θ3
∇θ3

(
fθwide

(x)
)

i
=

3mL−1

∑
j=2mL−1+1

(
W

[L]
wide

)

i,j
∇θ3

∇θ3

(
f
[L−1]
θwide

)

j
, i ∈ [mL], (A.19c)

∇θ1
∇θ2

(
fθwide

(x)
)

i
= ∇θ1

∇θ3

(
fθwide

(x)
)

i

= ∇θ2
∇θ3

(
fθwide

(x)
)

i
= 0, i ∈ [mL], (A.19d)

Thus for H
(2),[L−1]
S (θc

narr) 6= 0, then there exists a nonzero eigenvalue λ 6= 0 associated
with its unit eigenvector v.

For the cases where λ > 0, then v⊺H
(2),[L−1]
S (θc

narr)v = λ. We observe that the ma-

trix H̃(θc
wide) below is a principle submatrix of the Hessian at θc

wide, i.e., by choosing the
columns and rows corresponding to (θ1, θ2, θ3), we obtain that

H̃(θc
wide) : =




H
(1),[L−1]
S (θc

narr) H
(1),[L−1]
S (θc

narr) −H
(1),[L−1]
S (θc

narr)

H
(1),[L−1]
S (θc

narr) H
(1),[L−1]
S (θc

narr) −H
(1),[L−1]
S (θc

narr)

−H
(1),[L−1]
S (θc

narr) −H
(1),[L−1]
S (θc

narr) H
(1),[L−1]
S (θc

narr)




+




H
(2),[L−1]
S (θc

narr) 0 0

0 H
(2),[L−1]
S (θc

narr) 0

0 0 −H
(2),[L−1]
S (θc

narr)


 ,

Then for u = [ 1
2 v⊺, 1

2 v⊺, v⊺]⊺,

u⊺H̃(θc
wide)u = −

1

2
λ < 0,

indicating θc
wide is a strict-saddle point.

Otherwise, if λ < 0, since v⊺H̃(θc
wide)v = λ, then for u = [v⊺,−v⊺, 0]⊺,

u⊺H̃(θc
wide)u = 2λ < 0,

indicating θc
wide is also a strict-saddle point.

Lemma (Lemma 6.2 in main text). Given any data S, loss ℓ(·, ·) and activation σ(·), for any
NN, if a critical point θc ∈ Θ

c satisfies:

(i) HS(θ
c) � 0;

(ii) H
(2),[L−1]
S (θc) = 0;

OPEN ACCESS

DOI https://doi.org/10.4208/jml.220108 | Generated on 2024-10-16 08:22:20



J. Mach. Learn., 1(1):60-113 107

(iii) H
(2)
S (θc) 6= 0.

Then there exists a general compatible critical embedding T , such that T (θc) is a strict-
saddle point.

Proof. Since we have

H
(2)
S (θ) :=

mL

∑
i=1

ES∂iℓ( fθ, f ∗)∇θ∇θ (( fθ)i) , (A.20)

then H
(2)
S (θc

narr) can be written into the form of

H
(2)
S (θc

narr) = ES




C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3


 ,

where

C1,1 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇W [L]∇W [L] (( fθnarr)i) ,

C1,2 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇W [L]∇b[L] (( fθnarr)i) ,

C1,3 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇W [L]∇θ[L−1] (( fθnarr)i) ,

C2,1 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇b[L]∇W [L] (( fθnarr)i) ,

C2,2 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇b[L]∇b[L] (( fθnarr)i) ,

C2,3 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇b[L]∇θ[L−1] (( fθnarr)i) ,

C3,1 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇θ[L−1]∇W [L] (( fθnarr)i) ,

C3,2 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇θ[L−1]∇b[L] (( fθnarr)i) ,

C3,3 =
mL

∑
i=1

∂iℓ( fθnarr , f ∗)∇θ[L−1]∇θ[L−1] (( fθnarr)i) ,

from relation (A.15), we obtain that

H
(2)
S (θc

narr)

=ES




0 0 ∑
mL

i=1 ∂iℓ( fθnarr
, f ∗)∇W [L]∇θ[L−1] (( fθnarr

)i)
0 0 0

∑
mL

i=1 ∂iℓ( fθnarr
, f ∗)∇θ[L−1]∇W [L] (( fθnarr

)i) 0 H
(2),[L−1]
S (θc

narr)


 ,
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We observe that the matrix H̃
(2)
S (θc

narr) below is a principle submatrix of the Hessian at

θc
narr, i.e., by choosing the columns and rows corresponding to

(
W [L], θ[L−1]

)
, we obtain

that

H̃
(2)
S (θc

narr)

=ES

[
0 ∑

mL

i=1 ∂iℓ( fθwide
, f ∗)∇W [L]∇θ[L−1] (( fθnarr

)i)

∑
mL

i=1 ∂iℓ( fθwide
, f ∗)∇θ[L−1]∇W [L] (( fθnarr

)i) H
(2),[L−1]
S (θc

narr)

]
,

and it satisfies tr(H̃
(2)
S (θc

narr)) = 0.

Since H
(2)
S (θc

narr) 6= 0, then H̃
(2)
S (θc

narr) has at least one negative eigenvalue, denoted

by λneg associated with its unit eigenvector v, i.e., v⊺H̃
(2)
S (θc

narr)v = λneg < 0. Then we
consider the three-fold global splitting embedding Tglobal defined in Example 5.1, with

θc
wide = Tglobal(θ

c
narr).

From relation (A.14), we obtain that

HS(θ
c
wide) = H

(1)
S (θc

wide) + H
(2)
S (θc

wide),

we recall that

θ1 = θ2 = θ[L−1] =
(

vec(W [1])⊺, · · · , vec(W [L−2])⊺, vec(W [L−1])⊺, b[1]⊺, · · · , b[L−1]⊺
)

,

and if we concatenate θ1 and vec(W [L])⊺ into a new vector d1 :=
(
θ1, vec(W [L])⊺

)
, and

θ2 and vec(W [L])⊺ into a new vector d2 :=
(
θ2, vec(W [L])⊺

)
, we observe that the matrix

H̃(θc
wide) below is a principle submatrix of the Hessian HS(θ) at θc

wide, i.e., by choosing
the columns and rows corresponding to (d1, d2), we obtain that

H̃(θc
wide) :=

[
D1,1 D1,2

D2,1 D2,2

]
+

[
H̃

(2)
S (θc

narr) 0

0 H̃
(2)
S (θc

narr)

]
,

with

Dp,q := ES

mL

∑
i,j=1

∂ijℓ( fθwide
, f ∗)∇dp

( fθwide
)i

(
∇dq

( fθwide
)j

)⊺
,

for p ∈ [2] and q ∈ [2]. Since d1 = d2, we obtain that

D1,1 = D2,2 = D1,2 = D2,1.

Then, by choosing u = [vT,−vT ]T, we have

u⊺H̃(θc
wide)u = 2λneg

< 0,

indicating θc
wide is a strict-saddle point.
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B Step by step backpropagation

In this section, we derive all the relations in (3.5) concerning { f
[l]
θ }L

l=1, {g
[l]
θ }L

l=1, {z
[l]
θ }L

l=1.
We shall write out all the relations once again

z
[L]
θ = ∇ℓ, (B.1)

z
[l]
θ = (W [l+1])⊺

(
z
[l+1]
θ ◦ g

[l+1]
θ

)
, l ∈ [L − 1], (B.2)

∇W [l]ℓ =
(

z
[l]
θ ◦ g

[l]
θ

)
( f

[l−1]
θ )⊺, l ∈ [L], (B.3)

∇b[l]ℓ = z
[l]
θ ◦ g

[l]
θ , l ∈ [L]. (B.4)

For relation (B.1), since by definition z
[L]
θ = ∇ f [L]ℓ = ∇ fθ

ℓ, and ℓ = ℓ( fθ, f ∗), where f ∗ is

fixed, hence (
z
[L]
θ

)
i
=

∂ℓ( fθ, f ∗)

∂ ( fθ)i

= ∂iℓ( fθ, f ∗).

We prove relation (B.2) in detail and the rest of the relations follow the same reasoning.

First things first, we show that it holds for l = L − 1. Since z
[L]
θ = ∇ℓ, and g

[L]
θ := 1, hence

z
[L]
θ ◦ g

[L]
θ = ∇ℓ. By definition,

z
[L−1]
θ = ∇ f [L−1]ℓ,

using chain rule, since

( f [L])i =
mL−1

∑
j=1

W
[L]
i,j

(
f [L−1]

)
j
+ (b[L])i,

then (
z
[L−1]
θ

)
j
=

∂ℓ

∂ ( f [L−1])j

=
mL

∑
i=1

∂ℓ

∂ ( f [L])i

∂ ( f [L])i

∂ ( f [L−1])j

=
mL

∑
i=1

∂iℓ W
[L]
i,j ,

hence
z
[L−1]
θ = (W [L])⊺∇ℓ = (W [L])⊺

(
z
[L]
θ ◦ g

[L]
θ

)
.

Now for l ∈ [L − 2], we have that since

(
f [l+1]

)
i
= σ

((
ml

∑
j=1

W
[l+1]
i,j

(
f [l]
)

j

)
+ (b[l+1])i

)
,

then
(

z
[l]
θ

)
j
=

∂ℓ

∂
(

f [l]
)

j

=
ml+1

∑
i=1

∂ℓ

∂
(

f [l+1]
)

i

∂
(

f [l+1]
)

i

∂
(

f [l]
)

j

,
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where

∂
(

f [l+1]
)

i

∂
(

f [l]
)

j

= σ(1)

((
ml

∑
j=1

W
[l+1]
i,j

(
f [l]
)

j

)
+ (b[l+1])i

)
W

[l+1]
i,j ,

hence

(
z
[l]
θ

)
j
=

∂ℓ

∂ f
[l]
j

=
ml+1

∑
i=1

∂ℓ

∂ f
[l+1]
i

σ(1)

((
ml

∑
j=1

W
[l+1]
i,j f

[l]
j

)
+ b

[l+1]
i

)
W

[l+1]
i,j

= (W [l+1])⊺
(

z
[l+1]
θ ◦ g

[l+1]
θ

)
.

C Formal definition of the composition of two embeddings,

Definition 4.5

Definition (Composition of two embeddings). Suppose we have an NN({ml}
L
l=0) and its

parameters θ ∈ Tuple{m0,··· ,mL}
, and we have two embeddings T and T ′ satisfying

T : Tuple{m0,··· ,mL}
→ Tuple{m′

0,··· ,m′
L}

, T ′ : Tuple{m′
0,··· ,m′

L}
→ Tuple{m′′

0 ,··· ,m′′
L}

,

with T ′ maps the range of T into Tuple{m′′
0 ,··· ,m′′

L}
, where m′′

0 = m′
0 = m0, m′′

L = m′
L = mL,

and for any l ∈ [L − 1], m′′
l ≥ m′

l ≥ ml. Since T ′T is obviously an injective operator,
then T ′T is an embedding T ′T : Tuple{m0,··· ,mL}

→ Tuple{m′′
0 ,··· ,m′′

L}
, and we term T ′T the

composition of T ′ and T ,i.e., for any θ ∈ Tuple{m0,··· ,mL}
,

T ′T (θ) := T ′(T (θ)).
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