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Abstract. A quadratic approximation of neural network loss landscapes has been extensively used to study
the optimization process of these networks. Though, it usually holds in a very small neighborhood of the min-
imum, it cannot explain many phenomena observed during the optimization process. In this work, we study
the structure of neural network loss functions and its implication on optimization in a region beyond the reach
of a good quadratic approximation. Numerically, we observe that neural network loss functions possesses a
multiscale structure, manifested in two ways: (1) in a neighborhood of minima, the loss mixes a continuum of
scales and grows subquadratically, and (2) in a larger region, the loss shows several separate scales clearly.
Using the subquadratic growth, we are able to explain the Edge of Stability phenomenon [1, 2] observed for
the gradient descent (GD) method. Using the separate scales, we explain the working mechanism of learning
rate decay by simple examples. Finally, we study the origin of the multiscale structure and propose that the
non-convexity of the models and the non-uniformity of training data is one of the causes. By constructing a
two-layer neural network problem we show that training data with different magnitudes give rise to different
scales of the loss function, producing subquadratic growth and multiple separate scales.
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1 Introduction

Despite the well-known nonconvexity of neural network’s loss functions, utilizing local
quadratic approximations around (global or local) minimum has been a fruitful approach
to study the optimization behaviors for deep neural networks. For example, global con-
vergence of the gradient descent (GD) method can be established for many neural network
models in the so-called “lazy training” (or neural tangent kernel (NTK)) regime, where the
training trajectory stays within a region with good quadratic approximation [3–5]. Addi-
tionally, quadratic approximations around global minima can be used to explain the pref-
erence of stochastic gradient descent (SGD) for flat minima [2, 6] and certain properties of
the limiting dynamics [7].
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However, regardless of the theoretical simplicity brought by local quadratic approxi-
mation, empirical study has shown that the effect of higher-order information is far from
negligible in most stages of the training and for most reasonable choices of hyperparam-
eters. One reflection of the important role played by non-quadratic terms is the Edge of
Stability (EoS) phenomenon first discovered in [2] and then analyzed and so named in [1].
The EoS phenomenon shows that GD can always find and stay in the sharpest region that
it can be stable. As a sharp contrast, in a quadratic landscape GD either converges or
blows up in most cases. Another relevant observation is the effect of learning rate decay.
After a learning rate decay, the trajectory changes its moving direction and converges to
a different solution. This cannot be explained by a quadratic approximation of the loss.
Including non-quadratic and nonconvex information of the loss function into the study of
neural network optimization is necessary to acquire more realistic understanding of the
behavior of the optimizers, even locally around the minimum.

In this work, motivated by the two problems mentioned above, we study the behavior
of optimizers on neural network loss functions beyond local quadratic approximation. We
start from empirical observations by visualizing the loss landscape around the training
trajectory. Then, from the observations we extract relevant simplified models and theo-
retically study the optimization dynamics on these simplified problems. Specifically, we
obtain two typical observations: (1) around global minimum, the loss grows slower than
a quadratic function, which we name the subquadratic growth; (2) in a larger region, the
loss function shows distinct scales, which we name the separate scales structure. For the
former, we propose to take a subquadratic function, a function that gets flatter when the
parameters get farther from the minimum, as local approximation of the loss function. We
study the behavior of GD minimizing this function and explain the mechanism behind the
EoS phenomenon. We also consider a minima manifold with subquadratic landscape in
the directions that are orthogonal to the manifold, and study the motion of the GD along
the manifold driven by flatness after reaching EoS. For the latter observation (the separate
scales structure), we consider a landscape with several valleys in different scales and ex-
plain the working mechanism of learning rate decay. Our theoretical studies, though not
directly conducted on real neural network loss functions, help us build insights on what
is happening during the training process.

In addition to characterizing the optimization behavior, we are also concerned with the
origin of the observed properties of neural network loss functions. We understand both
subquadratic growth and separate scales as manifestation of multiscale structures—a con-
tinuum of scales for subquadratic growth and finite scales for separate scales structure. By
a construction, we show that the multiscale structure can be caused by the non-convexity
of the models and the non-uniformity of the training data. Our construction is simple
with a two-layer neural network model with only a few neurons. Despite its simplicity, it
can already reveal the origin of complicated loss landscapes for neural network models. It
also justifies that the simplified problems studied in our theoretical analysis are strongly
connected with real neural network loss functions.

As a summary, our contributions are:

1. We visualize the loss landscape of neural networks in a region that cannot be ap-
proximated by the second-order Taylor polynomial at the minimum. We observe
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the multiscale structure of the loss functions, exhibited in two ways: subquadratic
growth near minima and separate scales in larger regions.

2. Using the subquadratic growth of the loss functions, we theoretically explain the
edge of stability phenomenon of GD.

3. By the separate scales structure of the loss functions, we provide detailed under-
standings for the working principle and necessity of learning rate decays during the
optimization process, even for the deterministic GD algorithm.

4. We give a simple, yet neural network relevant, construction in which both the sub-
quadratic behavior and separate scales structure happens for the loss landscape. The
construction shows that such properties can be caused by the non-uniformity of the
training data.

Related works. Many works that study the optimization behavior of neural networks
resort to a local quadratic approximation of the loss function. This approach is equiva-
lent with linearizing the optimization dynamics around the minima, or fixing the second-
order derivatives. One line of works uses this idea to study the minima selection effect
of optimizers by analyzing their linear stability in the quadratic approximation [2, 8, 9].
Another notable series of works prove convergence of the GD dynamics for highly over-
parameterized neural networks using the fact that the initialization is already in a region
with good quadratic approximation [3–5, 10–12]. This technique is usually referred to as
lazy training [11] or Neural Tangent Kernel (NTK) [3]. Besides direct analysis on (approx-
imately) quadratic landscape, the Hessian of the loss function is widely used to study and
characterize the landscape. For example, eigenvalues of the Hessian are used to measure
the flatness of minima [13]. It is also used to study the escaping of SGD from local min-
ima [6].

The mechanism of SGD’s exploration among different minima is made clear in the
recent work [14], which characterizes the movement of SGD iterators along the minima
manifold. This picture of exploration along minima manifolds suits the neural network
problem better than the exploration among isolated minima. Prior to [14], similar analy-
sis has been conduct for SGD with label noise [15, 16]. In this paper, we also analyze the
motion of optimizers along the minima manifold (see Section 4.4). Our theory is essen-
tially different from these works, because we consider deterministic GD rather than SGD,
and the motion along the manifold in our case is driven by an interaction of subquadratic
growth and changing flatness, rather than the SGD noise.

The optimization on multiscale objective function has also been studied. For example,
in [17], a diffusion effect was derived from deterministic gradient descent due to the small
scales of objective functions. In the very recent work [18], the authors generalize the edge
of stability phenomenon into the concept “unstable convergence”, which happens when
the objective function is complicated. Some examples studies therein is similar to the ones
we study in this paper.
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Organization of the paper. The rest of the paper is organized as follows: In Section 2,
we discuss two empirical observations that show rich behaviors of GD/SGD on neural
network loss functions, that cannot be easily explained by quadratic approximation. Then,
in Section 3 we visualize the loss landscape and summarize two aspects of the multiscale
structures of the loss—subquadratic growth and separate scales—that may help explain
the phenomena in Section 2. We theoretically explain the edge of stability phenomenon
using the subquadratic growth in Section 4, and discuss how separate scales structure can
help understand the behavior of learning rate decay in Section 5. In Section 6, we study the
origin of the multiscale structure and construct simple examples showing the important
role played by non-uniform training data. Finally, a summary and conclusions are given
in Section 7.

2 Two empirical observations

In this section, we discuss two empirical observations that cannot be well explained by
analyzing the optimizer on a quadratic approximation of the loss function.

2.1 The edge of stability phenomenon

The edge of stability (EoS) phenomenon was observed in [2], and later discussed in detail
in [1]. The EoS states that when GD is used to train neural networks, the sharpness at
the iterator (measured by the largest eigenvalue of the Hessian) tends to increase until it
arrives at 2/η, where η is the learning rate. Note that 2/η is the largest sharpness that
GD can be stable assuming a quadratic loss landscape. Surprisingly, even after the sharp-
ness stabilizes, the training loss keeps decreasing. We show one example in Fig. 2.1(left).
Extensive experiments are done in [1].

The EoS cannot be explained on quadratic loss functions. On a quadratic loss, GD either
converges or blows up exponentially fast, unless the learning rate is exactly 2/λ, where λ
is the largest eigenvalue of the Hessian. In later sections, we observe that the EoS is caused
by loss landscapes that grow slower than quadratic functions around the minimum, which
we call subquadratic growth. We then theoretically study how EoS happens, and why the
loss value keeps decreasing after EoS, on simplified landscapes.

2.2 The effect of learning rate decay

Another observation that cannot be explained by quadratic approximation is the effect of
learning rate decay (LRD). LRD not only helps find parameters with lower training loss,
but also benefits generalization if used at a proper time. In Fig. 2.1(right), we show that do-
ing LRD later gives better generalization performance, even though in both experiments
the learning rate is decayed after the test accuracy is nearly stable and increasing very
slowly. The figure also shows that the training loss decreases very slowly after decay.

The explanation of the phenomena shown in LRD is beyond the reach of quadratic
approximation and relies on more complicated structures of the loss. For quadratic loss
function, LRD makes convergence slower, but the iterators will finally converge to a same
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Figure 2.1: (Left) One example of the edge of stability. We train a three-layer fully-connected neural network on
a subset of CIFAR10. The orange curve shows that the sharpness of the landscape at the iterator first increases,
and then stabilizes around 2/η (the dashed orange line), where η is the learning rate. The blue curve shows
the training loss keeps decreasing after the edge of stability is achieved. (Right) Training loss and test accuracy
curves for two experiments with learning rate decay at different times. The blue curves show an experiment with
LRD at epoch 250 (the left red vertical line), and the orange curves show an experiment with LRD at epoch 500
(the right red vertical line). The two experiments have the same initialization. The learning rate is 0.1 initially
and dropped to 0.01.

solution and show the same generalization performance. In this paper, we will explain
these observations using the separate scales structure of the loss functions.

3 Loss landscape around training trajectory

In this section, we visualize the landscape of neural network’s loss functions around the
training trajectory. We observe the subquadratic growth and separate scales phenomena
of the loss functions. Both these characteristics are aspects of the multiscale structure of
the loss function—one with a continuum of scales and one with finite scales.

It is important to note that neural network’s loss landscape possesses very rich behav-
iors, and almost any curvature can be found somewhere in the parameter space [19]. In
this work, we are only concerned with the loss curvature around the trajectory of SGD or
GD. It is widely known that these optimizers only explore a very confined but important
region of the whole parameter space.

3.1 The subquadratic growth

In the experiments shown in Fig. 3.1, we train neural networks using GD until the loss
stops decreasing, or decreases very slowly, in which case we suppose GD starts oscillat-
ing around some minima. Then, we pick a point on the GD trajectory and visualize the
“gradient direction loss landscape” around this point—the loss landscape along the line
going through this point and towards the gradient direction at this point. The gradient
direction landscape is important because it is the landscape that GD sees. Experiments are
conducted on VGG network, ResNet, and DenseNet, on CIFAR10 and CIFAR100 datasets.
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Figure 3.1: The loss landscape on gradient directions for GD when the iterator oscillates around the (local or
global) minimum. The first row shows the loss, and the second row shows the second-order finite difference of
the loss. Models and datasets: (left) VGG11 on CIFAR10; (middle) ResNet18 on CIFAR10; (right) DenseNet121
on CIFAR100, only 50 classes are taken with 100 images per class. Note that on the second row we compute
the second order finite difference of vectors (of loss values we plot on the first row). It is proportional but not
equivalent to the second-order derivative.

The results for gradient direction landscapes are shown in the first row of Fig. 3.1. The fig-
ures show that around the minimum the gradient direction landscape is convex and grows
slower than quadratic functions. This subquadratic growth is verified by the second-order
finite differences shown in the second row of Fig. 3.1.

This subquadratic growth of the landscape around minimum (at least along the gra-
dient direction) explains the edge of stability phenomenon. The stable learning rate for
GD increases as the parameters move close to the minimum. Hence, when the learning
rate is not small enough, the iterator becomes unstable when it is too close to the mini-
mum, and hence can only oscillate around the minimum at a certain level—but it may not
blow up. Note that this subquadratic growth is not contradictory with the local quadratic
approximation—the Taylor expansion of the loss function still holds locally, but the radius
of this region is very small.

3.2 The separate scales structure

If the landscape is visualized in a larger domain, we will inevitably see non-convex be-
haviors of the loss functions. Some examples are shown in the left and middle pan-
els of Fig. 3.2. Here, we can observe another typical structure of neural network’s loss
functions—separate scales. Figures in Fig. 3.2 show that the minimum lies in a small,
sharp well located within a large, flat well. The separate scales structure can give richer
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Figure 3.2: The landscape around a point on the GD trajectory of training a VGG11 network on CIFAR10. The
left panel takes the gradient direction, and the middle panel takes a random direction. The range of visualization is
larger than that in Fig. 3.1. We can see separate scales in the loss landscape. The right panel shows the parameter
vector of a VGG11 model projected in a 3-D space. The results of 3 experiments are shown, with learning rate
decayed at epoch 250, 300, and 350, respectively. The x, y, z directions are obtained by orthogonalizing the first
leading principal component of the blue segment before LRD (parameters with large learning rate), the orange
segment (parameters after LRD at epoch 250), and the red segment (parameters after LRD at epoch 350),
respectively.

behaviors in high dimensional spaces. For example, in the right panel of Fig. 3.2 we indi-
rectly show the multiscale loss by visualizing the principal moving directions of the model
parameters before and after learning rate decay. In the figure the iterator goes along very
different directions when the learning rate is decayed at different epochs, showing rich
fine-scale structures of the loss function, which are different from the large-scale structure
reflected by the blue curves picked by large learning rate. Later in Section 5 we show
this high dimensional multiscale structure is an important cause of LRD’s complicated
behaviors.

4 The subquadratic property and the edge of stability

In Section 3, we observed a subquadratic growth property of the loss landscape. This
subquadratic growth makes it possible to explain the edge of stability phenomenon dis-
cussed in Section 2. In this section, using a simple problem inspired by the landscape
curves shown in Fig. 3.1 we reveal the mechanism of edge of stability—the iterator oscil-
lates at a certain level related to the learning rate when the learning rate is too large for the
optimizer to converge.

4.1 A one-dimensional analysis

Consider a 1-D strongly convex objective function f (x) with a global minimum at x = 0.
Without loss of generality, assume f (0) = 0. Inspired by the observations in Fig. 3.1, we
assume f has continuous second order derivatives, and f ′′(x) decreases as |x| increases.
Hence, the function shows subquadratic growth and becomes flatter (measured by the
second order derivative) as x is farther from the minimum. For the convenience of anal-
ysis, we also assume f is an even function, i.e. f (x) = f (−x) for any x ∈ R. We study a

OPEN ACCESS

DOI https://doi.org/10.4208/jml.220404 | Generated on 2025-03-11 05:25:04



J. Mach. Learn., 1(3):247-267 254

GD minimizing f (x) using learning rate η, whose iteration scheme is

xt+1 = xt − η f ′(xt). (4.1)

By classical theories of gradient descent, it is easy to show that the iteration (4.1) converges

to the minimum x = 0 if η <
2

f ′′(0)
. If η >

2
f ′′(0)

, instead, x = 0 becomes an unstable

stationary point for the dynamics. In this case, other than x = 0, there is a 2-periodic
solution for the GD: the iterator jumps between xη and −xη, where xη satisfies η f ′(xη) =
2xη. We assume xη > 0 and denote this periodic solution by {±xη}. The following simple

lemma shows that xη exists for any η >
2

f ′′(0)
as long as f ′′(x) goes to 0 as |x| tends to

infinity, and xη is increasing with respect to η.

Lemma 4.1. If lim|x|→∞ f ′′(x) = 0, xη exists for any η >
2

f ′′(0)
. Moreover, viewed as a function

of η, xη is monotonically increasing.

Proof. Note that if xη exists for some η > 0, we have η f ′(xη) = 2xη, which means

2

η
=

f ′(xη)

xη
.

Hence, let h(x) = f ′(x)/x, it suffices to show that h(x) is a decreasing function in (0, ∞),
and limx→0+ h(x) = f ′′(0), and limx→∞ h(x) = 0.

We first show the monotonicity of h. Taking derivative of h, we have

h′(x) =
f ′′(x)x − f ′(x)

x2
.

Since f ′′(x) is decreasing, we have

f ′′(x)x =
∫ x

0
f ′′(x)dt ≤

∫ x

0
f ′′(t)dt = f ′(x)− f ′(0) = f ′(x).

Therefore, f ′′(x)x − f ′(x) ≤ 0, and hence h′(x) ≤ 0. This shows h(x) is monotonically
decreasing.

For the limits, writing f ′(x) as integral of f ′′(x), we have

h(x) =
1

x

∫ x

0
f ′′(t)dt.

By L’hopital’s rule we obtain limx→0+ h(x) = f ′′(0). On the other side, by limx→∞ f ′′(x) =
0 we easily have limx→∞ h(x) = 0.

Next, we consider the GD dynamics, and show that if the objective function is “strictly
subquadratic”, i.e. f ′′(x) is strictly decreasing as |x| increases, then the GD iterator con-
verges to the periodic solution {±xη} except a zero-measure set of x0.

Theorem 4.1. Assume f satisfies the conditions in Lemma 4.1, and f ′′(s) < f ′′(t) for any |s| >
|t|. Let x0, x1, · · · be the GD trajectory following the iteration scheme of (4.1) starting from some
x0 ∈ R with learning rate η. Then, except a zero-measure set over the choice of x0, we have xt

converges to 0 if η ≤ 2
f ′′(0)

, otherwise xt converges to the periodic solution {±xη}.
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Proof. When η <
2

f ′′(0)
, the proof of convergence is standard. When η = 2

f ′′(0)
, note that

f ′′(x) < f ′′(0) for any x 6= 0. Then, for any x 6= 0, we have

|η f ′(x)| = η

∣

∣

∣

∣

∫ x

0
f ′′(t)dt

∣

∣

∣

∣

< η

∣

∣

∣

∣

∫ x

0
f ′′(0)dt

∣

∣

∣

∣

= ηx f ′′(0) = 2x,

which implies
|x − η f ′(x)| < |x|.

This gives convergence of the GD trajectory to 0.

Next, we consider the case when η >
2

f ′′(0)
. Let A be the set of those x0 such that

starting from these x0 the GD will arrive at 0 after some steps. Because in the current case
0 is an unstable stationary point, it is easy to show that A contains countable number of
points and hence has zero Lebesgue measure [20]. We ignore the detailed proof here.

For any x0 ∈ R\A, let x1, x2, x3, · · · be the sequence of points generated by GD. Then,
we have xk 6= 0 for any k = 0, 1, 2, · · · . In this case, we show that for any k, the distance
of xk+1 to one of ±xη is always smaller than the distance of xk to one of ±xη. Since f is
symmetric with respect to x = 0, without loss of generality we assume xk > 0. Hence, xk

is closer to xη than −xη. We show that

|xk+1 − (−xη)| ≤ |xk − xη|.

This is equivalent with

|xk − η f ′(xk)− xη + η f ′(xη)| ≤ |xk − xη|. (4.2)

Rewriting the left hand side of (4.2), we have

|xk − η f ′(xk)− xη + η f ′(xη)| = |(xk − xη)− η( f ′(xk)− f ′(xη))|

=
∣

∣(xk − xη)− η

∫ xk

xη

f ′′(t)dt
∣

∣. (4.3)

We study the right hand side of (4.3) in two cases:

Case 1: xk > xη.

In this case, we have

∫ xk

xη

f ′′(t)dt < (xk − xη) f ′′(xη) < (xk − xη)
1

xη

∫ xη

0
f ′′(t)dt

= (xk − xη)
f ′(xη)

xη
=

2

η
(xk − xη).

Also considering
∫ xk

xη
f ′′(t)dt > 0, we have

0 < η

∫ xk

xη

f ′′(t)dt < 2(xk − xη),
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which implies
∣

∣(xk − xη)− η

∫ xk

xη

f ′′(t)dt
∣

∣ < |xk − xη|.

Case 2: xk < xη.

In this case, we rewrite the right hand side of (4.3) as

∣

∣(xη − xk)− η

∫ xη

xk

f ′′(t)dt
∣

∣.

For the integral term, due to the monotonicity of f ′′, we have

∫ xη

xk

f ′′(t)dt <
xη − xk

xη

∫ xη

0
f ′′(t)dt = (xη − xk)

f ′(xη)

xη
=

2

η
(xη − xk).

Hence, again we have

0 < η

∫ xη

xk

f ′′(t)dt < 2(xη − xk),

and thus
∣

∣(xη − xk)− η

∫ xη

xk

f ′′(t)dt
∣

∣ < |xη − xk|.

Since xk = xη is the trivial case, we finish showing (4.2). And the only way for equality
to hold is xk = xη. Therefore, the GD trajectory converges to {±xη}.

Theorem 4.1 shows that subquadratic growth can cause the edge of stability phe-
nomenon. When the learning rate is too big to converge, the GD does not blow up. In-
stead, it oscillates at a certain level related with the learning rate. During the oscillation, if
the learning rate is dropped to a smaller value, the iterator will leave the current periodic
solution and converge to a new periodic solution at a lower level. Results of numerical
simulations are shown in Fig. 4.1. Similar phenomena are observed in [1].

4.2 A multi-dimensional analysis

The problem analyzed above possesses an accurate mathematical characterization because
the objective function considered is simple. It is a 1-D function, and though it enjoys
subquadratic growth, it is still convex. For more general cases, e.g. non-convex high
dimensional functions, the picture is much more complicated for at least two reasons: (1)
there may be more than one periodic solutions, and the period of some solutions can be
very long; (2) the dynamics can easily get chaotic when the learning rate is large. See
Fig. 4.1 for some experiments. Nevertheless, as long as there is subquadratic growth of
the landscape around the minimum, the GD still does not blow up for large learning rates.
In this and the next subsection, we make some extensions for the theory to consider high-
dimensional/non-convex functions.
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Figure 4.1: The trajectory and objective function values when minimizing subquadratic functions by GD. (Left)
A 1-D convex function f1(x) = (1 + |x|) ln(1 + |x|)− |x|. The initialization is x0 = −5. The learning rate is
initially 5, and decreased to 3 and 1 on iteration 100 and 150. (Middle) A 1-D non-convex function f2 given
by (6.2) with C = 3. The initialization is x0 = −5. The learning rate is initially 2, and decreased to 0.5 and
0.2 at iterations 500 and 700. GD show chaotic behaviors in this case. (Right) A 2-D non-convex function

f3(x1, x2) = f2(x1) + f2(x1 + x2) + 0.5 f1(
√

x2
1 + x2

2). The initialization is (−3, 3). The learning rate is initially

1, and decreased to 0.3 and 0.1 at iterations 200 and 400. GD show chaotic behaviors.

We first extend our analysis to a class of high dimensional functions that can be decom-
posed into a sum of subquadratic functions in eigendirections. Concretely, we consider
functions like

f (x) = f1(p
T
1 x) + f2(p

T
2 x) + · · ·+ fn(p

T
n x), (4.4)

where x, pi ∈ R
n, {p1, · · · , pn} is an orthonormal basis of R

n, and f1, · · · , fn are sub-
quadratic functions satisfying the conditions in Theorem 4.1. This decomposition is in-
spired by the eigen-decomposition of quadratic functions. For such functions, applying
Theorem 4.1 we have the following results:

Theorem 4.2. Let f : R
n → R be a function with the form (4.4). Let x0, x1, · · · be the GD

trajectory on f starting from x0 with learning rate η. For any t ∈ Z+ and i ∈ {1, 2, · · · , n},

define z
(i)
t = pT

i xt be the component of xt on pi direction. Then, except a zero-measure set over the

choice of x0, we have z
(i)
t converges to 0 if η ≤ 2

f ′′i (0)
, otherwise z

(i)
t converges to a periodic solution

{±x
(i)
η }. Here {±x

(i)
η } is the periodic solution for fi with learning rate η.

The proof of Theorem 4.2 is a simple application of Theorem 4.1 on each of the com-
ponents of f . This is possible because p1, · · · , pn are pairwise orthogonal. Note that The-
orem 4.2 does not imply that GD will converge to a unique 2-periodic solution. Actually,
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there are exponentially many 2-periodic solutions due to the combination of signs of each
fi’s periodic solution.

4.3 A more general setting

Next, we extend our study to more general cases, including nonconvex functions. In this
subsection, we consider a wide class of subquadratic functions and show that GD with
large learning rate does not diverge on these functions.

Definition 4.1. Let f : R
n → R be a twice continuously differentiable objective function. We

call f a subquadratic function if f has a unique global (and local) minimum x∗, and we have
lim‖x‖→∞ ‖∇ f (x)‖/‖x‖ = 0, and ∇ f (x)T(x − x∗) ≥ c‖∇ f (x)‖ · ‖x − x∗‖ for any x ∈ R

n,
where c > 0 is a constant.

For quadratic functions, the gradient grows linearly with the magnitude of the input.
For functions that satisfies the definition above, ‖∇ f (x)‖ grows slower than ‖x‖. Thus,
the function grows slower than a quadratic function. Compared with the condition in
our 1-D example, Definition 4.1 is weaker, in the sense that ‖∇ f (x)‖ can decrease as ‖x‖
gets bigger. Hence, the function f can be nonconvex. On the other hand, the condition
on the inner product of the ∇ f (x) and x − x∗ guarantees that the gradient always has a
component pointing towards 0, which is the unique global minimum.

For functions satisfying the definition above, we can show that GD does not diverge
with any learning rate.

Theorem 4.3. Let f : R
n → R be a subquadratic function defined in Definition 4.1. Then,

for any learning rate η > 0, there exists Rη > 0, such that for any GD trajectory x0, x1, x2, · · ·
generated with learning rate η, there exists T ∈ Z that satisfies xt ∈ BRη (x∗) for any t > T. Here

BRη (x∗) denotes the closed Euclidean ball centered at x∗ with radius Rη.

Proof. Without loss of generality we assume x∗ = 0. We will use Br to denote the closed
ball with radius r and centered at the origin. Because lim‖x‖→∞ ‖∇ f (x)‖/‖x‖ = 0, we can

find an r1 such that for any ‖x‖ > r1 we have ‖∇ f (x)‖ <
2c
η ‖x‖, where c is the constant in

Definition 4.1. For such x, we can easily verify that

‖x − η∇ f (x)‖ < ‖x‖. (4.5)

Hence, for any x that satisfies ‖x‖ > r1, GD sends the iterator closer to the minimum.
Equivalently speaking, only when the iterator is within Br1

can GD send the iterator to a
farther (or with equal distance) location from the minimum. Now, consider the one step
GD mapping

h(x) := x − η∇ f (x).

Since ∇ f is continuous, h is a continuous function. Hence, due to the compactness of Br1
,

there exists r2 > 0 such that ‖h(x)‖ ≤ r2 for any x ∈ Br1
. Then, for any x ∈ Br2

, we always
have h(x) ∈ Br2

, i.e. Br2
is an invariant set for GD iterations. Note that r2 only depends on

c and η.
We finish the proof by showing that the GD trajectory from any initialization x0 will

enter Br2
. This is a natural result of (4.5).
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Theorem 4.3 characterizes the qualitative behavior of GD around a subquadratic mini-
mum. With a certain learning rate, GD will oscillates in a learning rate dependent neigh-
borhood of the minimum. Under the current conditions, we cannot fully characterize the
trajectory—it may hit the global minimum in some step, or oscillates at a certain level,
or oscillates chaotically in the neighborhood of the minimum. (though when η is not too
small, hitting or converging to the minimum is a zero measure event.) A typical behavior
in 2-D space is shown in Fig. 4.1.

The analysis in this section is based on the observation of the local landscape of neu-
ral network loss functions around minima. Though for the convenience of analysis we
assume the objective function has a global subquadratic behavior, this is not true for neu-
ral network loss functions. The subquadratic growth will stop when the parameter is far
enough from the minimum. We will address this issue in Section 5 when we study the
separate scales structure of loss functions.

4.4 What happens after the edge of stability

For the objective functions we considered above, the GD iterator will oscillate around
the unique minimum after arriving at the edge of stability. However, when training real
neural network the iterator keeps moving and reducing the loss value even after reaching
the EoS [1, 7] (also see Fig. 2.1). This is mainly due to the over-parameterized nature
of neural networks, which produces manifolds of minima instead of isolated minimum.
Assume there is a manifold formed by global minima, taking a quasistatic approach in the
direction tangent and orthogonal with the manifold, we can study how the GD iterator
moves down the manifold and search for flat minima.

Let f be an 1-D function that satisfies the conditions in Theorem 4.1. Let h : R
d → R

be a smooth positive function. Consider the function F : R
d+1 → R defined as F(x, y) =

f (h(x)y), where x ∈ R
d and y ∈ R. It is easy to know that the global minima of F

form a d-dimensional manifold {y = 0}, and the function has a subquadratic growth in
the direction orthogonal to the manifold. The value of h(x) determines the flatness of the
minimum. The smaller the h(x), the flatter the minimum. To consider how the GD iterator
moves down the minima manifold when oscillating around it, we take a quasistatic point
of view, by assuming that the y component of the iterator is always bouncing between the
2-periodic solution. This assumption makes sense when h(x) changes slowly compared
with the moving speed of x, which happens when the learning rate is relatively small.

Consider a GD trajectory generated from (x0, y0) using learning rate η. In the qua-
sistatic case, the update of xt is

xt+1 = xt − η f ′(h(xt)yt)yt∇h(xt), (4.6)

while yt follows the 2-periodic solution

− yt = yt − η f ′(h(xt)yt)h(xt). (4.7)

By (4.7), we have η f ′(h(xt)yt) = 2yt/h(xt). Substituting to (4.6) we obtain

xt+1 = xt − 2y2
t
∇h(xt)

h(xt)
= xt − 2y2

t∇ log h(xt). (4.8)
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Figure 4.2: The trajectory of GD on a 2-D function with a flattening valley and subquadratic growth on x2

direction. The iterator bounces back and forth on the valley and moves to the vicinity of flatter minima. The
middle and right panels show the values of x1 and |x2| for both GD and the quasistatic dynamics (4.8). The results
show: (1) the dynamics (4.8) is a very good approximation of the real dynamics. (2) The flatness-driven motion
gets increasingly slower and finally stops. Experiment details: the loss function is f (x1, x2) = f1(x2/(1+ 0.01x1)),
where f1 is defined in the caption of Fig. 4.1. The initialization is (1, 1). The learning rate is 3.

Eq. (4.8) shows that the motion of the GD iterator projected onto the manifold follows a
GD of log h(x), and the speed of the dynamics is determined by yt. Therefore, during the
oscillation around the minima manifold, GD searches for flatter minimum by reducing the
value of h(x). An illustration of this effect is shown in Fig. 4.2.

Remark 4.1. The idea of flatness driven motion along the manifold is similar to that in [14],
but our result is essentially different. We treat GD instead of SGD, and in our case, the
motion along the manifold is made possible by the subquadratic landscape around the
minima, instead of the SGD noise. The two types of flatness driven motion have quite
different behaviors in some situation. For instance, the SGD noise drives the iterator to
the flattest minimum on the manifold, while for GD it will converge after finding a suf-
ficiently flat minimum (relative to the learning rate). Also, if the manifold consists of
interpolation solutions, SGD will not show flatness driven motion because the noise van-
ishes at the minima. However, in our analysis movement still exists as long as the minima
have subquadratic property.

Remark 4.2. The quasistatic approach also serves as a handy tool to derive the noise-
driven motion along manifold for SGD. As a simple illustration, consider an objective
function f (x, y) = yT H(x)y, which gives a quadratic approximation of a loss function
with a global minima manifold {y = 0}. H(x) always gives a positive definite matrix.
Suppose an SGD is approximated by an SDE

d

[

xt

yt

]

= −

[

yt∇H(xt)yt

2H(xt)yt

]

dt +

[

0

σ
√

ηH(xt)dWt

]

.

Here we assume for convenience there is no noise along the manifold direction, and the
noise on the y direction depends on the flatness of the minimum. Then, by assuming y is
always at equilibrium, we first solve the dynamics of y fixing x = xt. The equilibrium is

y∞ ∼ N (0,
ησ2

4
I).

OPEN ACCESS

DOI https://doi.org/10.4208/jml.220404 | Generated on 2025-03-11 05:25:04



J. Mach. Learn., 1(3):247-267 261

Plugging the equilibrium above into the dynamics of x, and taking expectation over y, we
obtain the expected dynamics of x in quasistatic case:

ẋt = −Ey
T
∞∇H(xt)y∞ = −

ησ2

4
∇Tr(H(xt)),

which recovers the results in [14]. This quasistatic approach can be easily adapted to other
types of noise and other optimizers such as SGD with momentum.

5 The separate scales and learning rate decay

Learning rate decay is a widely adopted technique in training large scale neural networks,
and has received much theoretical attention, too. Explanations of how LRD works include
GD stability in different directions [21], SGD exploration [22], and pattern complexity [23].
However, there are still some behaviors shown by training with LRD that cannot be well
addressed by these explanations. For example, as shown in Fig. 2.1, the generalization
performance suffers if the learning rate is decayed too early. In this section, we build a
simple loss function, inspired by the observations of separate scales structure, that can
explain this behavior of learning rate decay.

We will build a landscape with two valleys in different scales. To start with, consider a
loss with a single valley in R

2, given by

g1(x, y) := f (h(x)y).

Here, f : R → R is a function with subquadratic growth a global minimum at 0,
h : R → R is a positive function controlling the flatness of the minimum. We assume
arg min{h(x)} = 0. Hence, (0, 0) is the flattest minimum of g, among all minima with the
form (x, 0). Next, we build another valley by scaling the g1 above to a smaller scale, and
rotating the valley to go through the y direction. We obtain

g2(x, y) = f (kh(y)x),

with k > 1. Finally, we build a multiscale landscape with two valleys by considering

F(x, y) = g1(x, y) + φc(g2(x, y)), (5.1)

where φc is a non-decreasing cutoff function that confines the value of g2 within [0, c].
This makes the effect of g2 local. The simplest choice of φc can be φc(z) = min{z, c}.
An example landscape of F is shown in Fig. 5.1. The landscape has one large and flat
valley and one small and sharp valley. The global minimum is at the origin, locating at
the bottom of both valleys.

Now we can study the behavior of GD with learning rate decay in the landscape of F.
Since the valley of g2 is sharp, a small learning rate is necessary for GD to converge. On
the other hand, when initialized far away from the global minimum, the iterator will first
be attracted by the large valley. GD will first converge to the neighborhood of the large
valley, then move along the valley to its flattest region (near the global minimum in this
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Figure 5.1: Learning rate decays at different steps lead to very different behavior after decaying. GD is initialized
at x0 = (−20, 3) with learning rate 2.5, and then decayed to 0.25 at step 650, 700 or 750. The loss function
is f (x1, x2) = h(x1 , x2) + 0.25h(x2 , 10x1)/(1 + h(x2, 10x1)), with h(x1, x2) = f1((1 + 0.001x2

1)x2), where f1 is
defined in the caption of Fig. 4.1. (Left) The 2-D landscape of a loss function with two valleys in two scales.
(Middle) The GD trajectories around and after learning rate decays. The “before drop” curve shows the GD
trajectory from iteration 466 (when the x coordinate gets bigger than −4) to iteration 750. The other three
curves show the GD trajectories after learning rate decays. Each of them shows 500 iterations after the decay.
(Right) The loss curves.

case) while bouncing between the valley walls via the mechanism discussed in Section 4.4.
This moving process is faster with a larger learning rate. Therefore, an ideal strategy for
learning rate decay is to use a large learning rate until the iterator moves to the vicinity of
the small valley and then drop to a small learning rate to converge into the small valley. In
this process, when the iterator is bouncing around and moving down the large valley, the
loss value is not decreasing much. But that does not mean the learning rate can be decayed
earlier. If it is decayed before the iterator is close enough to the small valley, it then has
to move down the large valley using the small learning rate, which can cost much more
time. In the extreme case, a small learning rate can cause convergence to a suboptimal
minimum on the large valley.

An numerical example with the form (5.1) is given in Fig. 5.1. In the experiment, we
initialize GD at a point far from the small valley with a large learning rate. Afterwards,
the learning rate is decayed by a same factor at different steps. Although the loss val-
ues when the learning rate is decayed are similar, the three trajectories take drastically
different amount of time to converge.

6 The origin of the multiscale structure from training data

Both the subquadratic growth and separate scale loss structures can be understood as
manifestations of multiscale structure—finite significant scales for separate scale loss and
a continuum of scales for subquadratic growth. In this section, we study the origin of the
loss’s multiscale structure. By a simple neural network based construction, we show that
the non-convexity of the model and the multiscale structure of the training data together
act as one cause of the multiscale loss.

Now we describe our construction. Consider the following two-layer neural network
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with 3 neurons,
f (x, w) = 1 − σ(wx + 1) + 2σ(wx)− σ(wx − 1), (6.1)

where x is the input and w is the parameter. Let σ be the ReLU function. In this problem we
assume the three neurons share the parameter w, so there is only one parameter. Suppose
we have data {(xi, yi)}

n
i=1, with xi > 0 and yi = 0 for all i. The loss function is

L(w) =
1

n

n

∑
i=1

f (xi, w)2.

It is easy to show that, for fixed x, f (x, w) is the following piecewise linear function for w:

f (x, w) =











1 if w ≤ − 1
x ,

|xw| if − 1
x ≤ w ≤ 1

x ,

1 if w >
1
x .

Consequently, each term in the loss function is

f (xi, w)2 =











1 if w ≤ − 1
xi

,

x2
i w2 if − 1

xi
≤ w ≤ 1

xi
,

1 if w >
1
xi

.

This is a function which is quadratic around 0, and takes constant when w is away from 0.
Moreover, the width of the quadratic segment depends on the magnitude of x. For bigger
x, the quadratic part is narrow while sharp. For smaller x, it is wide and flat. From these
properties, it is easy to show that the total loss L gets sharper for w closer to 0. When xi’s
vary a lot in their magnitudes, L will have multi-scale structure—the sharpness increases
by orders of magnitudes as w moves towards 0.

To be clearer, assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ xn, then L(w) is
the following piecewise quadratic/constant function:

L(w) =



























(

1
n

n

∑
i=1

x2
i

)

w2 if |w| ≤ 1
xn

,
(

1
n

k

∑
i=1

x2
i

)

w2 + n−k
n if 1

xk+1
≤ |w| ≤ 1

xk
, for k = 1, 2, · · · , n − 1,

1 if |w| > 1
x1

.

If we have a continuum of x, sampled from a probability distribution µ supported on
(0, ∞), we can also write down the “population” loss function:

L(w) =
∫

f (x, w)2dµ(x) =

(

∫ 1/|w|

0
x2dµ(x)

)

w2 +
∫ ∞

1/|w|
dµ(x).

If the training data contains 3 data points with different magnitude, the empirical loss
function looks like the blue curve in Fig. 6.1(left). We obtain a loss with separate scales.
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Figure 6.1: (Left) Example loss landscapes given by constructions in Section 6. The curves of functions of the
parameter w. (Right) A 2-D loss function with two valleys in different scales constructed by the 2 dimensional
problem in Section 6. The surface shows a function of the parameters (w1, w2).

On the other hand, if µ is a uniform distribution on [0, C], then the population loss is

L(w) =

{

C2

3 w2 if |w| ≤ 1
C ,

1 − 2
3C|w| if |w| > 1

C .
(6.2)

The curve is shown in orange in Fig. 6.1(left). Now, we obtain a loss with continuous
scales and thus shows subquadratic growth. Similar to the population loss, if the training
data set is very large, the empirical loss function will also have (nearly) continuous scales.

Multi-dimensional examples. With similar approach, we can also construct multiscale
losses in multi-dimensional spaces, especially multiscale valleys we studied in Section 5.
Recall the definition of f (x, w) above. To produce a 2-D loss landscape with two valleys,

we just need to consider a model with a two-dimensional input (x(1), x(2)), two parameters
w1, w2, and a two-dimensional output:

[ f (x(1), w1), f (x(2), w2)]
T .

Then, consider data {(x
(1)
i , x

(2)
i , y

(1)
i , y

(2)
i )}n

i=1 with y
(1)
i = y

(2)
i = 0 for all i. The loss

function becomes

L(w1, w2) =
1

n

n

∑
i=1

f (x
(1)
i , w1)

2 + f (x
(2)
i , w2)

2.

The loss function is a superposition of two valleys along w1 and w2 directions. If we

assume x(2) is bigger than x(1) (e.g. x(2)i = 10x
(1)
i for any i), then the valley along w1

direction (generated by landscape of w2) is in a smaller scale than the other valley. An
example using a continuous distribution of training data is given in Fig. 6.1.

Discussion on homogeneity. Many factors can contribute to the special structure of neu-
ral network’s loss functions. In the construction in this section, we focus on the distribu-
tion of training data. We show that if the training data are not well normalized, multiscale
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structure will appear in the loss landscape. Besides the training data, nonconvexity of the
model and the loss also plays an important role in this example. If the loss for each data is
convex or even quadratic, then the total loss as a sum of many single losses will not show
very rich structures.

Although in practice the input data is always standardized before being fed into the
network, we note that usual standardization applies a fixed transform to all data to achieve
zero mean and identity variance, but does not eliminate the multiscale structure in the
data. After standardization, the length of different data can still differ by several orders of
magnitude. Hence, it is still possible for training data to cause multiscale structure in the
loss function.

Finally, we show that for large deep neural networks, multiscale data can still cause
multiscale loss due to the homogeneity of ReLU function. For example, consider an L-
layer fully connected neural networks with ReLU activation function and without bias:

f (x; W1, W2, · · · , WL) = WLσ(WL−1σ(· · · W2σ(W1x) · · · )).

Let l1 and l2 be the losses of two input data x1 and x2, both with the same target y. Then,
if x2 = kx1, we can easily verify

l1(W1, · · · , WL) = l2(k
−1/LW1, · · · , k−1/LWL),

i.e. the two losses have the same shape but different scales. Such relation is not unique.
For instance, fixing W2, · · · , WL, we have

l1(W1, · · · , WL) = l2(k
−1W1, W2, · · · , WL).

In this case, l2 is a scaling of l1 only in the W1 space. The second relation above is true even
for networks with bias.

7 Summary

In this paper, we study the limitations of using the quadratic approximation for neural
network’s loss functions and highlight the importance of a multiscale structure. Firstly,
we empirically observe two manifestations of the multiscale structure—the subquadratic
growth and the separate scales structure. These properties can explain some intriguing
phenomena observed during the training process of neural networks. Specifically, we
explain (1) the edge of stability phenomenon of GD using the subquadratic growth and
(2) the behavior and effect of learning rate decay using the separate scales structure. Then,
we study the origin of the multiscale structures, and show by constructive examples that
non-convex models and non-uniform training data can lead to multiscale loss. It is worth
noting that our study puts more focus on GD due to its simplicity. Extending the study to
SGD is an important and meaningful direction for future work.
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