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Abstract. In this paper, we establish a neural network to approximate functionals, which are maps from in-
finite dimensional spaces to finite dimensional spaces. The approximation error of the neural network is
O(1/

√
m) where m is the size of networks. In other words, the error of the network is no dependence on the

dimensionality respecting to the number of the nodes in neural networks. The key idea of the approximation
is to define a Barron space of functionals.
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1 Introduction

Recently, neural networks have revolutionized many fields of science and engineering in-
cluding computational and applied mathematics. As one of the important applications
of neural networks in applied mathematics, many methods have been developed on em-
ploying neural networks to approximate functionals and operators, which are maps from
spaces of infinite dimensions.

One application of learning in infinite dimensional spaces is to solve partial differential
equations (PDEs) by neural networks, e.g., [8,12,15,16,18,20,27,29,32–34]. The boundary
value problem of a PDE in a domain Ω in d-dimensional space takes the form

{
Lu = g1 in Ω,

Au = g2 on ∂Ω,
(1.1)

where u is the unknown function, L is a partial differential operator, A is the operator for
specifying an appropriate boundary condition, g1 and g2 are given functions, and without

loss of generality, Ω = [0, 1]d. The key idea of using neural networks to solve PDEs is
to obtain u(x; θ) from a neural network, where θ denotes all the parameters in the neural
network that are trained by optimizing some loss function associated with the PDE. That
is, in these methods, a neural network is established for the solution function u(x) with
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given function pair g1 and g2; for a different pair of functions g1, g2 in Eq. (1.1), the u(x; θ)
from the neural network has to be learned again although operators L and A are the same.

The PDE boundary value problem in Eq. (1.1) can be considered as an operator u(x) =
G(g1, g2). If we can learn the operator G directly by a neural network, we will be able to
obtain the solution of Eq. (1.1) for any given function pair g1, g2 without learning again.
A few methods have been proposed for learning operators by neural networks for solving
PDEs, such as DeepONet [28], DeepGreen [14], Fourier Neural Operator (FNO) [22], Neu-
ral Operator [23, 24], MOD-Net [37], and the deep learning-based nonparametric estima-
tion [26]. The DeepGreen, Neural Operator and MOD-Net methods are based on Green’s
functions for solving PDEs, i.e., these methods learn the Green’s function instead of learn-
ing the operator directly. Since in general only solutions of linear PDEs have the Green’s
function formulation, those Green’s function based methods cannot be used directly to
solve nonlinear PDEs, and accuracy of some proposed attempts for the extension of those
Green’s function based methods to nonlinear PDEs has not been rigorously proved in the
literature. The DeepONet [28] is a method that learns nonlinear operators associated with
PDEs from data based on the approximation theorem for operators by neural networks [6].
The method in [26] is to learn the operator by model reduction [4] of reducing the operator
to a finite dimensional space. Most of these available works on learning operators focused
on the development of algorithms.

The curse of dimensionality is a serious issue that generally exists for approximations
in high dimensions. Note that for the space of functions as the domain of the operator
associated with PDE boundary value problem in Eq. (1.1), the dimension is ∞. The curse
of dimensionality [3] summarizes this property that in order to maintain the accuracy of
an approximation, the number of sample points grows exponentially with the increase of
dimension. This means that for a fixed number of sample points, the accuracy will be
lost in an exponential way as the dimension increases. Only a few analyses have been
performed on overcoming the curse of dimensionality [17, 21, 26], and they all focused on
reducing the infinite dimensional space to a low dimensional space. Exponential depen-
dence on the dimension for the sample points still exists in these methods, which requires
that the dimension of the reduced space has to be low enough. Moreover, the Bayesian
inversion learning method in [17] is only for linear operators.

Approximating functionals and operators directly by reducing the input space to a fi-
nite dimensional space (e.g., DeepONet [28] reviewed above) will suffer from the curse
of dimensionality, unless the input space has some low-dimensional structure. In Ap-
pendix A, we present a general error analysis for the DeepONet method in terms of the
size and the number of parameters of the neural network. It serves as an examination of
the sources of the curse of dimensionality in these type of methods.

In this paper, we focus on the approximation of functionals, i.e., maps from a space
of functions which has infinite dimensions to R, by neural networks without curse of di-
mensionality. Functionals, such as linear functionals (e.g., integrations, norms and inner-
products of functions) and energy functionals, have a wide range of important applica-
tions in science and engineering fields. Moreover, approximating functionals by neural
networks is also a crucial step in many available methods for approximating operators
by neural networks and these methods suffer from curse of dimensionality. There are
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only limited attempts in the literature on using neural networks to approximate function-
als [5, 35]. In [5], they reduced the approximation of functionals to the approximation of
functions by reducing the function space into a finite dimensional space ([5, Theorem B.2]),
which was adopted in the second step of the DeepONet method, and as we discussed
above, this treatment has a serious curse of dimensionality. In [35], they approximated
functionals directly by neural networks but did not show the error of their method.

Several methods for overcoming the curse of dimensionality in approximations of func-
tions have been developed in the literature. An approximation method was proposed by
Barron [2] based on some function space with spectral norm; see also further develop-
ments of this approach [1, 19, 27, 31]. Another type of function spaces based on the neural
network representation and probability in the parameter space were also introduced and
developed [9–11, 25, 29, 36]. Following [10, 11], in this paper, the former type of spaces
are referred to as Barron spectral spaces, and the latter Barron spaces. The approximation
error in a Barron/Barron spectral space is able to reduce to O(1/

√
m), where m is the size

of networks. However, the curse of dimensionality in approximation functionals cannot
be solved by these Barron/Barron spectral space methods directly. In fact, the domain of
functionals is an infinite dimensional space which is essentially different from the space
of functions. A naive idea of generalizing the Barron/Barron spectral space methods for
functions to functionals is to approximate the infinite dimensional space of functions by
some finite dimensional space. However, as we demonstrated above for the DeepONet
method, the approximation of an infinite dimensional space by a finite dimensional space
through sample points still has the problem of curse of dimensionality (the second error
in Eq. (A.5)), even though the curse of dimensionality in the last step in the DeepONet
method (the last error in Eq. (A.5)) in principle can be overcome by some form of the Bar-
ron/Barron spectral space method for functions without curse of dimensionality. Further-
more, in such a straightforward generalization, we only know that the finite dimensional
function hk in Eq. (A.3) exists, and it is not easy to check if hk belongs to the Barron/Barron
spectral space.

In this paper, we establish a new method for the approximation of functionals by neural
networks without curse of dimensionality, which is based on Fourier series of functionals
and the associated Barron spectral space of functionals. Specifically, we first establish
Fourier series of functionals, and then prove that any functional satisfying some proper
assumption (Assumption 2.1) can be approximated by these Fourier series (Theorem 2.1).
We then define a Barron spectral space Bs and a Hilbert space Hs of the functionals (Defi-
nition 2.4) based on the Fourier series, and estimate the error of the approximating neural
network based on the Barron spectral space (Theorem 3.1). The approximation error of the
neural network is O(1/

√
m) where m is the size of networks, which overcomes the curse

of dimensionality. Under some stronger conditions (including smoothness of the func-
tions in the domain of the functional), a simpler method for learning functionals by neural
networks has been proved (Theorem 4.1). Applications of these obtained theorems on
the approximation of functionals by neural networks including the application to solving
PDEs by neural networks are discussed.

Our main contributions are:

• We establish a new method for the approximation of functionals by a neural network,
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by defining (i) a Fourier-type series in the infinite-dimensional space of functionals
and (ii) the associated spectral Barron spectral space Bs and a Hilbert space Hs of
functionals. We show that the proposed method for the approximation of functionals
overcomes the curse of dimensionality.

• The established method for approximation of functionals without curse of dimen-
sionality can be employed in learning functionals, such as linear functionals and en-
ergy functionals in science and engineering fields. It can also be used to solve PDE
problems by neural networks at some given points. This method provides a basis for
the further development of methods for learning operators.

2 Fourier Series and Barron Spectral Space of Functionals

In this section, we define a Barron spectral space of functionals. For this purpose, we first
define a Fourier series in the infinite-dimensional space of functionals. These definitions
associated with the space of functionals are based on a basis of the domain of the func-
tionals (which is a function space).

First of all, we define the index set of a basis of the space of functionals.

Definition 2.1 (Index set of basis of functionals). K ⊂ Z∞ is defined by

K :=
∞⋃

m=1

K
m, (2.1)

where
K

m :=
{

k := (k1, k2, · · · , ki, · · · ) ∈ Z
∞ : Nk := max{i : ki 6= 0} ≤ m

}
.

Due to the definition of K, we know that k := (k1, k2, · · · , ki, · · · ) ∈ K has only finite
nonzero ki. Furthermore, K is a countable set due to Axiom of Choice; see Lemma 2.1
below. Note that all the proofs in this paper including that of this lemma are given in
Appendix A.

Lemma 2.1. K is a countable set.

Proof. Denote the cardinality of a set A as |A| and |N| = ℵ0. Hence,

|Km| =
∣∣{k := (k1, k2, · · · , ki, · · · ) ∈ N

∞ : Nk := max{i : ki 6= 0} ≤ m
}∣∣

= |Nm| = ℵ0. (2.2)

Since a countable union of countable sets is countable (by using the Axiom of Choice), we
have

|K| =
∣∣∣∣∣

∞⋃

m=1

K
m

∣∣∣∣∣ = ℵ0. (2.3)

The proof is complete.
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Denote the domain of functionals as Ω, which is a Banach space of functions. Let
{Φi}∞

i=1 be a Schauder basis of Ω, i.e., for every element v ∈ Ω, there exists a unique
sequence {bi}∞

i=1 of scalars in R such that v = ∑
∞
i=1 biΦi. For example,

{Φn}∞
n=1 =

{√
2 sin(2πnx) | n ∈ N

}
∪
{√

2 cos(2πnx) | n ∈ N
}
∪ {1},

when Ω = L2(0, 1). Note that we will define a Barron spectral space of functionals based
only on the sequence {bi}∞

i=1, and the defined Barron spectral space of functionals will
apply to any basis {Φi}∞

i=1 and any convergence of v = ∑
∞
i=1 biΦi as long as {bi}∞

i=1 is
uniquely determined. Next, we define a basis of the functionals on Ω.

Definition 2.2 (Fourier basis of functionals). For any

v =
∞

∑
i=1

biΦi ∈ Lbound(Ω),

where

Lbound(Ω) :=

{
v =

∞

∑
i=1

biΦi ∈ Ω : −1

2
< bi <

1

2
, i ∈ N+

}
, (2.4)

the Fourier basis {ek}k∈K of the functionals with domain Ω based on {Φi}∞
i=1 is

ek(v) :=
∞

∏
i=1

exp (2πikibi) = exp

(
∞

∑
i=1

2πikibi

)
. (2.5)

Notice that for some functionals such as linear functionals Example 2.1

f

(
∞

∑
i=1

biΦi

)
=

∞

∑
i=1

f (biΦi),

and energy functionals Example 2.2

E

(
∑

p∈Nd

bpΦp

)
= ∑

p∈Nd

E(bpΦp),

they can be divided into summation of countable finite dimensional functionals. We make
the following assumptions for the functionals being considered.

Assumption 2.1 (Finite dimensional summation). For a basis of Ω, {Φi}∞
i=1, there is a uni-

que sequence of sets D := {Dj}∞
j=1, where Dj ⊂ N+ and |Dj| < +∞, such that the

functional f satisfies

f

( ∞

∑
i=1

biΦi

)
=

∞

∑
j=1

fj

(
∑

i∈D j

biΦi

)
(2.6)

for v = ∑
∞
i=1 biΦi ∈ Lbound(Ω). For each fj(∑i∈D j

biΦi), it cannot be further divided into

f
(1)
j (∑i∈D1

j
biΦi) and f

(2)
j (∑i∈D2

j
biΦi) where |D1

j |, |D2
j | < |Dj|.
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Note that Assumption 2.1 does not require Dj ∩ Di = ∅ for i 6= j. We will give exam-
ples of functionals that satisfy Assumption 2.1 and demonstrate its generality at the end
of this section.

Due to Assumption 2.1, the infinite-dimensional space of functions as the domain of
the functional can be decomposed into finite-dimensional subspaces. As a result, in each
finite-dimensional subspace, Fourier coefficients can be defined. Under this assumption,
we can define the Fourier coefficients of a functional as follows.

Definition 2.3 (Fourier coefficients of a functional). Suppose that Assumption 2.1 holds for
the functional f , the Fourier coefficients of the functional f with basis {ek}k∈K are defined as

ak( f ) := ∑
j∈Ak

∫
(
− 1

2 , 1
2

)|D j| fj

(
∑

i∈D j

biΦi

)[
∏

i∈D j

exp (−2πikibi) dbi

]
, (2.7)

where
Ak :=

{
j ∈ N : k ∈ KD j

}
,

KD j
:=
{

k := (k1, k2, · · · , ki, · · · ) ∈ K : ki = 0 f or i /∈ Dj

}
.

(2.8)

Note that the summation over Ak is due to the fact that each k may be associated with
multiple Dj’s.

By Definition 2.3, we have the Fourier series of the functionals. We prove that function-
als can be expanded into such Fourier series in the following theorem.

Theorem 2.1. For a functional f that is defined on Lbound(Ω) and satisfies Assumption 2.1 and
following two assumptions:

(i) (Smoothness): For any j ∈ N+, fj(∑i∈D j
biΦi) is a C1-function respect to bi for i ∈ Dj in

(−1/2, 1/2)|D j|.

(ii) (Existence of ak( f )): For each k ∈ K, ak( f ) exists and the following condition holds:

∑
k∈K

∑
j∈Ak

∣∣∣∣∣

∫
(
− 1

2 , 1
2

)|D j | fj

(
∑

i∈D j

biΦi

)[
∏

i∈D j

exp(−2πikibi)dbi

]∣∣∣∣∣ < ∞, (2.9)

we have
f (v) = ∑

k∈K

ak( f )ek(v), v ∈ Lbound(Ω). (2.10)

The series in Eq. (2.10) is unconditionally convergent. We call this expansion the Fourier series of
the functional f .

Proof. For a functional f satisfying Assumption 2.1, it can be written as

f

(
∞

∑
i=1

biΦi

)
=

∞

∑
j=1

fj

(
∑

i∈D j

biΦi

)
, (2.11)
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where |Dj| < ∞. Furthermore, due to assumption (i) in Teotem 2.1, each fj is a C1-function
with respect to bi ∈ Dj. Therefore, the Fourier series of fj converge to fj, i.e.,

fj

(
∑

i∈D j

biΦi

)
= ∑

k∈KD j

( f̂j)k ∏
i∈D j

exp(2πikibi) = ∑
k∈KD j

( f̂j)k

∞

∏
i=1

exp(2πikibi), (2.12)

where k := (k1, k2, · · · , ki, · · · ), and ( f̂j)k is the Fourier coefficient of fj for the basis

∏i∈D j
exp(2πikibi). By the definition of ak( f ) and direct calculation, we have

ak( f ) = ∑
j∈Ak

( f̂j)k = ∑
j∈Ak

∫
(
− 1

2 , 1
2

)|D j | fj

(
∑

i∈D j

biΦi

)[
∏

i∈D j

exp(−2πikibi)dbi

]
. (2.13)

Therefore

f

(
∞

∑
i=1

biΦi

)
=

∞

∑
j=1

fj

(
∑

i∈D j

biΦi

)

=
∞

∑
j=1

∑
k∈KD j

( f̂j)k

∞

∏
i=1

exp(2πikibi)

= ∑
k∈K

∑
j∈Ak

( f̂j)k

∞

∏
i=1

exp(2πikibi)

= ∑
k∈K

ak( f )
∞

∏
i=1

exp(2πikibi). (2.14)

The third equation in (2.14) is obtained by change of order of the summations, which is
due to assumption (ii).

We will give examples of the Fourier expansions of functionals at the end of the section.
Now we define the Barron spectral space and a Hilbert space of functionals based on

the Fourier series of functionals.

Definition 2.4. (i) The Barron spectral space of the continuous functionals on Lbound(Ω) that
satisfy Assumption 2.1 is

Bs[Lbound(Ω)] :=

{
f : f (v) = ∑

k∈K

ak( f )ek(v),

∑
k∈K

(1 + (2π)s|k|s1)|ak( f )| < ∞

}
, (2.15)

for s ≥ 0 with the norm

‖ f‖Bs
:= ∑

k∈K

(
1 + (2π)s|k|s1

)
|ak( f )|. (2.16)
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(ii) A Hilbert space of functionals on Lbound(Ω) that satisfy Assumption 2.1 is

Hs

[
Lbound(Ω)

]
:=

{
f : f (v) = ∑

k∈K

ak( f )ek(v),

∑
k∈K

(
1 + (2π)2s|k|2s

1

)
|ak( f )|2 < ∞

}
(2.17)

for s ≥ 0 with the inner product

〈 f , g〉Hs
= ∑

k∈K

(
1 + (2π)2s|k|2s

1

)
ak( f ) · ak(g), (2.18)

where ak( f ) is the complex conjugate of ak( f ).

In this paper, we focus on the Barron spectral space B2[Lbound(Ω)] and the Hilbert
space H1[Lbound(Ω)], and for simplicity of notations, denote them as B[Lbound(Ω)] and
H[Lbound(Ω)], respectively. Note that it is easy to check that Hs[Lbound(Ω)] defined above
is a Hilbert space.

Many widely used functionals in science and engineering satisfy Assumption 2.1 and
the defined Fourier expansion applies. Here we give some examples.

Example 2.1. For a linear functional f ,

f

(
∞

∑
i=1

biΦi

)
=

∞

∑
i=1

f (biΦi).

In this case, Assumption 2.1 is satisfied with

D =
{

Dj

}∞

j=1
=
{
{1}, {2}, · · · , {j}, · · ·

}
.

For any k ∈ KD j
, there is only one component of k, i.e., kj, is nonzero, and for any v =

∑
∞
i=1 biΦi, we have

ek(v) = exp
(
2πikjbj

)
,

a0( f ) :=
∞

∑
i=1

∫

(− 1
2 , 1

2)
f (biΦi) dbi,

ak( f ) =
∫

(− 1
2 , 1

2)
f
(
bjΦj

)
exp

(
−2πikjbj

)
dbj, k 6= 0.

Therefore, the Fourier expansion (2.10) of the linear functional f is

f

(
∞

∑
i=1

biΦi

)
=

∞

∑
i=1

∑
ki∈Z

(∫

(− 1
2 , 1

2)
f (biΦi) exp(−2πikibi)dbi

)
exp(2πikibi). (2.19)

The functional f is in the Barron spectral space if it further satisfies the condition in Defi-
nition 2.4(i).
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Note that linear functionals play important roles in both theoretical studies and appli-
cations in science and engineering, e.g., integration, inner product with a given function,
solution of initial/boundary value problem of linear PDEs at some given points, etc. This
important class of functionals always satisfies Assumption 2.1.

Example 2.2. Consider the energy functional

E(v) =
∫

(0,1)d

1

2
α|∇v|2 dx,

where α > 0 and d ∈ N. Here v ∈ Ω = H1(0, 1)d with ∂v/∂ν = 0 for x ∈ ∂[0, 1]d (where
∂/∂ν is the outer normal derivative on the boundary), and an orthogonal basis of Ω is

{
Φp(x) =

d

∏
j=1

√
2 cos(πpjxj)

}

p∈Nd\{0}
∪ {Φ0 = 1},

where pj and xj are components of p and x, respectively. For any v = ∑p∈Nd bpΦp, the

energy can be written as

E(v) =
∫

(0,1)d

1

2
α

∣∣∣∣ ∑
p∈Nd

(
πbpΦp

)
p

∣∣∣∣
2

dx = ∑
p∈Nd

1

2
π2α|p|2b2

p = ∑
p∈Nd

E
(
bpΦp

)
.

Here

E
(
bpΦp

)
=

1

2
π2α|p|2b2

p.

In this case, we also have that Assumption 2.1 is satisfied with D = {Dp}p∈Nd , where

Dp = {p} for p ∈ Nd. We further restrict the domain to
{

v(x) = ∑
p∈Nd

bpΦp : −Bp < bp < Bp, Bp = C|p|− d
2−1−ε, p ∈ N

d

}
,

where C, ε > 0, so that the energy is well-defined. For any k ∈ KDp , there is only one

component of k, denoted by kp, is nonzero, and we have

ek(v) =
1

(2Bp)
1
2

exp

(
π

Bp
ikpbp

)
,

a0(E) = ∑
p∈Zd

1

(2Bp)
1
2

∫ Bp

−Bp

E
(
bpΦp

)
dbp,

ak(E) =
1

(2Bp)
1
2

∫ Bn

−Bn

E
(
bpΦp

)
exp

(
− π

Bp
ikpbp

)
dbp.

The Fourier expansion (2.10) of this energy functional E is

E = ∑
p∈Nd

∑
kp∈Z

(
1

2Bp

∫ Bp

−Bp

E
(
bpΦp

)
exp

(
− π

Bp
ikpbp

)
dbp

)
exp

(
π

Bp
ikpbp

)
. (2.20)
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The functional E is in the Barron spectral space if it further satisfies the condition in Defi-
nition 2.4(i).

Note that our method also applies to many other similar nonlinear functionals such as
the elastic energy of a deformed materials

E =
1

2 ∑
ijkl

Cijklεijεkl ,

where {Cijkl} is the elastic constant tensor,

εij =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)

is the strain tensor, and ui is a component of the displacement vector.

We further consider an example in which the functions are defined in a domain of dis-
crete points. In physics, chemistry, and materials science, atomistic models are commonly
used as a tool to study the materials properties [13]. Inter-atomic potentials are used in
atomistic models, and many of them are pairwise potentials with finite interaction range.
The total energy of an atomistic system depends on the positions of atoms. The number
of atomics is typically very large in the atomistic simulations.

Example 2.3. Consider an example of the total energy of a one dimensional atomistic
system

E = ∑
i∈N

[
V(a + ui+1 − ui)− V(a)

]
,

where V(r) is a two-body potential such as the Lennard-Jones potential (V(r) = 4ε[(σ/r)12

−(σ/r)6] with ε and σ being two parameters), where r is the distance between two atoms,
a is the lattice constant, and ui the displacement of the i-th atom. Since the number of
atoms is very large, we simply write the number as infinity. Note that the convergence of
the summation is not a problem in a real system because the number of atoms is always
finite; or we can add some decaying condition on {ui} as in Example 2.2.

In this case, Assumption 2.1 is satisfied with D = {{1, 2}, {2, 3}, · · · , {n, n + 1}, · · · }.
Denote u = (u1, u2, · · · , un, · · · ). The Fourier expansion (2.10) of this energy functional E
is ∑k∈K ak(E)ek(u), which is

E = ∑
i∈N

∑
(ki,ki+1)∈Z2

exp(2πikiui + 2πiki+1ui+1)

×
∫

(− 1
2 , 1

2 )
2

[
V(a + uj+1 − uj)− V(a)

]
exp(2πikiui + 2πiki+1ui+1)dui dui+1. (2.21)

The functional E is in the Barron spectral space if it further satisfies the condition in
Definition 2.4(i), where the Fourier coefficient ak(E) is the integral expression in Eq. (2.21).
Note that we have similar Fourier expansion for the total energy of an atomic system with
a general atomic interaction of finite range in any dimension.
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Example 2.4. Consider the following infinite dimensional nonlinear functional f (1) satis-
fying Assumption 2.1:

f (1)

(
∞

∑
i=1

biΦi

)
=

∞

∑
i=1

sib
3
i , (2.22)

where si ∈ R. Here f (1) is well-defined in Lbound(Ω) when ∑
∞
i=1 |si| < ∞. In this case,

D = {{1}, {2}, · · · , {n}, · · · }. Hence, we obtain that

∑
k∈K

ak

(
f (1)
)
ek(v) =

∞

∑
i=1

(
∑

k∈Ki

ak

(
f (1)
)
ek(v)

)
=

∞

∑
i=1

(
si ∑

k∈Z

dk exp(2πikbi)

)
, (2.23)

where

Ki :=
{

k ∈ K : kj = 0 for j 6= i, and kj 6= 0 for j = i
}

,

dk :=
∫

(− 1
2 , 1

2 )
b3

1 exp (−2πikb1) db1.

When bi ∈ (−1/2, 1/2), ∑k∈Z dk exp(2πikbi) is the Fourier series of b3
i . Therefore, when

∑
∞
i=1 |si| < ∞,

∑
k∈K

ak

(
f (1)
)
ek(v) =

∞

∑
i=1

(
si ∑

k∈Z

dk exp(2πikbi)

)
=

∞

∑
i=1

(
sib

3
i

)
= f (1)

(
∞

∑
i=1

biΦi

)
. (2.24)

Furthermore, f (1) ∈ B[Lbound(Ω)] ( f (1) ∈ H[Lbound(Ω)]), when ∑k∈Z(1 + (2π)2k2)|dk|
< ∞ (∑k∈N+

(1 + (2π)2k2)|dk|2 < ∞, ∑i∈N+
|si|2 < ∞).

Example 2.5. Consider another example

f (2)

(
∞

∑
i=1

biΦi

)
=

∞

∑
i=1

sibibi+1. (2.25)

Here f (2) is well-defined in Lbound(Ω) when ∑
∞
i=1 |si| < ∞. In this case,

D =
{
{1, 2}, {2, 3}, · · · , {n, n + 1}, · · ·

}
,

and

ak

(
f (2)
)
=
∫

(− 1
2 , 1

2)
2 sibibi+1 exp(2πikibi)dbi dbi+1

+
∫

(− 1
2 , 1

2)
2

si−1bibi−1 exp(2πikibi)dbi dbi−1, (2.26)

when
k ∈ Ki :=

{
k ∈ K : kj = 0 for j 6= i, and kj 6= 0 for j = i

}
,
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and s0 = b0 = 0. It can be calculated that

ak

(
f (2)
)
=
∫

(− 1
2 , 1

2)
2 sibibi+1 exp(2πikibi + 2πiki+1bi+1)dbi dbi+1, (2.27)

when

k ∈ K̄i :=
{

k ∈ K : kj = 0 for j 6= i, i + 1, and kj 6= 0 for j = i, i + 1
}

.

Otherwise ak( f (2)) = 0. Therefore,

∑
k∈K

ak

(
f (2)
)
ek(v) =

∞

∑
i=1

(
∑

k∈Ki∪Ki+1∪K̄i

ak

(
f (2)
)

exp(2πikibi + 2πiki+1bi+1)

)

=
∞

∑
i=1

(sibibi+1). (2.28)

In the above two examples, there is a sequence {si}∞
i=1 to make the functionals well-

defined in Lbound(Ω) (i.e., the series converges).
Note that alternatively, convergence of the series can also be achieved by restricting the

domain of functionals. For example, if we want to approximate functionals such as the
L2-norm: f (v) = ‖v‖L2(0,1), we can restrict the domain of the functionals to

{
v =

∞

∑
i=1

biΦi : −Ci−
1
2−ε

< bi < Ci−
1
2−ε, i ∈ N+

}
,

where C, ε > 0, and redefine ak( f ) as that in Eq. (4.2).

Example 2.6. Consider the functional f (v) =
∫ 1

0 v3 dx and an orthogonal basis of functions
on (0, 1) {

Φj(x) =
√

2 cos(πjx)
}

j∈N\{0} ∪ {Φ0 = 1}.

For any v = ∑j∈N bjΦj, the functional f can be written as

f

(
∑

j∈N

bjΦj

)
=

∞

∑
j=0

∫ 1

0
b3

j Φ3
j (x)dx + 3 ∑

j1 6=j2

∫ 1

0
b2

j1
bj2 Φ2

j1
(x)Φj2(x)dx

+ 6 ∑
j1,j2 ,j3different

∫ 1

0
bj1 bj2 bj3 Φj1(x)Φj2(x)Φj3(x)dx. (2.29)

Using the definition of {Φj(x)}, it can be calculated that

f

(
∑

j∈N

bjΦj

)
= b3

0 + 3
∞

∑
j1=1

b2
j1

b0 +
3
√

2

2 ∑
2j1=j2
j1,j2>0

b2
j1

bj2 + 3
√

2 ∑
j1,j2,j3different

j1+j2=j3

bj1 bj2 bj3 . (2.30)

Note that the convergence of the summation is not a problem since we can add some
decaying condition on {bj} as in Example 2.2
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{
v(x) = ∑

j∈N

bjΦj : −Cp < bp < Cp, Cp = C|j|−1−ε , j ∈ N

}
,

where C, ε > 0. In this case, we also have that Assumption 2.1 is satisfied with

D =

{
{0}, {0, j1}∞

j1=1, {j1, j2} 2j1=j2
j1,j2>0

, {j1, j2, j3} j1,j2,j3different,
j1+j2=j3

}
.

We also can write down the Fourier expansion of f (v). We put the detail in the end of this
example.

Now we present the Fourier coefficients of this functional f (v) in the Fourier expansion
(2.10). For any k ∈ K with only one nonzero component of k, denoted by ks1

, and we have
when s1 = 0,

ek(v) =
1

(2C0)
1
2

exp

(
π

C0
ik0b0

)
,

ak( f ) =
1

(2C0)
1
2

∫ C0

−C0

b3
0ek db0 + 3

∞

∑
j1=1

1

(2C0)
1
2 2Cj1

∫ Cj1

−Cj1

∫ C0

−C0

b0b2
j1

ek db0 dbj1 , (2.31)

for an odd integer s1,

ek(v) =
1

(2Cs1
)

1
2

exp

(
π

Cs1

iks1
bs1

)
,

ak( f ) =
3

(2Cs1
)

1
2 2C0

∫ C0

−C0

∫ Cs1

−Cs1

b0b2
s1

ek dbs1
db0

+
3
√

2

2

1

(2Cs1
)

1
2 2C2s1

∫ Cs1

−Cs1

∫ C2s1

−C2s1

b2s1
b2

s1
ek db2s1

dbs1

+ 3
√

2 ∑
s1,j1,j2different

s1+j1=j2 or j1+j2=s1

1

(2Cs1
)

1
2 4Cj1Cj2

∫ Cj2

−Cj2

∫ Cj1

−Cj1

∫ Cs1

−Cs1

bj2 bj1 bs1
ek dbs1

dbj1 dbj2 , (2.32)

and for an even integer s1 6= 0,

ek(v) =
1

(2Cs1
)

1
2

exp

(
π

Cs1

iks1
bs1

)
,

ak( f ) =
3

(2Cs1
)

1
2 2C0

∫ C0

−C0

∫ Cs1

−Cs1

b0b2
s1

ek dbs1
db0

+
3
√

2

2

1

(2Cs1
)

1
2 2C2s1

∫ Cs1

−Cs1

∫ C2s1

−C2s1

b2s1
b2

s1
ek db2s1

dbs1

+
3
√

2

2

1

(2Cs1
)

1
2 2Cs1/2

∫ Cs1

−Cs1

∫ Cs1/2

−Cs1/2

bs1
b2

s1/2ek dbs1/2 dbs1
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+ 3
√

2 ∑
s1,j1,j2different

s1+j1=j2 or j1+j2=s1

1

(2Cs1
)

1
2 4Cj1Cj2

∫ Cj2

−Cj2

∫ Cj1

−Cj1

∫ Cs1

−Cs1

bj2 bj1 bs1
ek dbs1

dbj1 dbj2 . (2.33)

For any k ∈ K with only two nonzero components, denoted by ks1
, ks2

, when s2 = 0,

ek(v) =
1

(4C0Cs1
)

1
2

exp

(
π

C0
ik0b0 +

π

Cs1

iks1
bs1

)
,

ak( f ) = 3
1

(4C0Cs1
)

1
2

∫ Cs1

−Cs1

∫ C0

−C0

b0b2
s1

ek db0 dbs1
, (2.34)

when s2 = 2s1,

ek(v) =
1

(4Cs2
Cs1

)
1
2

exp

(
π

Cs2

iks2
bs2

+
π

Cs1

iks1
bs1

)
,

ak( f ) = 3
1

(4C0Cs1
)

1
2

∫ Cs1

−Cs1

∫ Cs2

−Cs2

bs2
b2

s1
ek dbs2

dbs1

+ 3
√

2
1

(4Cs1
Cs2

)
1
2 2Cs1+s2

∫ Cs1+s2

−Cs1+s2

∫ Cs2

−Cs2

∫ Cs1

−Cs1

bj2 bs2
bs1

ek dbs1
dbs2

dbs1+s2
, (2.35)

and when s2 6= 2s1, s1 6= 2s2 and s2 6= s1,

ek(v) =
1

(4Cs2
Cs1

)
1
2

exp

(
π

Cs2

iks2
bs2

+
π

Cs1

iks1
bs1

)
,

ak( f ) = 3
√

2
1

(4Cs1
Cs2

)
1
2 2Cs1+s2

∫ Cs1+s2

−Cs1+s2

∫ Cs2

−Cs2

∫ Cs1

−Cs1

bj2 bs2
bs1

ek dbs1
dbs2

dbs1+s2
. (2.36)

For any k ∈ K with only three nonzero components, denoted by ks1
, ks2

, ks3
, when

s1 + s2 = s3,

ek(v) =
1

(8Cs3
Cs2

Cs1
)

1
2

exp

(
π

Cs3

iks3
bs3

+
π

Cs2

iks2
bs2

+
π

Cs1

iks1
bs1

)
,

ak( f ) = 3
√

2
1

(8Cs1
Cs2

Cs3
)

1
2

∫ Cs3

−Cs3

∫ Cs2

−Cs2

∫ Cs1

−Cs1

bs3
bs2

bs1
ek dbs1

dbs2
dbs3

. (2.37)

Since our method works similarly for the functional f (v) =
∫ 1

0 vq dx, q ∈ Z, it can be

applied to more general cases, e.g., g(v) =
∫ 1

0 sin v dx by using Taylor expansions

∫ 1

0
sin v dx =

∞

∑
n=0

∫ 1

0

(−1)nv(x)2n+1

(2n + 1)!
dx, |v| < 1. (2.38)

For this case, Assumption 2.1 is also satisfied. This shows that our method can be applied
to more general functionals by using Taylor expansions together with Assumption 2.1.
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Note that Assumption 2.1 requires that the functional can be divided into countable
finite-dimensional parts. There are examples of functionals that do not satisfy this as-
sumption, e.g., the functional f defined by

f

(
∞

∑
j=1

bjΦj

)
:=

∞

∏
j=1

gj(bj),

where
{

gj ∈ C(Ω) : R → R
}∞

j=1
. In this case, f does not satisfy Assumption 2.1 be-

cause it cannot be written as a countable summation of finite-dimensional parts directly.
(Fortunately, for this functional f , Assumption 2.1 can be satisfied after taking logarithm.)
Moreover, in some cases, it may not be straightforward to examine whether this assump-
tion can be satisfied by the functionals. Further generalizations beyond this assumption
will be explored in the future work.

3 Approximation of Functionals Based on Barron Spectral Space

Based on the Barron spectral space for functionals defined above, we prove the approx-
imation of functionals by neural networks without curse of dimensionality. This is the
main result of this paper and is summarized in the following theorem, whose proof is
given in Section 5.1.

Theorem 3.1. For any functional f ∈ B[Lbound(Ω)], there is fm ∈ GReLU,m,f, where

GReLU,m,f :=

{
g(v) = c +

m

∑
j=1

γjReLU

(
∑

i∈Skj

wijbi − tj

)
: v =

∞

∑
i=1

biΦi, kj ∈ K f

|c| ≤ 2‖ f‖B,
m

∑
j=1

|γj| ≤ 4‖ f‖B , |wj|1 = 1, |t| ≤ 1

}
(3.1)

with

Skj
:=
{

i ∈ N : kij 6= 0, kj = (k1j, k2j, · · · , kij, · · · ) ∈ K f

}
,

K f := {k ∈ K : ak( f ) 6= 0},

that satisfies

‖ f − fm‖H ≤ 4
√

5‖ f‖B√
m

. (3.2)

Note that there is no dependence on the dimensionality in the error estimate in this
theorem, which overcomes the curse of the dimensionality. In fact, Theorem 3.1 states
that the functional f in B[Lbound(Ω)] can be approximated by a two layer network with
m nodes in the hidden layer with O(1/

√
m) accuracy in H[Lbound(Ω)]. For the j-th node

in the hidden layer, the information of f associated with its j-th chosen Fourier basis func-
tional is used, whose dimension is |Skj

|, i.e., the number of nonzero components of kj, and
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is bounded by the number of elements in the block where the Fourier basis functional lies
in by Assumption 2.1. As a result, only information of finite dimensions of f is needed
in this O(1/

√
m) approximation. Note that |Skj

| depends only on f . Theorem 3.1 in fact

provides a way to approximate a functional in an infinite dimensional space by a neural
network with finite number of parameters, i.e., O(mN f ,m), where N f ,m = max1≤j≤m |Skj

|.
For the linear functionals in Example 2.1 and the gradient energy functional in Ex-

ample 2.2, we have maxk∈K f
{|Sk|} = 1, and the O(1/

√
m) neural network approxi-

mation given by Theorem 3.1 contains only 3m + 1 parameters. In these cases, the ap-
proximating neural network can be made more efficient and accurate; see Section 6.1(i).
For other functionals given in the previous section, maxk∈K f

{|Sk|} = 1 in Example 2.4,

maxk∈K f
{|Sk|} = 2 in Examples 2.3 and 2.5, and maxk∈K f

{|Sk|} = 3 for Example 2.6. In

general, if there is an upper bound for maxk∈K f
{|Sk|}, then the number of parameters in

the neural network given in Theorem 3.1 is O(m). Neural network approximation with
reduced number of parameters will be given in Theorem 4.1 and will be further discussed
in Section 6.1(ii).

In the DeepONet method as reviewed in the introduction section, the domain of the
input functions is first discretized to reduce the infinite dimensional problem into a finite
dimensional one and then the functional is learned by a neural network, and such process
is suffered from curse of dimensionality (cf. the last two errors in Eq. (A.5)). In contrast,
our Theorem 3.1 approximates the functional directly by a neural network without dis-
cretization of the domain of the input functions, and there is no curse of dimensionality.
Moreover, since our method does not approximate the domain of the input functions,
the number of parameters and the network structure in our method only depends on the
functional, and it is not sensitive to the input functions in training.

In practice, when we set up the neural network, we do not know Skj
, j = 1, 2, . . . , m,

because we do not know f yet. This can be solved by choosing a large N and defining

fm

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

γjReLU

(
N

∑
i=1

wijbi − tj

)
. (3.3)

When N ≥ N f ,m, this form of fm includes all the functionals in GReLU,m, f including the

desired one with error of O(1/
√

m) given in Theorems 3.1, thus it is able to approxi-
mate f with O(1/

√
m) accuracy. In this case, the number of parameters in the network

is O(mN), instead of exponential dependence on the dimension N; and once N ≥ N f ,m,

the desired approximation of O(1/
√

m) accuracy given in Theorem 3.1 is included by fm,
and no further increase of N is needed. Note that N f ,m and accordingly N depend only
on the functional f and do not depend on the input functions. There is still no curse of
dimensionality by using this treatment in practice. The input data for the training of the
network will be the finite Fourier coefficients {bi}N

i=1 of the input functions.

4 Reducing the Number of Parameters in GReLU,m,f

Theorem 3.1 shows that a functional f ∈ B[Lbound(Ω)] can be approximated well from
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the set GReLU,m,f without curse of dimensionality. A challenge when using this theorem in
deep learning is that the set Skj

for each j associated with f that appear in GReLU,m,f are

unknown because f is a functional to be learnt.
Recall that when the Fourier basis is used, a smoother function has faster decaying

Fourier coefficients. Here we consider a generalization of this property for any basis {Φi},
so that the number of parameters for i ∈ Skj

can be replaced by a fixed number N based

on the domain of the functional.
We restrict the domain of the functional to

Lcut(Ω) :=

{
v ∈ Lbound(Ω) : v =

∞

∑
i=1

biΦi, |bi| < δ for i > N

}
, (4.1)

where δ is a small constant and N ∈ N+. Based on Lcut(Ω), we modify the Fourier
coefficients in Definition 2.3 as

ak( f ) := ∑
j∈Ak

1

(2δ)|D j∩[N+1,+∞)|/2

∫

(−δ,δ)
|D j∩[N+1,+∞)|×(− 1

2 , 1
2)

|D j∩[0,N]| fj

(
∑

i∈D j

biΦi

)

×
[

∏
i∈D j∩[0,N]

exp(−2πikibi)dbi ∏
i∈D j∩[N+1,+∞)

exp

(
−1

δ
πikibi

)
dbi

]
. (4.2)

With the space Lcut(Ω), we can use the parameter N in Lcut(Ω) instead of the unknown
number of parameters for i ∈ Skj

of f in the approximation by neural network. The result

is summarized in the following theorem.

Theorem 4.1. For any fm ∈ GReLU,m,f that is given by

fm

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

γjReLU

(
∑

i∈Skj

wijbi − tj

)
, (4.3)

there are f ∗m, f ∗∗m from

G∗
ReLU,m,f :=

{
g

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

γjReLU

(
N

∑
i=1

wijbi − tj

)
: 2|c|,

m

∑
j=1

|γj| ≤ 4‖ f‖B , |wj|1 = 1, |t| ≤ 1

}
, (4.4)

such that for any v ∈ Lcut(Ω),
∣∣ f ∗m(v)− fm(v)

∣∣ ≤ 4‖ f‖Bδ, (4.5)

‖ f ∗∗m − fm‖H ≤ 2
√

13‖ f‖B(2δ)
1
2 . (4.6)

Here the constant N in G∗
ReLU,m,f in (4.4) is that in the definition of Lcut(Ω).
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Theorem 4.1 combined with Theorem 3.1 show that there exists a neural network in
G∗

ReLU,m, f that approximates f well on the domain Lcut(Ω), and the error is

‖ f ∗∗m − f‖H ≤
(

4
√

5√
m

+ 2
√

13(2δ)
1
2

)
‖ f‖B . (4.7)

For example, if we want to learn the gradient energy in Example 2.2, where the functio-
nal is

E(u) =
∫ 1

0

1

2
α

(
du

dx

)2

dx,

we may restrict the domain of the functional to

{
v =

∞

∑
n=0

bnΦn : −Cn− 3
2−ε

< bn < Cn−3/2−ε, n ∈ N

}
,

where C, ε > 0 and {Φn =
√

2 cos(πnx)}∞
n=1 ∪ {Φ0 = 1}. In this case, we can select

δ = CN−3/2−ε for a large N in Lcut(Ω). Combining Theorems 3.1 and 4.1, the approxima-

tion error of G∗
ReLU,m,f in this case is O(1/

√
m) +O(N−3/4−ε/2). For the second error, we

can obtain a smaller error for a fixed N, when we consider a functional on a space with

smoother functions, such as Hk(0, 1). For Hk(0, 1), we should consider the space

{
v =

∞

∑
n=0

bnΦn : −Cn− (1+k)
2 −ε

< bn < Cn− (1+k)
2 −ε, n ∈ N

}
,

where C, ε > 0, and the second error is O(N−(1+k)/4−ε/2). With the same level of the error,
a space with smoother functions will lead to fewer parameters in the neural network.

5 Proofs of Theorems 3.1 and 4.1

5.1 Proofs of Theorem 3.1 and related propositions and lemmas

We first sketch the main steps in the proof of Theorem 3.1 and then give the full proof.

Main steps of the proof of Theorem 3.1:

(i) Show that for any f ∈ B[Lbound(Ω)], f − a0( f ) is in the closure of the convex hull of
a set GK f \{0}, f in Hilbert space H[Lbound(Ω)], where

GK f \{0}, f :=

{
g

(
∞

∑
i=1

biΦi

)
=

γ

1 + (2π)2|k|21
cos

[
2π

(
∑

i∈Skj

kibi + b

)]

: |γ| ≤ ‖ f‖B , b ∈ [0, 1], k ∈ K f \{0}
}

. (5.1)
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(ii) Show that each element in c̄ + GK f \{0}, f , where |c̄| ≤ ‖ f‖B , is in the closure of the

convex hull of a set GReLU, f in Hilbert space H[Lbound(Ω)], where

GReLU, f :=

{
g

(
∞

∑
i=1

biΦi

)
= c + γReLU

(
∑

i∈Skj

wibi − t

)
: 2|c|, |γ| ≤ 4‖ f‖B ,

|w|1 = 1, |t| ≤ 1, k ∈ K f \{0}
}

. (5.2)

(iii) Then using Lemma 5.1 below, we can show that the convex combination of elements
in GReLU, f can approximate f (v) with the convergence rate O(1/

√
m), where m is the

number of elements in the convex combination.

Lemma 5.1 ([2, 31]). Let h belongs to the closure of the convex hull of a set G in Hilbert space.
Denote the Hilbert norm as ‖ · ‖. If each element of G be upper bounded by B > 0 then for every
m ∈ N, there are {hi}m

i=1 ⊂ G and {ci}m
i=1 ⊂ [0, 1] with ∑

m
i=1 ci = 1, such that

∥∥∥∥h −
m

∑
i=1

cihi

∥∥∥∥
2

≤ B2

m
. (5.3)

Proposition 5.1. B[Lbound(Ω)] →֒ H[Lbound(Ω)].

Proof. For any functional f in B[Lbound(Ω)], we have that for any k ∈ K

|ak( f )| ≤ ∑
k∈K

|ak( f )| ≤ ‖ f‖B .

Hence, we have

‖ f‖2
H = ∑

k∈K

(
1 + (2π)2|k|2

)
|ak( f )|2

≤ ∑
k∈K

(
1 + (2π)2|k|2

)
|ak( f )| · ‖ f‖B ≤ ‖ f‖2

B . (5.4)

The proof is complete.

Based on Proposition 5.1, we can prove the following lemma.

Lemma 5.2. For any functional f ∈ B[Lbound(Ω)], f − a0( f ) is in the closure of the convex hull
of the set GK f \{0}, f in the Hilbert space H[Lbound(Ω)].

Proof. Since f ∈ B[Lbound(Ω)], we have

f (v) = ∑
k∈K

ak( f )ek(v) = ∑
k∈K f

ak( f )ek(v)

for any v ∈ Lbound(Ω). Denote v = ∑
∞
i=1 biΦi, and

Skj
:=
{

i : kj := (k1j, k2j, · · · ), kij 6= 0, k ∈ K f

}
.
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We obtain

f (v)− a0( f )

= ∑
k∈K f \{0}

ak( f )ek(v) = ∑
k∈K f \{0}

ak( f )
∞

∏
i=1

exp(2πikibi)

= ∑
k∈K f \{0}

ak( f ) ∏
i∈Skj

exp(2πikibi)

= ∑
k∈K f \{0}

ak( f ) exp

(
2πi ∑

i∈Skj

kibi

)

= ∑
k∈K f \{0}

|ak( f )| exp

[
2πi

(
∑

i∈Skj

kibi + θk( f )

)]

= ∑
k∈K f \{0}

|ak( f )|(1 + (2π)2|k|21)
Z f

Z f

1 + (2π)2|k|21
cos

[
2π

(
∑

i∈Skj

kibi + θk( f )

)]
, (5.5)

where

θk( f ) =
1

2π
arg ak( f ) =

1

2π
tan−1 ℑak( f )

ℜak( f )
,

and
Z f := ∑

k∈K f \{0}

∣∣ak( f )
∣∣(1 + (2π)2|k|21

)
≤ ‖ f‖B . (5.6)

The last equality is due to the fact that f (v)− a0( f ) is a real functional.
Denote

g(v, k) :=
Z f

1 + (2π)2|k|21
cos

[
2π

(
∑

i∈Skj

kibi + θ( f )

)]

=
Z f

1 + (2π)2|k|21
1

2

(
e2πiθk( f )ek(v) + e−2πiθk( f )e−k(v)

)
. (5.7)

Therefore,

f (v)− a0( f ) = ∑
k∈K f \{0}

|ak( f )|
(
1 + (2π)2|k|21

)

Z f
g(v, k), (5.8)

‖g(v, k)‖H = Z f

√
1

2 + 8π2|k|21
≤ Z f ≤ ‖ f‖B . (5.9)

Due to Eq. (5.7), we know g(v, k) ∈ GK f \{0}, f .

Now based on Eq. (5.8), we will prove that f (v) − a0( f ) is in the closure of the con-
vex hull of the set GK f \{0}, f in Hilbert space H[Lbound(Ω)]. First of all, f − a0( f ) ∈
B[Lbound(Ω)] ⊂ H[Lbound(Ω)] due to Proposition 5.1.
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Define a random variable k∗:

P(k∗ = k) =
|ak( f )|(1 + (2π)2|k|21)

Z f
, k ∈ K f \{0}. (5.10)

Hence, E[g(v, k∗)] = f (v)− a0( f ) due to Eq. (5.8). For any integer m, let {k∗
j }m

j=1 be an in-

dependent identically distributed random variable sequence with the same distribution
as k∗. From Eq. (5.9), we know that

E

∥∥∥∥ f (v)− a0( f )− 1

m

m

∑
j=1

g
(
v, k∗

j

)∥∥∥∥
2

H

=
Var

[
g(v, k∗)

]

m
≤ E‖g(v, k∗)‖2

H
m

≤ ‖ f‖2
B

m
, (5.11)

where the variance is defined in the Hilbert space H[Lbound(Ω)].
Therefore, by the pigeonhole principle, there exist {k∗∗

j }m
j=1 ⊂ K f \{0}, such that

∥∥∥∥ f (v)− a0( f )− 1

m

m

∑
j=1

g(v, k∗∗
j )

∥∥∥∥
2

H
≤ ‖ f‖2

B
m

. (5.12)

Here (∑m
j=1 g(v, k∗∗

j ))/m is a convex combination of elements in GK f \{0}, f . As m → +∞,

such obtained convex combinations converge to f (v) − a0( f ) in H[Lbound(Ω)]. Hence,
f (v) − a0( f ) is in the closure of the convex hull of the set GK f \{0}, f in the Hilbert space

H[Lbound(Ω)].

Lemma 5.3. Each element in c̄ + GK f \{0}, f , where |c̄| ≤ ‖ f‖B , is in the closure of the convex hull

of the set GReLU, f defined in Eq. (5.2).

Proof. The conclusion comes from the fact that a convex linear combination of ReLU func-
tions can approximate the cosine functions well, whose proof can be found in [27, Propo-
sition 19]. In fact, they showed that each cosine function in GK f \{0}, f is in the convex

hull of

GReLU, f :=

{
g

(
∞

∑
i=1

biΦi

)
= c + γReLU

(

∑
i∈Skj

wibi − t

)
: 4|c|, |γ| ≤ 4‖ f‖B,

|w|1 = 1, |t| ≤ 1, k ∈ K f

}
. (5.13)

The proof is complete.

Proposition 5.2. Suppose that f ∈ H[Lbound(Ω)] is a finite dimensional functional based on
some Dj, where recall that |Dj| < ∞, i.e.,

f

(
∞

∑
i=1

biΦi

)
= f

(
∑

i∈D j

biΦi

)
(5.14)
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for all −1/2 < bi < 1/2. We have

‖ f‖H = ‖g f ‖H1
(
(− 1

2 , 1
2 )

cj
), (5.15)

where cj := |Dj| < ∞, and g f is a cj dimensional function defined by

g f

(
bn1

, bn2
, · · · , bncj

)
:= f

( cj

∑
i=1

bni
Φni

)
, ni ∈ Dj. (5.16)

Here H1((−1/2, 1/2)cj) is the H1-Sobolev space on (−1/2, 1/2)cj .

Proof. Due to Eq. (2.17), we have
∥∥ f
∥∥2

H = ∑
k∈K

(
1 + (2π)2|k|2

)∣∣ak( f )
∣∣2.

For k /∈ KD j
we have

ak( f ) = 0. (5.17)

Hence, we have ∥∥ f
∥∥2

H = ∑
k∈KD j

(
1 + (2π)2|k|2

)∣∣ak( f )
∣∣2. (5.18)

Furthermore,
‖g f ‖2

H1
(
(− 1

2 , 1
2 )

cj
) = ∑

k∈KD j

(1 + (2π)2|k|2)|ak( f )|2

by direct calculations.

Combining Proposition 5.2 and Lemmas 5.1-5.3, we can prove Theorem 3.1.

Proof of Theorem 3.1. Due to Proposition 5.2, for each element g ∈ GReLU, f , i.e.,

g

(
∞

∑
i=1

biΦi

)
= c + γReLU

(
∑

i∈Skj

wibi − t

)
,

we have
∥∥g
∥∥2

H =

∥∥∥∥c + γReLU

(
∑

i∈Skj

wibi − t

)∥∥∥∥
2

H1((− 1
2 , 1

2 )
|Skj

|
)

, (5.19)

where the norm ‖ · ‖
H1((−1/2,1/2)

|Skj
|
)

is the H1-Sobolev space norm for functions of b1, b2,

· · · , bNk
. By direct calculations, we obtain that

∥∥∥∥c + γReLU

(
∑

i∈Skj

wiai − t

)∥∥∥∥
2

H1((− 1
2 , 1

2 )
|Skj

|
)

≤
(

c +
3

2
γ

)2

+ γ2 ≤ 80
∥∥ f
∥∥2

B. (5.20)

Therefore, GReLU, f is bounded by 4
√

5‖ f‖B . Due to Lemmas 5.2-5.3, f is in the closure
of the convex hull of the set GReLU, f . Due to Lemma 5.1, we finish the proof.
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5.2 Proof of Theorem 4.1

Proof. Consider any v = ∑
∞
i=1 biΦi ∈ Lcut(Ω). Without loss of generality, suppose N f ≥ N

for all kj in fm. We have

fm

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

γjReLU




N f

∑
i=1

wijbi − tj




= c +
m

∑
j=1

γjReLU




N

∑
i=1

wijbi − tj +

N f

∑
i=N+1

wijbi




:= c +
m

∑
j=1

γjReLU

(
N

∑
i=1

wijbi − tj + ε j

)
, (5.21)

where

|ε j| =
∣∣∣∣∣

N f

∑
i=N+1

wijbi

∣∣∣∣∣ ≤ |ωj|1δ = δ. (5.22)

Define

f ∗m

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

γjReLU

(
N

∑
i=1

wijbi − tj

)
∈ G∗

ReLU,m,f. (5.23)

Since ReLU is a Lipschitz continuous function in R with Lipschitz constant 1 and

m

∑
j=1

|γj| ≤ 4‖ f‖B,

we have ∣∣∣∣∣ f
∗
m

(
∞

∑
i=1

biΦi

)
− fm

(
∞

∑
i=1

biΦi

)∣∣∣∣∣ ≤ 4‖ f‖Bδ. (5.24)

Thus the first inequality in Theorem 4.1 is proved.
For the second inequality in Theorem 4.1, without loss of generality, we suppose wij 6=

0 for all wij in fm. Denote

f ∗∗m

(
∞

∑
i=1

biΦi

)
= c + ∑

j∈S

γjReLU




N f

∑
i=1

wijbi − tj


 ∈ G∗

ReLU,m,f , (5.25)

f̄m

(
∞

∑
i=1

biΦi

)
= ∑

j/∈S

γjReLU




N f

∑
i=1

wijbi − tj


 ,

where S := {j : N f ≤ N}. Therefore,

‖ f ∗∗m − fm‖H = ‖ f̄m‖H ≤ ∑
j/∈S

∥∥∥∥∥γjReLU

( N f

∑
i=1

wijbi − tj

)∥∥∥∥∥
H1((− 1

2 , 1
2 )

N×(−δ,δ)
Nf −N

)
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≤ ∑
j/∈S

√(
9

4
γ2

j + γ2
j

)
(2δ)N f −N ≤ ∑

j/∈S

√
13

2
|γj|(2δ)

Nf −N

2

≤ 2
√

13‖ f‖B(2δ)
1
2 . (5.26)

Here the second inequality is due to Proposition 5.2 in Section 5.1 (with the redefined
Fourier coefficients in Eq. (4.2)). The last inequality is due to the condition ∑

m
j=1 |γj| ≤

4‖ f‖B in definition of G∗
ReLU,m,f.

6 Applications of the Theorems on Approximation Functionals

and Solving PDEs by Neural Networks

In this section, we further discuss how to apply the obtained theorems (Theorems 3.1
and 4.1) on the approximation of functionals by neural networks, including the application
to solving PDEs by neural networks.

6.1 Applications of the theorems on approximation of functionals by neural
networks

Here we discuss how to develop neural networks for the learning of functionals without
curse of dimensionality based on the error estimates obtained in Theorems 3.1 and 4.1, in
addition to that given in Section 3.

(i) Theorems 3.1 for functionals with special structure: Consider the case when the
functional f in B[Lbound(Ω)] has the special structure with

D =
{
{1}, {2}, · · · , {n}, · · ·

}
,

such as linear functionals and the gradient energy functionals as given in Examples 2.1
and 2.2. In this case, in GReLU,m,f in Theorem 3.1, for any k ∈ K f = {k ∈ K : ak( f ) 6= 0},

it has only one nonzero component by the definition of ak( f ) in Eq. (2.7). Therefore, the
O(1/

√
m) approximation given by Theorem 3.1 in this case takes the following simple

form that contains only 3m + 1 parameters:

fm

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

γjReLU
(

wjbnj
− tj

)
, (6.1)

where nj is the index of the only nonzero component of akj
( f ).

However, such simplification cannot be employed directly in the training of the neural
network. In fact, as discussed in (i), when we set up the neural network, we do not know
the index nj, 1 ≤ j ≤ m, and in this case, we still need to choose an N ≥ nj, 1 ≤ j ≤ m.
Instead of using Eq. (3.3), we establish the neural network using the following formula:

fm

(
∞

∑
i=1

biΦi

)
= c +

m

∑
j=1

N

∑
i=1

γijReLU
(
wijbi − tij

)
, (6.2)
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which includes the desired approximation in Eq. (6.1). Eq. (6.2) has the same order of
number parameters, O(mN), as that of Eq. (3.3), and the approximation error of Eq. (6.2)

can reach O(1/
√

mN) by Theorem 3.1. This O(1/
√

mN) error is improved significantly
from the original approximation error in Eq. (6.1) and that in Eq. (3.3) for a more general
class of functionals discussed in (i), both of which are O(1/

√
m).

(ii) For Theorem 4.1: When we can reduce the functional to a finite dimensional do-
main such as Lcut(Ω), the parameter N in Lcut(Ω) is given and can be regarded as the
dimension of Lcut(Ω). When we set up the neural network, the parameter N is directly
given by Lcut(Ω), instead of the unknown N that has to be chosen large enough in the
neural network setup based on Theorem 3.1 discussed above. In this case, we can also
use fm in Eq. (3.3) with this given parameter N. By Theorem 4.1, this fm can approximate

f ∈ B[Lcut(Ω)] well in H[Lcut(Ω)] with error O(1/
√

m) +O(
√

δ), where δ is defined in
Lcut(Ω). The number of parameters in Eq. (3.3) is O(mN). Therefore, our method does
not suffer from curse of dimensionality in this case either.

6.2 Method for solving PDEs by neural networks based on the obtained
theorems on approximation of functionals

We can apply Theorem 3.1 or 4.1 to build a neural network to solve a PDE problem at
a given point. The follow brief discussion is based on the application of Theorem 3.1.

Consider following PDE boundary value problem:

{
Lu = g in K1,

u = 0 on ∂K1,
(6.3)

where K1 = (0, 1)d and g ∈ Lbound(L2(K1)). Here a basis of K1 is

{Φi}i∈N =
{

exp(2πip · x)
}

p∈Zd .

We want to find the solution at a point x0 ∈ K1, i.e., u(x0, g). This defines a functional
whose input is g ∈ L2(K1) and output is u(x0, g) ∈ R, and we denote this functional as
L−1

x0
. Assume that L−1

x0
∈ B[Lbound(L2(K1))]. Now we approximate L−1

x0
by the elements

in GReLU,m,f.

Consider the given date set {gs(x), us(x0)}M
s=1, where us(x0) := u(x0, gs). We can cal-

culate that

bsi =
∫

K1

gs(x)Φi dx.

The input data set for the neural network is {{bsi}N
i=1, us(x0)}M

s=1. We build a two layer
network with m nodes in the hidden layer based on the following form, with some number
N (aiming at N ≥ N f ):

u∗
s = c +

m

∑
j=1

γjReLU

(
N

∑
i=1

wijbsi − tj

)
. (6.4)
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Here u∗
s is the output for the value us(x0). We then learn the coefficients θ := {c, γj, wij, tj}

by the Loss function

R(θ) =
1

M

M

∑
s=1

|u∗
s − us(x0)|2.

Here R(θ) can be regarded as an approximation of the norm ‖ f − fm‖2
H0

(‖ f − fm‖2
H0

≤
‖ f − fm‖2

H) by Monte Carlo sampling. Rigorous analysis of the error of such Monte Carlo
sampling in Hs will be explored in the future work.

Furthermore, based on this method, we can directly obtain an approximate of the solu-
tion of the PDE boundary value problem (6.3) as follows. For the date set {gs(x), us(y)}M

s=1

(i) Denote the girds of K1 as {yq}Q
q=1. We obtain the Q function-point sets: {Tq}Q

q=1,

where Tq := {gi(x), ui(yq)}M
s=1.

(ii) For each Tq, we learn a functional fq ∈ GReLU,m from the neural network to approxi-

mate the solution of the problem (6.3) at yq. We obtain functional sets { fq}Q
q=1.

Here we obtained the approximation of operator L−1 in the PDE boundary value prob-
lem (6.3) at several points.

7 Conclusions and Discussion

In this paper, we establish a neural network to approximate functionals without curse of
dimensionality based on the method of Barron space. The method is developed by defin-
ing a Fourier-type series on the infinite-dimensional space of functionals and the associ-
ated spectral Barron space of functionals. The approximation error of the neural network
is O(1/

√
m) where m is the size of networks, which overcomes the curse of dimensional-

ity. The number of parameters and the network structure in our method only depends on
the functional, thus it is not sensitive to the input functions in training.

The proposed method for approximation of functionals without curse of dimensional-
ity can be employed in learning functionals, such as linear functionals and energy func-
tionals in science and engineering fields. It can also be used to solve PDE problems by
neural networks at one or a few given points. This method provides a basis for the further
development of methods for learning operators and analysis of properties (e.g., stabil-
ity [7]) of neural networks for functionals and operators.

Appendix A. Error Analysis for DeepONet

DeepONet [28] is a method to approximate operators (e.g., those associated with PDES) by
neural networks. The structure of the neural network in DeepONet is shown in Fig. A.1,
which is based on the illustration in Ref. [6]. In Fig. A.1, the network G is DeepONet whose

input space W∞
1 [0, 1]d1 and output space W∞

1 [0, 1]d2 are infinite dimensional spaces. It can
be divided into three steps. The first step E (encoding) is to reduce the infinite dimensional
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input space into a finite dimensional space (N-dimensional space), i.e., each v ∈ W∞
1 [0, 1]d1

is approximated by a piece-wise linear function vN determined by {v(xi)}N
i=1. The last

step R (reconstruction) is to approximate the operator G by p functionals, i.e., for each

v ∈ W∞
1 [0, 1]d1 , a function ∑

p
k=1 sk(v)σ (wk · y + ζk) is constructed to approximate the

function G(v) ∈ W∞
1 [0, 1]d2 , where each sk(v) is a functional. The intermediate Step A

is to approximate the function h = (h1, . . . , hp) : RN → Rp by neural networks, where

hk

(
v(x1), v(x2), . . . , v(xN)

)
= sk(v).

Convergence of the DeepONet method [28] for operator learning is guaranteed by the
approximation theorem for operators by neural networks [6, Theorem B.3] (in Appendix),
which, however, does not provide the accuracy dependence on the number of sample
points. The paper [21] studied the error of the DeepONet method and overcame the curse
of dimensionality in this method by considering smooth functions with exponentially de-
caying coefficients in the Fourier series.

In DeepONet, for a continuous operator G defined in W∞
1 ([0, 1]d1) → W∞

1 ([0, 1]d2) and

a function v ∈ W∞
1 ([0, 1]d1), G(v) is a function belonging to W∞

1 ([0, 1]d2). This function
G(v) can be approximated by a two-layer network architected by the activation function
σ(x) = max{x, 0} in the following form by [30, Theorem B.1] (given in Appendix):

∥∥∥∥G(v)(y)−
p

∑
k=1

ck

[
G(v)

]
σ
(
wk · y + ζk

)∥∥∥∥
L∞([0,1]d2)

≤ Cp
− 1

d2 ‖G(v)‖W∞
1 ([0,1]d2), (A.1)

where wk ∈ Rd2 , ζk ∈ R for k = 1, . . . , p, ck is continuous functionals, and C (or C1, C2 in
other inequalities in this paper) is some constant independent of the parameters. Denote

gk(v) := ck [G(v)], which is a functional from W∞
1 ([0, 1]d1) → R. The remaining task in

DeepONet is to approximate these functionals by neural networks.

Figure A.1: The structure of DeepONet.
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In DeepONet, the domain of functions [0, 1]d1 is divided into sd1 parts by the N :=
(s + 1)d1 nodes denote by {xj}N

j=1, where each xj ∈ {0, 1/s, 2/s, · · · , (s − 1)/s, 1}d1 . Based

on these N nodes, a piece-wise linear function of vN(x) is defined in DeepONet such that
‖vN(x)− v(x)‖∞ ≤ C0s−1. Further assume that gk is a Lipschitz continuous functional in

L∞([0, 1]d1) with a Lipschitz constant Lk, then denote L = max1≤k≤p Lk and we have

∣∣gk(v)− gk(vN)
∣∣ ≤ Lk

∥∥vN(x)− v(x)
∥∥

∞
≤ C0Ls−1 ≤ C1N

− 1
d1 . (A.2)

For each gk(vN), a function hk : RN → R is defined such that

hk

(
v(x1), v(x2), · · · , v(xN)

)
:= gk(vN). (A.3)

Suppose that v is bounded by 1 and hk ∈ W∞
1 ([−1, 1]N). By [30, Theorem B.1], we have

∣∣∣∣∣hk

(
v(x1), v(x2), · · · , v(xN)

)
−

m

∑
i=1

ck
i σ

(
N

∑
j=1

ξk
ijv(xj) + θk

i

)∣∣∣∣∣

≤ C2m− 1
N ‖hk‖W∞

1 ([−1,1]N). (A.4)

Combining Eqs. (A.1), (A.2) and (A.4), with several further assumptions, the error of Deep-
ONet is bounded by

∥∥∥∥∥G(v)(y)−
p

∑
k=1

m

∑
i=1

ck
i σ

(
N

∑
j=1

ξk
ijv(xj) + θk

i

)
σ
(
wk · y + ζk

)
∥∥∥∥∥

L∞([0,1]d2 )

≤ Cp
− 1

d2 ‖G(v)‖W∞
1 ([0,1]d2 ) + C1(p, L)N

− 1
d1 + C2(p, L, λ)m− 1

N , (A.5)

where L = max1≤k≤p Lk and λ = max1≤k≤p ‖hk‖W∞
1 ([−1,1]N).

It can be seen that every term in Eq. (A.5) has the problem of the curse of dimension-
ality. The first term in Eq. (A.5) is the error for approximating the operators by some
functionals, after which the learning of operators is reduced to learning of functionals.
The last two terms in Eq. (A.5) are errors from the approximation of functionals by neural
networks (the second one from the approximation of the function by a piecewise linear
function and the last one from the approximation of this piecewise linear function by
a neural network), in which the curse of dimensionality exists even if we consider such
an approximation in low dimensional spaces (i.e., small d1 and d2). In fact, for the second

term C1(p, L)N−1/d1 ≤ ε, where ε is small, we should have at least N ∼ 1/εd1 , and ac-

cordingly, the last term C2(p, L, λ)m−1/N ∼ m−εd1 , whose curse of dimensionality is more

serious than that of m−1/d1 .

Appendix B. Theorems on Approximations of Functions,

Functionals and Operators

In this subsection of Appendix, we summarize some available theorems on the approxi-
mations of functions, functionals and operators, which are used in our proofs.
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Theorem B.1 ([30]). Suppose σ is a continuous non-polynomial function and K is a compact in

R
d, then there are positive integers p, constants wk, ζk for k = 1, . . . , p and continuous linear

functionals ck : W
q
r (K) → R such that for any v ∈ W

q
r (K),

∥∥∥∥v −
p

∑
k=1

ck(v)σ
(

wk · x + ζk

)∥∥∥∥
Lq(K)

≤ cp−
r
d ‖v‖W

q
r (K)

, (B.1)

where W
q
r (K) is the set of function in Lq(K) with finite Sobolev norms

‖g‖W
q
r (K)

:= ∑
0≤|j|≤r

∥∥Djg
∥∥

Lq(K)
. (B.2)

Theorem B.2 ([5]). Suppose σ is a continuous non-polynomial function, U is a compact set in

C([a, b]d1 ). f is a continuous functionals defined on U. Then for any ε > 0, there are positive
integers n, m, constants ci, ξij, θi ∈ R for i = 1, . . . , n, j = 1, . . . , m such that

∣∣∣∣∣ f (v)−
n

∑
i=1

ciσ

(
m

∑
j=1

ξijv(xj) + θi

)∣∣∣∣∣ ≤ ε (B.3)

holds for all v ∈ U.

Theorem B.3 ([6]). Suppose σ is a continuous non-polynomial function, K1 = [0, 1]d1 , K2 =
[0, 1]d2 , V is a compact set in C(K1) and G is a nonlinear continuous operator, which maps V into

C(K2). Then for any ε > 0, there are positive integers n, p, m, constants ck
i , ξk

ij, θk
i , ζk ∈ R, wk ∈

R
d2 , xj ∈ K1 for i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . , m such that

∣∣∣∣∣G(v)(y)−
p

∑
k=1

n

∑
i=1

ck
i σ

(
m

∑
j=1

ξk
ijv(xj) + θk

i

)
σ
(
wk · y + ζk

)
∣∣∣∣∣ ≤ ε (B.4)

holds for all v ∈ V and y ∈ K2.
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