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Abstract. The modeling of probability distributions, specifically generative modeling and density estimation,
has become an immensely popular subject in recent years by virtue of its outstanding performance on sophisti-
cated data such as images and texts. Nevertheless, a theoretical understanding of its success is still incomplete.
One mystery is the paradox between memorization and generalization: In theory, the model is trained to be
exactly the same as the empirical distribution of the finite samples, whereas in practice, the trained model can
generate new samples or estimate the likelihood of unseen samples. Likewise, the overwhelming diversity of
distribution learning models calls for a unified perspective on this subject. This paper provides a mathematical
framework such that all the well-known models can be derived based on simple principles. To demonstrate
its efficacy, we present a survey of our results on the approximation error, training error and generalization
error of these models, which can all be established based on this framework. In particular, the aforementioned
paradox is resolved by proving that these models enjoy implicit regularization during training, so that the
generalization error at early-stopping avoids the curse of dimensionality. Furthermore, we provide some new
results on landscape analysis and the mode collapse phenomenon.
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1 Introduction

The popularity of machine learning models in recent years is largely attributable to their
remarkable versatility in solving highly diverse tasks with good generalization power.
Underlying this diversity is the ability of the models to learn various mathematical objects
such as functions, probability distributions, dynamical systems, actions and policies, and
often a sophisticated architecture or training scheme is a composition of these modules.
Besides fitting functions, learning probability distributions is arguably the most widely-
adopted task and constitutes a great portion of the field of unsupervised learning. Its
applications range from the classical density estimation [115, 119] which is important for
scientific computing [13, 70, 118], to generative modeling with superb performance in im-
age synthesis and text composition [15, 16, 94, 96], and also to pretraining tasks such as
masked reconstruction that are crucial for large-scale models [16, 25, 28].

Despite the impressive performance of machine learning models in learning probabil-
ity measures, this subject is less understood than the learning of functions or supervised
learning. Specifically, there are several mysteries:
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1. Unified framework. There are numerous types of models for representing and esti-
mating distributions, making it difficult to gain a unified perspective for model design
and comparison. One traditional categorization includes five model classes: the genera-
tive adversarial networks (GAN) [7,39], variational autoencoders (VAE) [64], normalizing
flows (NF) [95,112], autoregressive models [85,92], and diffusion models [104,107]. Within
each class, there are further variations that complicate the picture, such as the choice of in-
tegral probability metrics for GANs and the choice of architectures for normalizing flows
that enable likelihood computations. Ideally, instead of a phenomenological categoriza-
tion, one would prefer a simple theoretical framework that can derive all these models in
a straightforward manner based on a few principles.

2. Memorization and curse of dimensionality. Perhaps the greatest difference between
learning functions and learning probability distributions is that, conceptually, the solu-
tion of the latter problem must be trivial. On one hand, since the target distribution P∗
can be arbitrarily complicated, any useful model must satisfy the property of universal
convergence, namely the modeled distribution can be trained to converge to any given
distribution (e.g. Section 5 will show that this property holds for several models). On the
other hand, the target P∗ is unknown in practice and only a finite sample set {xi}n

i=1 is

given (with the empirical distribution denoted by P
(n)
∗ ). As a result, the modeled distribu-

tion Pt can only be trained with P
(n)
∗ and inevitably exhibits memorization, i.e.

lim
t→∞

Pt = P
(n)
∗ .

Hence, training results in a trivial solution and does not provide us with anything beyond
the samples we already have. This is different from regression where the global minimizer
(interpolating solution) can still generalize well [36].

One related problem is the curse of dimensionality, which becomes more severe when
estimating distributions instead of functions. In general, the distance between the hidden
target and the empirical distribution scales badly with dimension d: For any absolutely
continuous P∗ and any δ > 0 [120]

W2

(

P∗, P
(n)
∗
)

& n− 1
d−δ ,

where W2 is the Wasserstein metric. This slow convergence sets a limit on the performance
of all possible models: for instance, the following worst-case lower bound [103]:

inf
A

sup
P∗

E{Xi}
[

W2
2

(

P∗, A({Xi}n
i=1)

)

]
1
2
& n− 1

d ,

where P∗ is any distribution supported on [0, 1]d and A is any estimator, i.e. a mapping
from every n sample set {Xi}n

i=1 ∼ P∗ to an estimated distribution A({Xi}). Hence, to

achieve a generalization error of ǫ, an astronomical sample size Ω(ǫd) could be necessary
in high dimensions.

These theoretical difficulties form a seeming paradox with the empirical success of
distribution learning models, for instance, models that can generate novel and highly-
realistic images [15, 62, 94] and texts [16, 92].

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221202 | Generated on 2024-12-19 04:45:24



J. Mach. Learn., 1(4):373-431 375

3. Training and mode collapse. The training of distribution learning models is known
to be more delicate than training supervised learning models, and exhibits several novel
forms of failures. For instance, for the GAN model, one common issue is mode collapse
[66, 77, 90, 100], when a positive amount of mass in Pt becomes concentrated at a single
point, e.g. an image generator could consistently output the same image. Another issue is
mode dropping [129], when Pt fails to cover some of the modes of P∗. In addition, training
may suffer from oscillation and divergence [19, 91]. These problems are the main obstacle
to global convergence, but the underlying mechanism remains largely obscure.

The goal of this paper is to provide some insights into these mysteries from a mathe-
matical point of view. Specifically,

1. We establish a unified theoretical framework from which all the major distribution
learning models can be derived. The diversity of these models is largely determined
by two simple factors, the distribution representation and loss type. This formu-
lation greatly facilitates our analysis of the approximation error, training error and
generalization error of these models.

2. We survey our previous results on generalization error, and resolve the paradox be-
tween memorization and generalization. As illustrated in Fig. 1.1, despite that the
model eventually converges to the global minimizer, which is the memorization so-
lution, the training trajectory comes very close to the hidden target distribution. With
early-stopping or regularized loss, the generalization error scales as

W2(P∗, Pt) or KL(P∗‖Pt) . n−α

for some constant α > 0 instead of dimension-dependent terms such as α/d. Thereby,
the model escapes from the curse of dimensionality.

3. We discuss our previous results on the rates of global convergence for some of the
models. For the other models, we establish new results on landscape and critical
points, and identify two mechanisms that can lead to mode collapse.

This paper is structured as follows. Section 2 presents a sketch of the popular distribu-
tion learning models. Section 3 introduces our theoretical framework and the derivations

Figure 1.1: Generalization error during training.
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of the models. Section 4 establishes the universal approximation theorems. Section 5
analyzes the memorization phenomenon. Section 6 discusses the generalization error of
several representative distribution learning models. Section 7 analyzes the training pro-
cess, loss landscape and mode collapse. All proofs are contained in Section 9. Section 8
concludes this paper with discussion on the remaining mysteries.

Here is a list of related works.

Mathematical framework: A framework for supervised learning has been proposed
by [32, 35] with focus on the function representations, namely function spaces that can be
discretized into neural networks. This framework is helpful for the analysis of supervised
learning models, in particular, the estimation of generalization errors [31,33,36] that avoid
the curse of dimensionality, and the determination of global convergence [24, 97]. Simi-
larly, our framework for distribution learning emphasizes the function representation, as
well as the new factor of distribution representation, and bound the generalization error
through analogous arguments. Meanwhile, there are frameworks that characterizes distri-
bution learning from other perspectives, for instance, statistical inference [54, 108], graph-
ical models and rewards [12, 130], energy functions [134] and biological neurons [88].

Generalization ability: The section on generalization reviews our previous results on
the generalization error estimates for potential-based model [126], GAN [127] and normal-
izing flow with stochastic interpolants [125]. The mechanism is that function representa-
tions defined by integral transforms or expectations [34,35] enjoy small Rademacher com-
plexity and thus escape from the curse of dimensionality. Earlier works [31,33,36,37] used
this mechanism to bound the generalization error of supervised learning models. Our
analysis combines this mechanism with the training process to show that early-stopping
solutions generalize well, and is related to concepts from supervised learning literature
such as the frequency principle [123, 124] and slow deterioration [76].

Training and convergence: The additional factor of distribution representation fur-
ther complicates the loss landscape, and makes training more difficult to analyze, espe-
cially for the class of “free generators” that will be discussed later. The model that attracted
the most attention was GAN, and convergence has only been established in simplified set-
tings [10, 38, 79, 121, 127] or for local saddle points [47, 73, 81]. In practice, GAN training is
known to suffer from failures such as mode collapse and divergence [9,20,79]. Despite that
these issues can be fixed using regularizations and tricks [44,50,66,77,90], the mechanism
underlying this training instability is not well understood.

2 Model Overview

This section offers a quick sketch of the prominent models for learning probability dis-
tributions, while their derivations will be presented in Section 3. These models are com-
monly grouped into five categories: the generative adversarial networks (GAN), autore-
gressive models, variational autoencoders (VAE), normalizing flows (NF), and diffusion
models. We assume access to samples drawn from the target distribution P∗, and the task
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is to train a model to be able to generate more samples from the distribution (generative
modeling) or compute its density function (density estimation).

1. GAN. The generative adversarial networks [39] model a distribution by transport

P = law(X), X = G(Z), Z ∼ P. (2.1)

The map G : Rd → Rd is known as the generator and P is a base distribution that is easy
to sample (e.g. unit Gaussian). To solve for a generator such that P = P∗, the earliest GAN
model considers the following optimization problem [39]:

min
G

max
D

∫

log

(

eD(x)

1 + eD(x)

)

dP∗(x) +
∫

log

(

1

1 + eD(G(x))

)

dP(x),

where D : Rd → R is known as the discriminator and this type of min-max losses are
known as the adversarial loss. A well-known variant is the WGAN [7] defined by

min
G

max
‖θ‖∞≤1

∫

Dθ(x)dP∗(x)−
∫

Dθ

(

G(x)
)

dP(x),

where the discriminator Dθ is a neural network with parameter θ, which is bounded in l∞

norm. For the other variants, a survey on the GAN models is given by [43].

2. VAE. The variational autoencoder proposed by [64] uses a randomized generator
and its approximate inverse, known as the decoder and encoder, and we denote them by
the conditional distributions P(·|z) and Q(·|x). Similar to (2.1), the distribution is modeled
by P =

∫

P(·|z)dP(z) and can be sampled by X ∼ P(·|Z), Z ∼ P. VAE considers the
following optimization problem:

min
P(·|z)

min
Q(·|x)

∫∫

− log P(x|z)dQ(z|x) + KL
(

Q(·|x)
∥

∥P
)

dP∗(x),

where KL is the Kullback–Leibler divergence. To simplify computation, P is usually set to
be the unit Gaussian N , and the decoder P(·|z) and encoder Q(·|x) are parameterized as
diagonal Gaussians [64]. For instance, consider

P(·|z) = N
(

G(z), s2 I
)

, Q(·|x) = N
(

F(x), v2 I
)

,

where G, F are parameterized functions and s, v > 0 are scalars. Then, we have
∫

− log P(x|z)dQ(z|x)

=
∫

− log P
(

x
∣

∣F(x) + vω
)

dN (ω)

=
∫

∥

∥x − G
(

F(x) + vω
)
∥

∥

2

2s2
dN (ω) +

d

2
log(2πs2),

KL
(

Q(·|x)
∥

∥P
)

=
‖F(x)‖2

2
+

d

2

(

v2 − log v2 − 1
)

.
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Up to constant, the VAE loss becomes

min
G,s

min
F,v

∫∫

∥

∥x − G
(

F(x) + vω
)
∥

∥

2

2s2
dN (ω) +

‖F(x)‖2

2
dP∗(x) + d(log s − log v) +

d

2
v2.

3. Autoregressive. Consider sequential data X = [x1, . . . , xl] such as text and au-
dio. The autoregressive models represent a distribution P through factorization P(X) =

∏
l
i=1 P(xi|x<i), and can be sampled by sampling iteratively from Xi ∼ P(Xi|X<i). These

models minimize the loss

−
∫ l

∑
i=1

log P(xi|x<i)dP∗(X).

There are several approaches to the parametrization of conditional distributions P(xi|x<i),
depending on how to process the variable-length input x<i. The common options are the
transformer networks [92, 116], recurrent networks [87], autoregressive networks [68, 87]
and causal convolution [86]. For instance, consider Gaussian distributions parameterized
by a recurrent network

P(·|x<i) = N
(

m(hi), s2(hi)I
)

, hi = f (hi−1, xi−1),

where m, s, f are parameterized functions, and h is the hidden feature. Since

− log P(xi|x<i) =
‖xi − m(hi)‖2

2s(hi)2
+

d

2
log
(

2πs(hi)
2
)

the loss is equal, up to constant, to

min
m,s, f ,h1

∫ l

∑
i=1

‖xi − m(hi)‖2

2s(hi)2
+ d log s(hi) dP∗(X).

4. NF. The normalizing flows proposed by [111, 112] use a generator G (2.1) similar to
GAN and VAE. The optimization problem is given by

min
G

−
∫

log det∇G−1(x) + log P
(

G−1(x)
)

dP∗(x),

where P = N is set to be the unit Gaussian and det∇G−1 is the Jacobian determinant of
G−1. To enable the calculation of these terms, the earliest approach [95,111,112] considers
only the inverse F = G−1 and models it by a concatenation of simple maps F = F1 ◦ · · · ◦
FT such that each det∇Fτ is easy to compute. The modeled distribution (2.1) cannot be
sampled, but can serve as a density estimator, with the density given by

P(xT) = N (x0)
T

∏
τ=1

det∇Fτ(xτ−1), xτ−1 := Fτ ◦ · · · ◦ FT(xT).
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Up to constant, the loss becomes

min
F1,...,FT

∫ ‖x0‖2

2
+

T

∑
τ=1

− log det∇Fτ(xτ−1) dP∗(xT).

A later approach [29, 55, 63, 89] models the generator by G = GT ◦ · · · ◦ G1 such that each
Gτ is designed to be easily invertible with ∇Gτ being a triangular matrix. Then, the loss
becomes

min
G1,...,GT

∫ ‖x0‖2

2
+

T

∑
τ=1

Tr
[

log∇Gτ(xτ−1)
]

dP∗(xT), xτ−1 = G−1
τ ◦ · · · ◦ G−1

T (xT).

Another approach [21, 30, 40] defines G as a continuous-time flow, i.e. solution to an ordi-
nary differential equation (ODE)

G = G1
0 , Gτ

s (xs) = xτ,
d

dτ
xτ = V(xτ , τ) (2.2)

for some time-dependent velocity field V. Then, the loss becomes

min
V

∫ ‖x0‖2

2
+
∫ 1

0
Tr
[

∇xV(xτ , τ)
]

dτdP∗(x1), xτ =
(

G1
τ

)−1
(x1).

A survey on normalizing flows is given by [65].

5. Monge-Ampère flow. A model that is closely related to the normalizing flows is the
Monge-Ampère flow [131]. It is parameterized by a time-dependent potential function
φτ, τ ∈ [0, 1], and defines a generator by the ODE

G = G1
0, Gτ

s (xs) = xτ,
d

dτ
xτ = ∇φτ(xτ)

such that the flow is driven by a gradient field. The model minimizes the following loss:

min
φ

∫ ‖x0‖2

2
+
∫ 1

0
∆φτ(xτ)dτdP∗(x1), xτ =

(

G1
τ

)−1
(x1),

where ∆φ = ∑
d
i=1 ∂2

i φ is the Laplacian.

6. Diffusion. The diffusion models [49,104,106] define the generator by a reverse-time
SDE (stochastic differential equation)

G(XT) = X0, XT ∼ P, dXτ = −βτ

2

(

Xτ + 2s(Xτ, τ)
)

dτ +
√

βτdWτ,

where s : Rd × [0, T] → Rd is a time-dependent velocity field known as the score function

[56], βτ > 0 is some noise scale, and Wτ is a reverse-time Wiener process. The modeled
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distribution is sampled by solving this SDE backwards in time from T to 0. The score
function s is learned from the optimization problem

min
s

∫ T

0

λτ

2

∫∫

∥

∥

∥

∥

s
(

e−
1
2

∫ τ
0 βsdsx0 +

√

1 − e−
∫ τ

0 βsdsω, τ
)

+
ω

√

1 − e−
∫ τ

0 βsds

∥

∥

∥

∥

2

dN (ω)dP∗(x0)dτ,

where N is the unit Gaussian and λτ > 0 is any weight. Besides the reverse-time SDE,
another way to sample from the model is to solve the following reverse-time ODE, which
yields the same distribution [107]

G(XT) = X0, XT ∼ P,
d

dτ
Xτ = −βτ

2

(

Xτ + s(Xτ, τ)
)

dτ.

A survey on diffusion models is given by [128].

7. NF interpolant. Finally, we introduce a model called normalizing flow with stochas-
tic interpolants [2, 75]. It is analogous to the diffusion models, and yet is conceptually

simpler. This model learns a velocity field V : Rd × [0, 1] → Rd from the optimization
problem

min
V

∫ 1

0

∫∫

∥

∥V
(

(1 − τ)x0 + τx1, τ
)

− (x1 − x0)
∥

∥

2
dP(x0)dP∗(x1)dτ.

Then, the generator is defined through the ODE (2.2) and the modeled distribution is
sampled by (2.1).

3 Framework

Previously, a mathematical framework for supervised learning was proposed by [35],
which was effective for estimating the approximation and generalization errors of su-
pervised learning models [31, 33, 34]. In particular, it helped to understand how neural
network-based models manage to avoid the curse of dimensionality. The framework char-
acterizes the models by four factors: the function representation (abstract function spaces
built from integral transformations), the loss, the training scheme, and the discretization
(e.g. how the continuous representations are discretized into neural networks with finite
neurons).

This section presents a similar framework that unifies models for learning probability
distributions. We focus on two factors: the distribution representation, which is a new
factor and determines how distributions are parameterized by abstract functions, and the
loss type, which specifies which metric or topology is imposed upon the distributions.
A sketch of the categorization is given in Table 3.1. We show that the diverse families of
distribution learning models can be simultaneously derived from this framework. The
theoretical results in the latter sections, in particular the generalization error estimates, are
also built upon this mathematical foundation.
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Table 3.1: Categorization of distribution learning models based on distribution representation (row) and loss type
(column) with the representative models. See Section 3.4 for a detailed description. Our theoretical results will
focus on the marked categories.

Density Expectation Regression

Potential bias potential model feasible unknown

Free generator NF, VAE, autoregressive GAN unknown

Fixed generator upper bound feasible diffusion, NF interpolant, OT

3.1 Background

The basic task is to estimate a probability distribution given i.i.d. samples {xi}n
i=1. We

denote this unknown target distribution by P∗ and the empirical distribution by

P
(n)
∗ =

1

n

n

∑
i=1

δxi
.

The underlying space is assumed to be Euclidean Rd. To estimate a distribution may
have several meanings depending on its usage: e.g. to obtain a random variable X ∼ P∗,
estimate the density function P∗(x), or compute expectations

∫

f dP∗. The first task is
known as generative modeling and the second as density estimation; these two problems
are the focus of this paper, while the third task can be solved by them.

There are two general approaches to modeling a distribution, which can be figuratively
termed as “vertical” and “horizontal”, and an illustration is given by Fig. 3.1. Given a base
distribution P, the vertical approach reweighs the density of P to approximate the density
of the target P∗, while the horizontal approach transports the mass of P towards the loca-
tion of P∗. When a modeled distribution P is obtained and a distance d(P, P∗) is needed
to compute either the training loss or test error, the vertical approach measures the dif-
ference between the densities of P and P∗ over each location, and is exemplified by the

Figure 3.1: The vertical and horizontal perspectives on probability distributions. Left: the distribution P0 =
N (−2, 1) is transformed to P1 = N (2, 1) by reweighing and the distance d(P0, P1) is measured by the difference
between densities. Right: P0 is transformed to P1 by transport, and the distance is measure by the displacement
of mass.
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KL-divergence

KL(P∗‖P) :=
∫

log
P∗(x)
P(x)

dP∗(x), (3.1)

while the horizontal approach measures the distance between the “particles” of P and P∗,
and is exemplified by the 2-Wasserstein metric [60, 117]

W2(P, P∗) := inf
π

(

∫

‖x0 − x1‖2dπ(x0, x1)

)
1
2

, (3.2)

where π is any coupling between P, P∗ (i.e. a joint distribution in R
d ×R

d whose marginal
distributions are P, P∗). We will see that the vertical and horizontal approaches largely
determine the distribution representation and loss type.

Finally, consider the operator law

P = law(X),

which maps a random variable X to its distribution P. Similarly, given a random path
{Xτ , τ ∈ [0, T]}, we obtain a path Pτ = law(Xτ) in the distribution space. In general,
there can be infinitely many random variables that are mapped to the same distribution,
e.g. let P and P be uniform over [0, 1], for any k ∈ N, we can define the random variable
Xk = kZmod1 with Z ∼ P, which all satisfy P = law(Xk). One drawback of this non-
uniqueness is that, for many generative models, there can be plenty of global minima,
which make the loss landscape non-convex and may lead to training failures, as we will
show that this is inherent in mode collapse. One benefit is that, if the task is to learn some
time-dependent distribution Pτ, one can select from the infinitely many possible random
paths Xτ the one that is the easiest to compute, and therefore define a convenient loss.

For the notations, for any measurable subset Ω of R
d, denote by P(Ω) the space of

probability measures over Ω, P2(Ω) the subspace of measures with finite second mo-
ments, and Pac(Ω) the subspace of absolutely continuous measures (i.e. have density
functions). Denote by sprtP the support of a distribution. Given any two measures m0, m1,
we denote by m0 × m1 the product measure over the product space. We denote by t the
training time and by τ the time that parameterizes flows.

3.2 Distribution representation

Since machine learning models at the basic level are good at learning functions, the com-
mon approach to learning distributions is to parameterize distributions by functions. The-
re are three common approaches:

1. Potential function. Given any base distribution P, define the modeled distribution
P by

P =
1

Z
e−V

P, Z =
∫

e−VdP, (3.3)

where V is a potential function and Z is for normalization. This parametrization is some-
times known as the Boltzmann distribution or exponential family.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221202 | Generated on 2024-12-19 04:45:24



J. Mach. Learn., 1(4):373-431 383

2. Free generator. Given any measurable function G : Rd → Rd, define the modeled
distribution P by

P = law(X), X = G(Z), Z ∼ P,

P is known as the transported measure or pushforward measure and denoted by P = G#P,
while G is called the generator or transport map. Equivalently, P is defined as the measure
that satisfies

P(A) = P
(

G−1(A)
)

(3.4)

for all measurable sets A.

The name “free generator” is used to emphasize that the task only specifies the target
distribution P∗ to estimate, and we are free to choose any generator from the possibly
infinite set of solutions {G | P∗ = G#P}.

There are several common extensions to the generator. First, G can be modeled as
a random function, such that G(z) ∼ P(·|z) for some conditional distribution P(·|z). Sec-
ond, G can be induced by a flow. Let V : Rd × [0, T] → Rd be a Lipschitz velocity field,
and define G as the unique solution to the ODE

G = GT, Gτ(x) = xτ, x0 = x,
d

dτ
xτ = V(xτ , τ), (3.5)

where Gτ is the flow map. Furthermore, if we define the interpolant distributions Pτ =
Gτ#P, then they form a (weak) solution to the continuity equation

∂τ Pτ +∇ · (Vτ Pτ) = 0. (3.6)

Specifically, for any smooth test function φ
∫

φ(x)d(∂τ Pτ)(x) =
d

dτ

∫

φ(x)dPτ(x) =
d

dτ

∫

φ
(

Gτ(x)
)

dP(x)

=
∫

V
(

Gτ(x), τ
)

· ∇φ
(

Gτ(x)
)

dP(x)

=
∫

V(x, τ) · ∇φ(x)dPτ(x) = −
∫

φ(x)d
(

∇ · (Vτ Pτ)
)

(x).

Third, one can restrict to a subset of the possibly infinite set of solutions {G | P∗ =
G#P}, specifically generators that are gradients of some potential functions {G = ∇ψ}.
By Brennier’s theorem [14, 117], such potential function exists in very general conditions.
Similarly, one can restrict the velocity fields in (3.5) to time-dependent gradient fields,
Vτ = ∇φτ. By [117, Theorem 5.51], in general there exists a potential function φτ such that
the flow G induced by ∇φτ satisfies P∗ = G#P. Specifically, the interpolant distribution
Pτ = Gτ#P is the Wasserstein geodesic that goes from P to P∗. Finally, it is interesting to
note that there is also a heuristic argument from [2] that justifies the restriction to ∇φτ:
Given any velocity field Vτ with the interpolant distribution Pτ generated by (3.5), con-
sider the equation

∇ · (Pτ∇φτ) = ∇ · (PτVτ).

By the theory of elliptic PDE, the solution φτ exists. Hence, we can always replace a ve-
locity field by a gradient field that induces the same interpolant distributions Pτ.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221202 | Generated on 2024-12-19 04:45:24



J. Mach. Learn., 1(4):373-431 384

3. Fixed generator. Contrary to the free generator, another approach is to choose a spe-
cific coupling between the base and target distributions π ∈ Π(P, P∗), where

Π(P, P∗) =
{

π ∈ P(Rd × R
d)
∣

∣

∣

∫

πdx0 = P,
∫

πdx1 = P∗

}

and the generator G is represented as the conditional distribution π(·|x0).

One can further extend π into a random path {Xτ , τ ∈ [0, T]} so that π = law(X0, XT).
Then, analogous to the construction (3.5), G can be represented as the ODE or SDE that
drives the trajectories Xτ . Thanks to the non-uniqueness of law, one can further consider
the interpolant distributions Pτ = law(Xτ) and solve for the velocity field V in the con-
tinuity equation (3.6). Then, G can be represented as the solution to the ODE (3.5) with
velocity V.

Currently, models of this category belong to either of the two extremes:

Fully deterministic: For some measurable function G,

π(x0, x1) = δG(x0)
(x1)P(x0). (3.7)

The generator G is usually set to be the optimal transport map from P to P∗. The idea is
simple in one dimension, such that we sort the “particles” of P and P∗ and match accord-
ing to this ordering. This monotonicity in R can be generalized to the cyclic monotonicity
in higher dimensions [117]. Couplings π ∈ Π(P, P∗) that are cyclic monotonic are exactly
the optimal transport plans with respect to the squared Euclidean metric [117], namely
minimizers of (3.2). Then, Brennier’s theorem [14, 117] implies that, under general con-
ditions, the problem (3.2) has unique solution, which has the form (3.7), and furthermore
the generator is a gradient field G = ∇ψ of a convex function ψ.

Fully random: The coupling is simply the product measure

π = P × P∗. (3.8)

At first sight, this choice is trivial and intractable, but the trick is to choose an appropriate
random path Xτ such that either the dynamics of Xτ or the continuity equation (3.6) is
easy to solve.

One of the simplest constructions, proposed by [2,75], is to use the linear interpolation

Xτ = (1 − τ)X0 + τX1, (X0, X1) ∼ π, τ ∈ [0, 1]. (3.9)

Then, to solve for the target velocity field in (3.6), define a joint distribution M∗ over

Rd × [0, 1]

∫

φ(x, τ)dM∗(x, τ) =
∫ 1

0

∫

φ(x, τ)dPτdτ

=
∫ 1

0

∫∫

φ
(

(1 − τ)x0 + τx1, τ
)

dP(x0)dP∗(x1)dτ (3.10)
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for any test function φ. Similarly, define the current density J∗, a vector-valued measure,
by

∫

f(x, τ) · dJ∗(x, τ) =
∫ 1

0

∫∫

(x1 − x0) · f
(

(1 − τ)x0 + τx1, τ
)

dP(x0)dP∗(x1)dτ (3.11)

for any test function f. Then, we can define a velocity field V∗ by the Radon-Nikodym
derivative

V∗ =
dJ∗

dM∗
. (3.12)

Each V∗(x, τ) is the weighted average of the velocities of the random lines (3.9) that pass
through the point (x, τ) in spacetime. As shown in [2,125], under general assumptions, V∗
is the solution to the continuity equation (3.6) and satisfies

G∗#P = P∗,

where G∗ is the generator defined by the flow (3.5) of V∗.

A more popular construction by [49, 104, 106] uses the diffusion process

X0 ∼ P∗, dXτ = −βτ

2
Xτdτ +

√

βτdWτ , (3.13)

where βτ > 0 is a non-decreasing function that represents the noise scale. Consider the
coupling πτ = law(Xτ , X0). The conditional distribution πτ(·|x0) is an isotropic Gaus-
sian [107]

πτ(·|x0) = N
(

e−
1
2

∫ τ
0 βsdsx0, (1 − e−

∫ τ
0 βsds)I

)

(3.14)

and the interpolant distributions Pτ = law(Xτ) are given by

Pτ =
∫

πτ(·|x0)dP∗(x0). (3.15)

Then,

KL(π‖πτ) =
∫

ln
dπ

dπτ
dπ =

∫∫

ln
N (x)

πτ(x|x0)
dN (x)dP∗(x0)

=
∫

KL
(

N
∥

∥ N (e−
1
2

∫ τ
0 βsdsx0, (1 − e−

∫ τ
0 βsds)I)

)

dP∗(x0)

=
e−
∫ τ

0 βsds

1 − e−
∫ τ

0 βsds

(

∫

‖x0‖2dP∗(x0) + d

)

+ d ln(1 − e−
∫ τ

0 βsds),

where the last line follows from the formula for the KL divergence between multivariable
Gaussians. Let P be the unit Gaussian N . It follows that if P∗ has finite second moments,
then the coupling πτ converges to the product measure π = P × P∗ exponentially fast.

By choosing T sufficiently large, we have PT ≈ P. Then, a generative model can be
defined by sampling from XT ∼ P and then going through a reverse-time process X0 =
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G(XT) to approximate the target P∗. One approach is to implement the following reverse-
time SDE [6]:

XT ∼ P, dXτ = −βτ

2

(

Xτ + 2∇x log Pτ(Xτ)
)

dτ +
√

βτdWτ,

which is solved from time T to 0, and W is the reverse-time Wiener process. This backward
SDE is equivalent to the forward SDE (3.13) in the sense that, if PT = P, then they induce
the same distribution of paths {Xτ , τ ∈ [0, T]} [6], and in particular P∗ = law(X0). (An
analysis that accounts for the approximation error between PT and P is given by [105].)
The gradient field ∇x log Pτ is known as the score function [56], which is modeled by

a velocity field s : R
d × [0, T] → R

d, and then the generator G can be defined as the
following random function:

G(xT) = X0, XT = xT, dXτ = −βτ

2

(

Xτ + 2s(Xτ , τ)
)

dτ +
√

βτdWτ. (3.16)

Another approach is to implement the following reverse-time ODE [107]:

XT ∼ P,
d

dτ
Xτ = V(Xτ , τ), V(x, τ) = −βτ

2

(

xτ +∇x log Pτ(xτ)
)

.

This V is the solution to the continuity equation (3.6), and we similarly have P∗ = law(X0)
if PT = P. Then, the generator G can be defined as a deterministic function

G(xT) = x0,
d

dτ
xτ = −βτ

2

(

xτ + s(xτ, τ)
)

. (3.17)

4. Mixture. Finally, we remark that it is possible to use a combination of these repre-
sentations. For instance, [82] uses a normalizing flow model reweighed by a Boltzmann
distribution, which is helpful for sampling from distributions with multiple modes while
maintaining accurate density estimation. Another possibility is that one can first train
a model with fixed generator representation as a stable initialization, and then finetune
the trained generator as a free generator (e.g. using GAN loss) to improve sample quality.

3.3 Loss type

There are numerous ways to define a metric or divergence on the space of probability
measures, which greatly contribute to the diversity of distribution learning models. One
requirement, however, is that since the target distribution P∗ is replaced by its samples

P
(n)
∗ during training, the term P∗ almost always appears in the loss as an expectation.

The commonly used losses belong to three categories:

1. Density-based loss. The modeled distribution P participates in the loss as a density
function. The default choice is the KL divergence (3.1), which is equivalent up to constant
to the negative log-likelihood (NLL)

L(P) = −
∫

log P(x)dP∗(x). (3.18)

In fact, we can show that NLL is in a sense the only possible density-based loss.
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Proposition 3.1. Let L be any loss function on Pac(Rd) that has the form

L(P) =
∫

f
(

P(x)
)

dP∗(x),

where f is some C1 function on (0,+∞). If for any P∗ ∈ Pac(Rd), the loss L is minimized by P∗,
then

f (p) = c log p + c′

for c ≤ 0 and c′ ∈ R. The converse is obvious.

Besides the KL divergence, there are several other well-known divergences in statistics
such as the Jensen–Shannon divergence and χ2 divergence. Despite that they are infeasible
by Proposition 3.1, certain weakened versions of these divergences can still be used as will
be discussed later.

2. Expectation-based loss. The modeled distribution participate in the loss through
expectations. Since both P∗ and P are seen as linear operators over test functions, it is
natural to define the loss as a dual norm

L(P) = sup
‖D‖≤1

∫

D(x)d(P − P∗)(x), (3.19)

where ‖ · ‖ is some user-specified functional norm. The test function D is often called the
discriminator, and such loss is called an adversarial loss. If ‖ · ‖ is a Hilbert space norm,
then the loss can also be defined by

L(P) = sup
D

∫

D(x)d(P − P∗)(x)− ‖D‖2 (3.20)

There are several classical examples of adversarial losses: If ‖ · ‖ is the C0 norm, then (3.19)
becomes the total variation norm ‖P− P∗‖TV. If ‖ · ‖ is the Lipschitz semi-norm, then (3.19)
becomes the 1-Wasserstein metric by Kantorovich-Rubinstein theorem [61, 117]. If ‖ · ‖ is
the RKHS norm with some kernel k, then (3.19) becomes the maximum mean discrepancy
(MMD) [41], and (3.20) is the squared MMD

L(P) =
1

2

∫∫

k(x, x′) d(P∗ − P)(x)d(P∗ − P)(x′),

which gives rise to the moment matching network [72].

In practice, the discriminator D is usually parameterized by a neural network, denoted
by Dθ with parameter θ. One common choice of the norm ‖ · ‖ is simply the l∞ norm on θ

L(P) = sup
‖θ‖∞≤1

∫

Dθ d(P − P∗) (3.21)

This formulation gives rise to the WGAN model [7], and the l∞ bound can be conveniently
implemented by weight clipping. The loss (3.21) and its variants are generally known as
the neural network distances [8, 37, 45, 133].
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The strength of the metric (e.g. fineness of its topology) is proportional to the size of
the normed space of ‖ · ‖, or inversely proportional to the strength of ‖ · ‖. Once some
global regularity such as the Lipschitz norm applies to the space, then the dual norm or L
becomes continuous with respect to the underlying geometry (e.g. the W1 metric), and is
no longer permutation invariant like NLL (3.18) or total variation. If we further restrict D
to certain sparse subspaces of the Lipschitz functions, in particular neural networks, then

L becomes insensitive to the “high frequency” parts of P(Rd). As we will demonstrate in
Section 6, this property is the source of good generalization.

Note that there are some variants of the GAN loss that resemble (3.20) but whose norms
‖D‖ are so weak that the dual norms are no longer well-defined. For instance, the loss with
L2 penalty from [122]

L(P) = sup
θ

∫

Dθ d(P − P∗)− ‖Dθ‖2
L2(P+P∗)

or the loss with Lipschitz penalty ‖1 − ‖∇Dθ‖‖2
L2(P)

from [44]. By [127, Proposition 5], in

general we have L(P) = ∞. Nevertheless, if we consider one-time-scale training such that
P and D are trained with similar learning rates, then this blow-up can be avoided [127].

Beyond the dual norms (3.19), one can also consider divergences. Despite that Propo-
sition 3.1 has ruled out the use of divergences other than the KL divergence, one can
consider the weakened versions of the dual of these divergences. For instance, given any
parameterized discriminator Dθ, the Jensen–Shannon divergence can be bounded below
by [39]

JS(P, P∗) =
1

2
KL

(

P
∥

∥

∥

P + P∗
2

)

+
1

2
KL

(

P∗
∥

∥

∥

P + P∗
2

)

= sup
q:Rd→[0,1]

∫

log q(x)dP(x) +
∫

log
(

1 − q(x)
)

dP∗(x) + 2 ln 2

≥ sup
θ

∫

log
( eDθ(x)

1 + eDθ(x)

)

dP(x) +
∫

log

(

1

1 + eDθ(x)

)

dP∗(x) + 2 ln 2. (3.22)

This lower bound gives rise to the earliest version of GAN [39]. GANs based on other
divergences have been studied in [78, 83].

3. Regression loss. The regression loss is used exclusively by the fixed generator rep-
resentation discussed in Section 3.2. If a target generator G∗ has been specified, then we
simply use the L2 loss over the base distribution P

L(G) =
1

2
‖G − G∗‖2

L2(P). (3.23)

If a target velocity field V∗ has been specified, then the loss is integrated over the inter-
polant distributions Pτ

L(V) =
1

2

∫ T

0

∥

∥V(·, τ)− V∗(·, τ)
∥

∥

2

L2(Pτ)
dτ (3.24)

or equivalently, we use the L2(M∗) loss with the joint distribution M∗ defined by (3.10).
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3.4 Combination

Having discussed the distribution representations and loss types, we can now combine
them to derive the distribution learning models in Table 3.1. Our focus will be on the
highlighted four classes in the table.

Density + Potential. Since Proposition 3.1 indicates that the negative log-likelihood
(NLL) (3.18) is the only feasible density-based loss, we simply insert the potential-based
representation (3.3) into NLL, and obtain a loss in the potential function V,

L(V) =
∫

VdP∗ + ln
∫

e−VdP. (3.25)

This formulation gives rise to the bias-potential model [13, 115], also known as variation-
ally enhanced sampling.

Density + Free generator. In order to insert the transport representation P = G#P

into NLL (3.18), we need to be able to compute the density P(x). For simple cases such as
when P is Gaussian and G is affine, the density P(x) has closed form expression. Yet, in
realistic scenarios when P needs to satisfy the universal approximation property and thus
has complicated forms, one has to rely on indirect calculations. There are three common
approaches:

1. Change of variables (for normalizing flows): If G is a C1 diffeomorphism, the density
of P is given by the change of variables formula

P(x) = det∇G−1(x) P
(

G−1(x)
)

.

Usually P is set to the unit Gaussian N . Then, the NLL loss (3.18) becomes

L(G) = −
∫

log det∇G−1(x) + log P
(

G−1(x)
)

dP∗(x)

=
∫

log det∇G
(

G−1(x)
)

+
1

2
‖G−1(x)‖2dP∗(x) + constant.

If G is modeled by a flow {Gτ, τ ∈ [0, 1]} (3.5) with velocity field V, then its Jacobian
satisfies

d

dτ
det∇Gτ(x0) =

d

dτ
det∇

(

x0 +
∫ τ

0
V
(

Gs(x0), s
)

ds

)

=
d

dτ
det

(

I +
∫ τ

0
∇V

(

Gs(x0), s
)

∇Gs(x0)ds

)

= Tr
[

(

∇V(Gs(x0), s)∇Gs(x0)
)(

∇Gs(x0)
)−1
]

det∇Gτ(x0)

= Tr
[

∇V(Gs(x0), s)
]

det∇Gτ(x0).

It follows that

log det∇G(x0) =
∫ 1

0
Tr
[

∇V(Gτ(x0), τ)
]

dτ

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221202 | Generated on 2024-12-19 04:45:24



J. Mach. Learn., 1(4):373-431 390

and this is known as Abel’s formula [113]. Hence, we obtain the loss of the normalizing
flow model [21, 112]

L(V) =
∫∫ 1

0
Tr
[

∇V(xτ , τ)
]

dτ +
1

2
‖x0‖2dP∗(x1),

xτ := Gτ(G
−1(x1)).

(3.26)

Moreover, if the velocity field is defined by a gradient field V(·, τ) = ∇φτ as discussed in
Section 3.2, then the loss has the simpler form

L(φ) =
∫∫ 1

0
∆φτ(xτ)dτ +

1

2
‖x0‖2dP∗(x1),

which leads to the Monge-Ampère flow model [131].

One potential shortcoming of NF is that diffeomorphisms might not be suitable for the
generator when the target distribution P∗ is singular, e.g. concentrated on low-dimensional
manifolds, which is expected for real data such as images. To approximate P∗, the genera-
tor G needs to shrink the mass of P onto negligible sets, and thus G−1 blows up. As G−1

is involved in the loss, it can cause the training process to be unstable.

2. Variational lower bound (for VAE): Unlike NF, the variational autoencoders do not re-
quire the generator to be invertible, and instead use its posterior distribution. The gener-
ator can be generalized to allow for random output, and we define the conditional distri-
bution

P(·|z) = law(X), X = G(z).

The generalized inverse can be defined as the conditional distribution Q∗(·|x) that satisfies

P(x|z)P(z) = P(x)Q∗(z|x), P(x) =
∫

P(x|z)dP(z)

in the distribution sense. If the generator is deterministic, i.e. P(·|z) = δG(z), and invert-

ible, then Q∗(·|x) is simply δG−1(x). It follows that the KL divergence (3.1) can be written
as

KL(P∗‖P) =
∫

log
P∗(x)
P(x)

+ KL
(

Q∗(·|x)
∥

∥Q∗(·|x)
)

dP∗(x)

= min
Q(·|x)

∫∫

log
P∗(x)
P(x)

+ KL
(

Q(·|x)
∥

∥Q∗(·|x)
)

dP∗(x)

= min
Q(·|x)

∫∫

log
P∗(x)Q(z|x)
P(x)Q∗(z|x)

dQ(z|x)dP∗(x)

= min
Q(·|x)

∫∫

log
P∗(x)Q(z|x)
P(x|z)P(z)

dQ(z|x)dP∗(x)

= min
Q(·|x)

KL
(

P∗Q(·|x)
∥

∥ P(·|z)P
)

.

This is an example of the variational lower bound [64], and the NLL loss (3.18) now be-
comes
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min
P(·|z)

min
Q(·|x)

∫∫

− log P(x|z)dQ(z|x) + KL
(

Q(z|x)
∥

∥P(z)
)

dP∗(x),

which is the loss of VAE. To make the problem more solvable, the decoder P(·|z) and
encoder Q(·|x) are usually parameterized by diagonal Gaussian distributions [64]

P(·|z) = N
(

G(z), diag(es(z))
)

, Q(·|x) = N
(

F(x), diag(ev(x))
)

,

where G, F, s, v are parameterized functions R
d → R

d such as neural networks, and exp
is taken entry-wise. Using the formula for KL divergence between Gaussians

KL
(

N (m0, Σ0)
∥

∥N (m1, Σ1)
)

=
1

2

[

log
det Σ1

det Σ0
− d + Tr

[

Σ−1
1 Σ0

]

+ (m1 − m0)
TΣ−1

1 (m1 − m0)

]

,

we can show that, up to constant, the VAE loss equals

min
G,s

min
F,v

1

2

∫∫ ‖x − G(F(x) + ev(x) ⊙ ω)‖2

es(F(x)+ev(x)⊙ω)

+
d

∑
i=1

si

(

F(x) + ev(x) ⊙ ω
)

dN (ω)

+ ‖F(x)‖2 +
d

∑
i=1

evi(x) − vi(x) dP∗(x),

where ⊙ is entry-wise product. This loss resembles the classical autoencoder [1, 102]

min
F,G

∫ ‖x − G(F(x))‖2

2
dP∗(x),

and thus P(·|z), Q(·|x) are addressed by the decoder and encoder.

3. Factorization (for autoregressive model): To model a distribution P over sequential data
X = [x1, . . . , xl], one can choose a generator G that is capable of processing variable-length
inputs [x1, . . . , xi], such as the Transformer network [116] or recurrent networks [99], and
define the distribution by

P(X) =
l

∏
i=1

P(xi|x1, . . . , xi−1),

P(·|x1, . . . , xi−1) = law(Xi), Xi ∼ G(Z|x1, . . . , xi−1), Z ∼ P.

Then, NLL (3.18) is reduced to

−
∫

log P(X)dP∗(X) = −
∫ l

∑
i=1

log P(xi|x1, . . . , xi−1)dP∗(x).

Usually, each P(·|x1, . . . , xi−1) has a simple parametrization such as Gaussian or Softmax
so that log P(xi|x1, . . . , xi−1) is tractable [86, 92].
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Expectation + Free generator. By the definition (3.4) of the transport representation
P = G#P,

∫

f (x)dP(x) =
∫

f
(

G(z)
)

dP(z)

for all measurable functions f . Then, the classical GAN loss (3.22) becomes

min
G

max
D

∫

log

(

eD(G(z))

1 + eD(G(z))

)

dP(z) +
∫

log

(

1

1 + eD(x)

)

dP∗(x). (3.27)

Similarly, the WGAN loss (3.21) becomes

min
G

max
‖θ‖∞≤1

∫

Dθ

(

G(z)
)

dP(z)−
∫

Dθ(x)dP∗(x). (3.28)

Regression + Fixed generator. For the case with fully deterministic coupling (3.7),
a target generator G∗ is provided by numerical optimal transport, and then fitted by a pa-
rameterized function G with the regression loss (3.23). This formulation leads to the gen-
erative model [132]. (Moreover, a few models with some technical variations [4, 5, 98] are
related to this category, but for simplicity we do not describe them here.)

For the case with fully random coupling (3.8), we fit either the score function ∇ log Pτ

from (3.15) or the velocity field V∗ from (3.12) using the regression loss (3.24). Note that
the targets (3.15, 3.12) are both defined by expectations and thus the loss (3.24) cannot be
computed directly. Thanks to the linearity of expectation, we can expand the loss to make
the computation tractable.

Model the score function ∇ log Pτ by a velocity field s : Rd × [0, T] → Rd and let
λτ > 0 be a user-specified weight. The regression loss can be written as

L(s) :=
1

2

∫ T

0
λτ‖s(·, τ)−∇ log Pτ‖2

L2(Pτ)
dτ

=
∫ T

0
λτ

∫

1

2
‖s(x, τ)‖2 − s(x, τ) · ∇ log Pτ(x) dPτ(x)dτ + C

=
∫ T

0
λτ

∫

1

2
‖s(x, τ)‖2dPτ(x)− λτ

∫

s(x, τ) · ∇Pτ(x)dx dτ + C

=
∫ T

0
λτ

∫∫

1

2
‖s(x, τ)‖2dπτ(x|x0)dP∗(x0)

− λτ

∫

s(x, τ) · ∇
∫

πτ(x|x0)dP∗(x0)dx dτ + C

=
∫ T

0
λτ

∫∫

1

2
‖s(x, τ)‖2 − s(x, τ) · ∇ log πτ(x|x0) dπτ(x|x0)dP∗(x0)dτ + C

=
∫ T

0

λτ

2

∫∫

‖s(x, τ)−∇ log πτ(x|x0)‖2dπτ(x|x0)dP∗(x0)dτ + C.

Since the conditional distribution πτ(x|x0) is the isotropic Gaussian (3.14), this loss is
straightforward to evaluate. Thus, we obtain the loss of the score-based diffusion mod-
els [49, 104, 106, 107]

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221202 | Generated on 2024-12-19 04:45:24



J. Mach. Learn., 1(4):373-431 393

L(s) =
∫ T

0

λτ

2

∫∫

∥

∥

∥

∥

s
(

e−
1
2

∫ τ
0 βsdsx0 +

√

1 − e−
∫ τ

0 βsdsω, τ
)

+
ω

√

1 − e−
∫ τ

0 βsds

∥

∥

∥

∥

2

dN (ω)dP∗(x0)dτ. (3.29)

Similarly, for the velocity field V∗ (3.12), using the definitions (3.10,3.11) of the joint
distribution M∗ and current density J∗, we can write the regression loss as

L(V) :=
1

2

∫ 1

0
‖V(·, τ) − V∗(·, τ)‖2

L2(Pτ)
dτ

=
∫

1

2
‖V(x, τ)‖2 − V(x, τ) · V∗(x, τ) dM∗(x, τ) + C

=
∫

1

2
‖V(x, τ)‖2dM∗(x, τ)−

∫

V · dJ∗ + C

=
∫ 1

0

∫∫

1

2

∥

∥V
(

(1 − τ)x0 + τx1, τ
)
∥

∥

2
dP(x0)dP∗(x1)dτ

−
∫ 1

0

∫∫

(x1 − x0) · V
(

(1 − τ)x0 + τx1, τ
)

dP(x0)dP∗(x1)dτ + C

=
1

2

∫ 1

0

∫∫

∥

∥V
(

(1 − τ)x0 + τx1, τ
)

− (x1 − x0)
∥

∥

2
dP(x0)dP∗(x1)dτ + C. (3.30)

Thus, we obtain the loss of normalizing flow with stochastic interpolants [2, 75, 125].

Other classes. Finally, we briefly remark on the rest of the classes in Table 3.1. For the
combination “Density + Fixed generator”, it has been shown by [105] that the regression
loss upper bounds the KL divergence. Specifically, if in the loss L (3.29) we set the weight
by λτ = βτ where βτ is the noise scale in the SDE (3.13), then given any score function s,

KL(P∗‖Gs#P) ≤ L(s) + KL(PT‖P), (3.31)

where Gs is the generator defined by the reverse-time SDE (3.16) with the score s. The
result also holds for Gs defined by the reverse-time ODE (3.17) under a self-consistency
assumption: let (Gs)τ

1 be the reverse-time flow map of (3.17), then

s(x, τ) = ∇ log
(

(Gs)
τ
1#P

)

(x).

The combinations “Expectation + Potential” and “Expectation + Fixed generator” are
feasible, but we are not aware of representative models. The combinations “Regression +
Potential” and “Regression + Free generator” do not seem probable, since there is no clear
target to perform regression.

Remark 3.1 (Empirical loss). As discussed in Section 3.3, the loss is almost always an
expectation in the target distribution P∗. Indeed, one can check that all the loss functions
introduced in this section can be written in the abstract form

L( f ) =
∫

F( f , x)dP∗(x),
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where f is the parameter function and F depends on the model. Thus, if only a finite
sample set of P∗ is available, as is usually the case in practice, one can define the empirical
loss

L(n)( f ) =
∫

F( f , x)dP
(n)
∗ (x) =

1

n

n

∑
i=1

F( f , xi), (3.32)

where P
(n)
∗ is the empirical distribution.

3.5 Function representation

Having parameterized the distributions and losses by abstract functions, the next step
is to parameterize these functions by machine learning models such as neural networks.
There is much freedom in this choice, such that any parametrization used in supervised
learning should be applicable to most of the functions we have discussed. These include
the generators and discriminators of GANs, the means and variances of the decoder and
encoder of VAE, the potential function of the bias potential model, the score function of
score-based diffusion models, and the velocity field of normalizing flows with stochastic
interpolants. Some interesting applications are given by [27, 58, 92, 96].

One exception is the generator G of the normalizing flows (3.26), which needs to be
invertible with tractable Jacobian. As mentioned in Section 2, one approach is to param-
eterize G as a sequence of invertible blocks whose Jacobians have closed-form formula
(Example designs can be found in [29, 55, 63, 89]). Another approach is to represent G as
a flow, approximate this flow with numerical schemes, and solve for the traces Tr[∇V] in
(3.26) (Examples of numerical schemes are given by [21, 40, 131]).

For the theoretical analysis in the rest of this paper, we need to fix a function represen-
tation. Since our focus is on the phenomena that are unique to learning distributions (e.g.
memorization), we keep the function representation as simple as possible, while satisfying
the minimum requirement of the universal approximation property among distributions
(and thus the capacity for memorization). Specifically, we use the random feature func-
tions [35, 93, 126].

Definition 3.1 (Random feature functions). Let H(Rd, Rk) be the space of functions that can
be expressed as

fa(x) = Eρ(w,b)

[

a(w, b) σ(w · x + b)
]

, (3.33)

where ρ ∈ P(Rd+1) is a fixed parameter distribution and a ∈ L2(ρ, Rk) is a parameter function.
For simplicity, we use the notation H when the input and output dimensions d, k are clear.

Definition 3.2 (RKHS norm). For any subset Ω ⊆ Rd, consider the quotient space

H(Ω) = H/{ fa ≡ 0 on Ω}

with the norm
‖ f‖H(Ω) = inf

{

‖a‖L2(ρ) | f = fa on Ω
}

.

We use the notation ‖ · ‖H if Ω is clear from context. By [26, 93], H(Ω) is a Hilbert space and
‖ · ‖H(Ω) is equal to the RKHS norm (reproducing kernel Hilbert space) induced by the kernel
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k(x, x′) = Eρ

[

σ(w · x + b)σ(w · x′ + b)
]

.

Furthermore, given any distribution P ∈ P(Ω), we can define the following integral operator
K : L2(P) → L2(P):

K( f )(x) =
∫

k(x, x′) f (x′)dP(x′). (3.34)

Definition 3.3 (Time-dependent random feature function). Given any V ∈ H(Rd+1, Rd),
one can define a flow by

GV(x0) = x1,
d

dτ
xτ = V(xτ , τ).

Define the flow-induced norm
‖V‖F = exp ‖V‖H.

Our results adopt either of the following settings:

Assumption 3.1. Assume that the activation σ is ReLU σ(x) = max(x, 0). Assume that the
parameter distribution ρ is supported on the l1 sphere {‖w‖1 + |b| = 1} and has a positive
and continuous density over this sphere.

Assumption 3.2. Assume that the activation σ is sigmoid σ(x) = ex/(1 + ex). Assume that

ρ has a positive and continuous density function over Rd+1 and also bounded variance

∫

(

‖w‖2 + b2
)

dρ(w, b) ≤ 1.

Given either assumption, the universal approximation theorems [51, 109] imply that

the space H(K, R
k) is dense among the continuous functions C(K, R

k) with respect to the

C0 norm for any compact subset K ⊆ Rd. Also, by Lemma 9.1, H(Rd, Rk) is dense in

L2(P, Rk) for any distribution P ∈ P(Rd).
The random feature functions (3.33) can be seen as a simplified form of neural net-

works, e.g. if we replace the parameter distribution ρ by a finite sample set {(wi, bi)}m
i=1,

then (3.33) becomes a 2-layer network with m neurons and frozen first layer weights. Sim-
ilarly, for the flow GV in Definition 3.3, if the ODE is replaced by a forward Euler scheme,
then GV becomes a deep residual network whose layers share similar weights. Beyond the
random feature functions, one can extend the analysis to the Barron functions [11,34] and
flow-induced functions [31], which are the continuous representations of 2-layer networks
and residual networks.

3.6 Training rule

The training of distribution learning models is very similar to training supervised learning
models, such that one chooses from the many algorithms for gradient descent and opti-
mizes the function parameters. One exception is the GANs, whose losses are min-max
problems of the form (3.27,3.28) and are usually solved by performing gradient descent
on the generator and gradient ascent on the discriminator [39].
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For the theoretical analysis in this paper, we use the continuous time gradient descent.

Specifically, given any loss L( f ) over L2(P, Rk) for some P ∈ P(Rd), we parameterize
f by the random feature function fa from Definition 3.1 and denote the loss by L(a) =
L( fa). Given any initialization a0 ∈ L2(ρ, Rk), we define the trajectory {at, t ≥ 0} by the
dynamics

d

dt
at = −∇aL

∣

∣

at
= −

∫

∇ f L(x) σ(w · x + b)dP(x). (3.35)

It follows that the function ft = fat evolves by

d

dt
ft = Eρ(w,b)

[

d

dt
at(w, b) σ(w · x + b)

]

= −K(∇ f L), (3.36)

where K is the integral operator defined in (3.34). Similarly, given the empirical loss L(n)

(3.32), we define the empirical training trajectory

d

dt
f
(n)
t = −K

(

∇ f L(n)
)

. (3.37)

By default, we use the initialization

a0 = a
(n)
0 ≡ 0 (3.38)

or equivalently f0 = f
(n)
0 ≡ 0.

3.7 Test error

For our theoretical analysis, given a modeled distribution P and target distribution P∗,
we measure the test error by either the Wasserstein metric W2(P∗, P) or KL-divergence
KL(P∗‖P). As discussed in Section 1, W2 exhibits the curse of dimensionality, while KL is
stronger than W2. Thus, they are capable of detecting memorization and can distinguish
the solutions that generalize well.

In addition, one advantage of the W2 metric is that it can be related to the regression
loss.

Proposition 3.2 ([127, Proposition 21]). Given any base distribution P ∈ P2,ac(R
d) and any

target distribution P∗ ∈ P2(R
d), for any G ∈ L2(P, Rd)

W2(P∗, G#P) = inf
{

‖G − G∗‖L2(P) | G∗ ∈ L2(P, R
d), P∗ = G∗#P

}

.

So effectively, the W2 test error is the L2 error with the closest target generator.
One remark is that these test losses are only applicable to theoretical analysis. In prac-

tice, we only have a finite sample set from P∗, and the curse of dimensionality becomes an
obstacle to meaningful evaluation.
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4 Universal Approximation Theorems

It is not surprising that distribution learning models equipped with neural networks sat-
isfy the universal approximation property in the space of probability distributions. The
significance is that the models in general have the capacity for memorization. This section
confirms that the universal approximation property holds for all three distribution repre-
sentations introduced in Section 3.2. Since our results are proved with the random feature
functions (Definitions 3.1 and 3.3), they hold for more expressive function parametriza-
tions such as 2-layer and deep neural networks.

For the free generator representation, the following result is straightforward.

Proposition 4.1. Given either Assumption 3.1 or 3.2, for any base distribution P ∈ P2,ac(R
d),

the set of distributions generated by the random feature functions H(Rd, Rd) are dense with respect

to the W2 metric. Specifically, for any P∗ ∈ P2(R
d),

inf
G∈H

W2(P∗, G#P) = 0.

In particular, G#P can approximate the empirical distribution P
(n)
∗ .

4.1 Potential representation

Consider the potential-based representation (3.3). Let K ⊆ Rd be any compact set with
positive Lebesgue measure, let Pac(K) ∩ C(K) be the space of distributions with continu-
ous density functions, and let the base distribution P be uniform over K.

Proposition 4.2. Given either Assumption 3.1 or 3.2, the set of probability distributions

PH =

{

1

Z
e−V

P

∣

∣

∣
V ∈ H(Rd, R)

}

is dense in

• P(K) under the Wasserstein metric Wp (1 ≤ p < ∞),

• Pac(K) under the total variation norm ‖ · ‖TV,

• Pac(K) ∩ C(K) under KL divergence.

4.2 Flow-based free generator

For the normalizing flows, we have seen in Section 3.4 the two common approaches for
modeling the generator G, i.e. continuous-time flow (2.2) or concatenation of simple dif-
feomorphisms. Both approaches have an apparent issue, that they do not satisfy the uni-
versal approximation property among functions. Since G is always a diffeomorphism, it
cannot approximate for instance functions that are overlapping or orientation-reversing
(such as x 7→ |x| and x 7→ −x). Hence, the approach of Proposition 4.1 is not applicable.
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Nevertheless, to transport probability distributions, it is sufficient to restrict to specific
kinds of generators, for instance gradient fields ∇φ according to Brennier’s theorem [14,
117]. Using flows induced by random feature functions, we have the following result.

Proposition 4.3. Given Assumption 3.2, for any base distribution P ∈ P2,ac(R
d), the following

set of distributions is dense in P2(R
d) with respect to the W2 metric

PG =
{

GV#P
∣

∣ V ∈ H(Rd+1, R
d)
}

,

where GV is given by Definition 3.3.

4.3 Fixed generator

For the fixed generator representation, we analyze the normalizing flow with stochas-
tic interpolants (3.12) instead of the score-based diffusion models (3.13), since the former
has a simpler formulation. As the target velocity field V∗ has been specified, we show
a stronger result than Propositions 4.1 and 4.3, such that we can simultaneously bound
the W2 test error and the L2 training loss.

Proposition 4.4 ([125, Proposition 3.2]). Given Assumption 3.2, assume that the base distribu-
tion P is compactly-supported and has C2 density. For any target distribution P∗ that is compactly-
supported, let V∗ be the velocity field (3.12). Then, for any ǫ > 0, there exists a velocity field

Vǫ ∈ H(Rd+1, Rd) with induced generator Gǫ = GVǫ given by Definition 3.3, such that

W2(P∗, Gǫ#P) < ǫ,

‖V∗ − Vǫ‖L2(M∗) =
√

2
√

L(Vǫ)− L(V∗) < ǫ,

where M∗ is the joint distribution (3.10) and L is the loss (3.30).

5 Memorization

The previous section has shown that the distribution learning models, from all known
distribution representations, satisfy the universal approximation property. In particular,

they are capable of approximating the empirical distribution P
(n)
∗ and thus have the po-

tential for memorization. This section confirms that memorization is inevitable for some
of the models. Specifically, we survey our results on the universal convergence property,
that is, the ability of a model to converge to any given distribution during training. We
believe that this property holds for other models as well, and it should be satisfied by any
desirable model for learning probability distributions.

5.1 Bias-potential model

Recall that the bias-potential model is parameterized by potential functions V (3.3) and

minimizes the loss L (3.25). For any compact set K ⊆ R
d with positive Lebesgue measure,
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let the base distribution P be uniform over K. Parameterize V by random feature functions

H(Rd, R), and define the training trajectory Vt by continuous time gradient descent (3.36)
on L with any initialization V0 ∈ H. Denote the modeled distribution by Pt = (1/Z)e−Vt P.

Similarly, let V
(n)
t be the training trajectory on the empirical loss (3.32) and denote its

modeled distribution by P
(n)
t .

Proposition 5.1 ([126, Lemma 3.8]). Given Assumption 3.1, for any target distribution P∗ ∈
P(K), if Pt has only one weak limit, then Pt converges weakly to P∗

lim
t→∞

W2(P∗, Pt) = 0.

Corollary 5.1 (Memorization, [126, Proposition 3.7]). Given Assumption 3.1, the training

trajectory P
(n)
t can only converge to the empirical distribution P

(n)
∗ . Moreover, both the test error

and the norm of the potential function diverge

lim
t→∞

KL
(

P∗‖P
(n)
t

)

= lim
t→∞

∥

∥V
(n)
t

∥

∥

H = ∞.

In the setting of Proposition 5.1, a limit point always exists, but we have to exclude
the possibility of more than one limit point, e.g. the trajectory Pt may converge to a limit
circle. We believe that with a more refined analysis one can prove that such exotic scenario
cannot happen.

5.2 GAN discriminator

As will be demonstrated in Section 7, the training and convergence of models with the free
generator representation is in general difficult to analyze. Thus, we consider the simplified
GAN model from [127] such that the representation G#P replaced by a density function P.

Consider the GAN loss (3.20), and parameterize the discriminator by D ∈ H(Rd, R).
Equivalently, we set the penalty term ‖D‖ to be the RKHS norm ‖ · ‖H and the loss (3.20)
becomes

L(P) = sup
D

∫

D(x)d(P − P∗)(x)− ‖D‖2
H

= max
a

∫∫

a(w, b)σ(w · x + b)dρ(w, b)d(P − P∗)(x)− ‖a‖2
L2(ρ)

=
1

2

∫∫

k(x, x′)d(P − P∗)(x)d(P − P∗)(x′), (5.1)

where k is the kernel function from Definition 3.2. This loss is an instance of the maximum
mean discrepancy [41]. Model the density P as a function in L2([0, 1]d), and define the
training trajectory Pt by continuous time gradient descent

d

dt
Pt = −∇PL(Pt) = −k ∗ (Pt − P∗), (5.2)
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where

(k ∗ P)(x) =
∫

k(x, x′)dP(x′).

Let Π∆ be the nearest point projection from L2([0, 1]d) to the convex subset P([0, 1]d) ∩
L2([0, 1]d). We measure the test error by W2(P∗, Π∆(P)).

Proposition 5.2 ([127, Lemma 13]). Given Assumption 3.1, for any target distribution P∗ ∈
P([0, 1]d) and any initialization P0 ∈ L2([0, 1]d), the distribution Π∆(Pt) converges weakly to P∗

lim
t→∞

W2

(

P∗, Π∆(Pt)
)

= 0.

6 Generalization Error

Despite that Sections 4 and 5 have demonstrated that distribution learning models have
the capacity for memorization, this section shows that solutions with good generalization
are still achievable. For the four classes highlighted in Table 3.1, we show that their mod-
els escape from the curse of dimensionality with either early stopping or regularization.
Specifically, their generalization errors scale as O(n−α) where α are absolute constants,
instead of dimension-dependent terms such as α/d.

These results depend on either of the two forms of regularizations:

• Implicit regularization: As depicted in Fig. 6.1 (left), the training trajectory Pt comes
very close to the hidden target distribution P∗ before eventually turning towards the

empirical distribution P
(n)
∗ .

• Explicit regularization: Analogous to the above picture, we consider some regu-

larized loss L(n) + R(λ) with strength λ ≥ 0. With an appropriate regularization
strength, the minimizer Pλ becomes very close to the hidden target P∗.

The mechanism underlying both scenarios is that the function representations of the mod-

els are insensitive to the sampling error P∗ − P
(n)
∗ . Thus, we resolve the seeming paradox

between good generalization and the inevitable memorization.
Without a good function representation, this behavior cannot be guaranteed. For in-

stance, as argued in [127], if a distribution Pt is trained by Wasserstein gradient flow (i.e.
without any function parametrization) on the empirical loss

L(n)(P) = W2

(

P
(n)
∗ , P

)

and if the initialization P0 6= P∗ is in P2,ac(R
d), then the training trajectory Pt follows

the W2 geodesic that connects P0 and P
(n)
∗ . Since the Wasserstein manifold has positive

curvature [3], the geodesic in general can never come close to the hidden target P∗, as
depicted in Fig. 6.1 (right).

In the following five subsections, we survey our results on three models that have
rigorous proofs, and then analyze two models with heuristic calculations.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221202 | Generated on 2024-12-19 04:45:24



J. Mach. Learn., 1(4):373-431 401

Figure 6.1: Left: Implicit regularization enables P
(n)
t to stay close to Pt and thus approximate P∗ better than

P
(n)
∗ . Right: Wasserstein gradient flow on W2 loss.

6.1 Bias-potential model

We start with the bias-potential model (3.25) since it enjoys the most convexity and thus
the arguments are the most transparent.

Consider the domain Ω = [0, 1]d with base distribution P ∈ P(Ω). Let Vt, V
(n)
t ∈ H

be potential functions trained on the population loss L (3.25) and the empirical loss L(n)

(3.32) respectively, using continuous time gradient descent (3.36). Denote their induced

distributions (3.3) by Pt, P
(n)
t .

Theorem 6.1 ([126, Theorem 3.3]). Given Assumption 3.1, assume that the target distribution
P∗ has the form (3.3) with a potential function V∗ ∈ H. For any δ > 0, with probability 1− δ over

the sampling of P
(n)
∗ ,

KL
(

P∗‖P
(n)
t

)

≤ ‖V∗‖2
H

2t
+

8
√

2 log 2d + 2
√

2 log(2/δ)√
n

t. (6.1)

Corollary 6.1. Given the condition of Theorem 6.1, if we choose an early-stopping time T such
that

T = Θ

(

‖V∗‖H
(

n

log d

)
1
4

)

,

then the test error satisfies

KL
(

P∗‖P
(n)
T

)

. ‖V∗‖H
(

log d

n

)
1
4

.

Hence, the generalization error escapes from the curse of dimensionality.
The two terms in the upper bound (6.1) are the training error and generalization gap.

The former is a consequence of convexity, while the latter follows from the observation

that the landscapes of L and L(n) differ very little
∥

∥

∥

∥

∥

δL − L(n)

δa

∥

∥

∥

∥

∥

L2(ρ)

≤ sup
‖V‖H≤1

∣

∣

∣

∣

∫

V(x)d
(

P∗ − P
(n)
∗
)

(x)

∣

∣

∣

∣
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. Radn

(

{‖V‖H ≤ 1}
)

+

√

log 1/δ√
n

,

where the Radn term is the Rademacher complexity and scales as O(1/
√

n). Then, Vt, V
(n)
t

remain close during training

∥

∥Vt − V
(n)
t

∥

∥

H .

∫ t

0

∥

∥

∥

∥

∥

δL − L(n)

δa

∥

∥

∥

∥

∥

L2(ρ)

.
t√
n

,

which confirms the depiction in Fig. 6.1 (left).
In the meantime, the bias potential model also generalizes well in the explicit regular-

ization setting. Here we consider the Ivanov and Tikhonov regularizations [57, 84, 114].

Proposition 6.1 ([126, Proposition 3.9]). Given Assumption 3.1, assume that the target P∗ is

generated by a potential V∗ ∈ H. Let V
(n)
R be the minimizer of the regularized loss

min
‖V‖H≤R

L(n)(V),

where R is any constant such that R ≥ ‖V∗‖H. For any δ > 0, with probability 1 − δ over the

sampling of P
(n)
∗ , the distribution P

(n)
R generated by the potential V

(n)
R satisfies

KL
(

P∗‖P
(n)
R

)

≤ 8
√

2 log 2d + 2
√

2 log(2/δ)√
n

R.

Proposition 6.2. Given the condition of Proposition 6.1, for any δ > 0, let V
(n)
λ be the minimizer

to the regularized loss

min
V∈H

L(n)(V) +
λ√
n
‖V‖H , λ ≥ 4

√

2 log 2d +
√

2 log(2/δ).

With probability 1 − δ over the sampling of P
(n)
∗ , the distribution P

(n)
λ generated by P

(n)
R satisfies

KL
(

P∗‖P
(n)
λ

)

≤ 2λ‖V∗‖H√
n

.

6.2 Normalizing flow with stochastic interpolants

Consider the normalizing flow with stochastic interpolants (3.30), and model the velocity

field V and generator GV by Definition 3.3. Denote by Vt, V
(n)
t the training trajectories on

the population and empirical losses (3.30, 3.32) using gradient flow (3.36, 3.37). Denote

the generated distributions by Pt = GVt
#P and P

(n)
t = G

V
(n)
t

#P.

First, we bound the generalization gap.
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Theorem 6.2 ([125, Theorem 3.4]). Given Assumption 3.2, for any compactly-supported base

and target distributions P and P∗, if the velocity field V∗ (3.12) satisfies V∗ ∈ H(Rd+1, R
d), then

with probability 1 − δ over the sampling of P
(n)
∗ ,

W2

(

Pt, P
(n)
t

)

≤ ‖V∗‖F
1√
n

((

1 +
√

2 ln 2 +

√

2 ln

(

2

δ

)

)

(

4

3
Rt

3
2 + 2Rt

)

+
√

R2 + 2t

)

,

where R is the radius
R = sup

{

‖x‖
∣

∣ x ∈ sprtP ∪ sprtP∗
}

.

Next, to estimate the generalization error, we need a sharper norm to bound the train-
ing error.

Definition 6.1 ([125, Proposition 2.4]). Given any distribution M ∈ P(Rd+1), let K be the
integral operator (3.34) over L2(M). Given Assumption 3.2, [125, Proposition 2.4] implies that
K is a symmetric positive compact operator, and thus have an eigendecomposition with positive
eigenvalues {λi}∞

i=1 and eigenfunctions {φi}∞
i=1, which form an orthonormal basis of L2(M).

Define the subspace H2(M) ⊆ L2(M) with the following norm:

‖V‖H2(M) =
∞

∑
i=1

‖vi‖2

λ2
i

,

where vi are the coefficients in the decomposition V = ∑i viφi. Besides, we have ‖V‖H(sprtM) ≤
‖V‖H2(M) and thus ‖V‖F ≤ exp ‖V‖H2(M).

Theorem 6.3 ([125, Theorem 3.7]). Given Assumption 3.2, assume that the base distribution P is
compactly-supported and has a C2 density. Let P∗ be any compactly-supported target distribution
such that the velocity V∗ (3.12) satisfies V∗ ∈ H2(M∗), where M∗ is the joint distribution (3.10).
Then,

W2

(

P∗, P
(n)
t

)

≤
‖V∗‖F‖V∗‖H2(M∗)

2
√

t
+ ‖V∗‖F

1√
n

×
((

1 +
√

2 ln 2 +

√

2 ln

(

2

δ

)

)

(

4

3
Rt

3
2 + 2Rt

)

+
√

R2 + 2 t

)

,

where the radius R = sup{‖x‖ | x ∈ sprtP ∪ sprtP∗}.

In short, the generalization error scales as

W2

(

P∗, P
(n)
t

)

.
1√

t
+

1√
n

t
3
2 ,

and thus with early-stopping T = Θ(n1/4), the model escapes from the curse of dimen-
sionality

W2

(

P∗, P
(n)
T

)

. n
1
8 .

The condition V∗ ∈ H2(M∗) may seem strict, so we present the following corollary that
holds for general target distributions.
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Corollary 6.2 ([125, Corollary 3.8]). Given Assumption 3.2, assume that the base distribution P

is compactly-supported and has C2 density. Let P∗ be any compactly-supported target distribution.

For any ǫ > 0, there exists a distribution Mǫ ∈ P(Rd+1) and a velocity field Vǫ ∈ H2(Mǫ) such
that

W2

(

P∗, P
(n)
t

)

<

‖V∗‖F‖V∗‖H2(Mǫ)

2
√

t
+ ǫ

(

‖Vǫ‖F t
3
2 + 1

)

+ ‖V∗‖F
1√
n

((

1 +
√

2 ln 2 +

√

2 ln

(

2

δ

)

)

(

4

3
Rt

3
2 + 2Rt

)

+
√

R2 + 2 t

)

.

6.3 GAN

Similar to Section 5.2, we consider the simplified GAN model such that the modeled dis-
tribution is represented by a density function P. We show that the discriminator D alone
is sufficient to enable good generalization.

With the discriminator modeled by D ∈ H(Rd, R), the GAN loss (3.20) becomes the

maximum mean discrepancy L in (5.1). Consider the training trajectory Pt ∈ L2([0, 1]d)

defined by (5.2). Similarly, define the empirical loss L(n) and empirical training trajectory

P
(n)
t by

L(n)(P) =
1

2

∫∫

k(x, x′)d
(

P − P
(n)
∗
)2
(x, x′),

P
(n)
t = −∇PL(n)(P

(n)
t

)

= −k ∗
(

P
(n)
t − P

(n)
∗
)

.

Fix some initialization P0 = P
(n)
0 ∈ L2([0, 1]d). We measure the test error by W2(P∗, Π∆(P)),

where Π∆ is the nearest point projection onto P([0, 1]d) ∩ L2([0, 1]d).

Theorem 6.4 ([127, Theorem 2]). Given Assumption 3.1, for any target density function P∗ such

that P∗ − P0 ∈ H, with probability 1 − δ over the sampling of P
(n)
∗ ,

W2

(

P∗, Π∆(P
(n)
t )

)

≤
√

d
‖P∗ − P0‖H√

t
+
√

d
4
√

2 log 2d +
√

2 log(2/δ)√
n

t.

It follows that with an early stopping time T = Θ(n1/3), the generalization error scales

as O(n−1/6) and escapes from the curse of dimensionality.
Part of this result can be extended to the usual case with a generator. As shown in [127],

if we consider the GAN loss L(G) = L(G#P), then the generator is insensitive to the

difference between the landscapes of the population loss L and empirical loss L(n),
∥

∥

∥

∥

∥

δL

δG
− δL(n)

δG

∥

∥

∥

∥

∥

L2(P)

=
∥

∥∇k ∗
(

P∗ − P
(n)
∗
)∥

∥

L2(P)
.

1√
n

.

The mechanism is that the sampling error P∗ − P
(n)
∗ is damped by D.
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Furthermore, we can model the generator as a random feature function, G ∈ H(Rd, Rd),

and consider the population trajectory Gt and empirical trajectory G
(n)
t , which are trained

respectively on L, L(n) with continuous time gradient descent (3.36,3.37) and with the same

initialization. Assume that the activation σ is C1, then the difference Gt − G
(n)
t grows

slowly at t = 0
d

dt

(

Gt − G
(n)
t

)

(z)
∣

∣

t=0
= k ∗ ∇

(

k ∗ (P∗ − P
(n)
∗ )

)

.

Note that the sampling error P∗ − P
(n)
∗ is damped twice by both G and D.

Finally, we remark that the generalization error of GANs have been studied in several
related works using other kinds of simplified models, for instance when the generator G
is a linear map [38], one-layer network (without hidden layer, of the form G(x) = σ(Ax)
for A ∈ Rd×d) [69, 121], or polynomial with bounded degree [71].

6.4 Score-based diffusion model

As a further demonstration of the techniques from the previous sections, this section
presents an informal estimation of the generalization error of the score-based diffusion
model (3.29). By heuristic calculations, we derive a bound in the implicit regularization
setting that resembles Theorem 6.3.

Model the score function by s ∈ H(Rd+1, R
d). Let st, s

(n)
t be the training trajectories

on the population loss L (3.29) and empirical loss L(n) (3.32) using gradient flow (3.36,

3.37) with zero initialization s0 = s
(n)
0 ≡ 0. Model the generators Gt, G

(n)
t by the reverse-

time SDE (3.16) with scores st, s
(n)
t . Denote the generated distributions by Pt = Gt#P and

P
(n)
t = G

(n)
t #P.

For any target distribution P∗, denote the target score function by s∗ = ∇ log Pτ with
Pτ given by (3.15). By inequality (3.31),

KL
(

P∗‖P
(n)
t

)

≤ L
(

s
(n)
t

)

− L(s∗) + KL(PT‖P).

Assume that s∗ ∈ H. Then, by convexity (see for instance [126, Proposition 3.1])

L
(

st)− L(s∗
)

.
‖s∗‖2

H
t

.

Meanwhile, by the growth rate bound ‖st‖H, ‖s
(n)
t ‖H .

√
t from [125, Proposition 5.3],

L
(

s
(n)
t )− L(st

)

.
(

‖V
(n)
t ‖C0

+ ‖Vt‖C0

)

∥

∥st − s
(n)
t

∥

∥

H .
√

t
∥

∥st − s
(n)
t

∥

∥

H.

Then, using a calculation analogous to the proof of [125, Theorem 3.4]

∥

∥st − s
(n)
t

∥

∥

H . Radn

(

{‖s‖H ≤
√

t}
)

t .
t

3
2√
n

.
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Combining these inequalities, we obtain

KL
(

P∗‖P
(n)
t

)

.
‖s∗‖2

H
t

+
t2

√
n
+ KL(PT‖P).

Hence, if we ignore the approximation error KL(PT‖P) due to finite T, the generalization

error with early stopping scales as O(n−1/6) and escapes from the curse of dimensionality.

6.5 Normalizing flow

This section presents an informal estimation of the generalization error of the normalizing
flow model (3.26). We conjecture an upper bound in the explicit regularization setting that
resembles Proposition 6.1.

Let the velocity field be modeled by V ∈ H(Rd+1, Rd), let GV be the flow map from
Definition 3.3, and define the reverse-time flow map for τ ∈ [0, 1],

FV(x1, τ) = xτ,
d

dτ
xτ = V(xτ , τ).

Let L, L(n) be the population and empirical losses (3.26,3.32). Let the base distribution

be the unit Gaussian P = N . For any target distribution P∗ ∈ P2(R
d) such that P∗ =

GV∗#P for some V∗ ∈ H, and for any R ≥ ‖V∗‖F , consider the problem with explicit
regularization

min
‖V‖F≤R

L(n)(V).

Let V
(n)
R be a minimizer. It follows that

L
(

V
(n)
R

)

≤ L(n)(V
(n)
R

)

+ sup
‖V‖F≤R

L(V)− L(n)(V)

≤ L(n)(V∗) + sup
‖V‖F≤R

L(V)− L(n)(V)

≤ L(V∗) + 2 sup
‖V‖F≤R

L(V)− L(n)(V).

Then,

sup
‖V‖F≤R

L(V)− L(n)(V) ≤ sup
‖V‖F≤R

∫∫ 1

0
Tr
[

∇V
(

FV(xτ, τ), τ
)]

dτd
(

P∗ − P
(n)
∗
)

(x)

+ sup
‖V‖F≤R

∫∫ 1

0

1

2
‖FV(x, 1)‖2d

(

P∗ − P
(n)
∗
)

(x).

Denote the two terms by the random variables A, B. Using the techniques of [31, Theo-
rem 2.11] and [46, Theorem 3.3] for bounding the Rademacher complexity of flow-induced
functions, one can try to bound the following expectations:

E[A] .
R√
n

E

[

max
1≤i≤n

‖Xi‖
∣

∣ Xi ∼i.i.d. P∗
]

.
R2

√
n

,
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E[B] .
R2

√
n

E

[

max
1≤i≤n

‖Xi‖2
∣

∣ Xi ∼i.i.d. P∗
]

.
R4

√
n

.

Meanwhile, for the random fluctuations A − E[A], B − E[B], one can apply the extension
of McDiarmid’s inequality to sub-Gaussian random variables [67], and try to show that,

with probability 1 − δ over the sampling of P
(n)
∗ ,

A − E[A] .
R2
√

log 1/δ√
n

, B − E[B] .
R4
√

log 1/δ√
n

.

Combining these inequalities, one can conjecture that the solution P
(n)
R = G

V
(n)
R

#P sat-

isfies

KL
(

P∗‖P
(n)
R

)

= L
(

V
(n)
R

)

− L(V∗) .
1 +

√

log 1/δ√
n

R4.

7 Training

This section studies the training behavior of distribution learning models, and illustrates
the differences between the three distribution representations discussed in Section 3.2. On
one hand, we survey our results on the global convergence rates of models with the poten-
tial representation and fixed generator representation. On the other hand, we present new
results on the landscape of models with the free generator representation, and analyze the
mode collapse phenomenon of GANs.

7.1 Potential and fixed generator

Models with these two representations are easier to analyze since their losses are usually
convex over abstract functions. Specifically, this section considers the bias-potential model
(3.25) and normalizing flow with stochastic interpolants (3.30)

L(V) =
∫

VdP∗ + ln
∫

e−VdP,

L(V) =
1

2

∫ 1

0

∫∫

∥

∥V
(

(1 − τ)x0 + τx1, τ
)

− (x1 − x0)
∥

∥

2
dP(x0)dP∗(x1)dτ.

If we choose a convex function representation for V, then the optimization problem be-
comes convex.

To estimate the rate of convergence, one approach is to bound the test error by a stron-
ger norm. The following toy example shows how to bound the L2 error by the RKHS norm
‖ · ‖H.

Example 7.1 (Kernel regression). Fix any base distribution P ∈ P(Rd) and assume that
the activation σ is bounded. For any target function f∗ ∈ H, consider the regression loss

L( f ) =
1

2
‖ f − f∗‖2

L2(P).
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Parameterize f by fa ∈ H and train the parameter function a by continuous time gradient
descent (3.35) with initialization a ≡ 0. Then,

L( ft) ≤
‖ f∗‖2

H
2t

.

Proof one. Denote the loss by L(a) = L( fa). Since σ is bounded, L has continuous Fréchet
derivative in a ∈ L2(ρ), so the gradient descent (3.35) is well-defined. Choose a∗ ∈ L2(ρ)
such that f∗ = fa∗ and ‖ f∗‖H = ‖a∗‖L2(ρ). Define the Lyapunov function

E(t) = t
(

L(at)− L(a∗)
)

+
1

2
‖a∗ − at‖2

L2(ρ0)
.

Then,

d

dt
E(t) =

(

L(at)− L(a∗)
)

+ t · d

dt
L(at) +

〈

at − a∗,
d

dt
at

〉

L2(ρ0)

≤
(

L(at)− L(a∗)
)

−
〈

at − a∗,∇L(at)
〉

L2(ρ0)
.

By convexity, for any a0, a1,

L(a0) +
〈

a1 − a0,∇L(a0)
〉

≤ L(a1).

Hence, (d/dt)E ≤ 0. We conclude that E(t) ≤ E(0).

Proof two. Since at evolves by (3.35), ft evolves by (3.36)

d

dt
ft = −K( ft − f∗), (7.1)

where K is the integral operator (3.34) over L2(P). Since K is symmetric, positive semidef-
inite and compact, there exists an eigendecomposition with non-negative eigenvalues
{λi}∞

i=1 and eigenfunctions {φi}∞
i=1 that form an orthonormal basis of L2(P). Consider

the decomposition

ft =
∞

∑
i=1

ci
tφi, f∗ =

∞

∑
i=1

ci
∗φi.

It is known that the RKHS norm satisfies [26, 93]

‖ f∗‖2
H =

∞

∑
i=1

(ci∗)2

λi
.

Since ci
0 = 0 by assumption, (7.1) implies that ci

t = (1 − e−λit)ci∗. Hence,

L( ft) =
1

2

∞

∑
i=1

(

ci
t − ci

∗
)2

=
1

2

∞

∑
i=1

(

ci
∗
)2

e−2λit

≤ 1

2

∞

∑
i=1

(ci∗)2

λi
sup
λ≥0

λe−2λt =
‖ f∗‖2

H
4et

.

It completes the proof.
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Using similar arguments, we have the following bounds on the test error of models
trained on the population loss.

Proposition 7.1 (Bias-potential, [126, Proposition 3.1]). Given the setting of Theorem 6.1, the
distribution Pt generated by the potential Vt satisfies

KL(P∗‖Pt) ≤
‖V∗‖2

H
2t

.

Proposition 7.2 (NF, [125, Proposition 3.5]). Given the setting of Theorem 6.3, the distribution
Pt = GVt

#P generated by the trajectory Vt satisfies

W2(P∗, Pt) ≤
‖V∗‖F‖V∗‖H2(M∗)

2
√

t
.

Corollary 7.1 (NF, [125, Corollary 3.6]). Given the setting of Corollary 6.2, let P∗ be any
compactly-supported target distribution and V∗ be the target velocity field (3.12). For any ǫ > 0,

there exists a distribution Mǫ ∈ P(Rd+1) and velocity field Vǫ ∈ H2(Mǫ) such that

W2(P∗, Pt) <
‖V∗‖F‖V∗‖H2(Mǫ)

2
√

t
+ ǫ
(

‖Vǫ‖F t
3
2 + 1

)

.

It seems probable that the O(ǫt3/2) term can be strengthened to O(ǫ), which would
imply universal convergence, i.e. convergence to any target distribution.

7.2 Free generator: Landscape

Models with the free generator representation are more difficult to analyze, since the loss
L(G) is not convex in G. For instance, it is straightforward to check that if P and P∗ are
uniform over [0, 1], then the solution set {G∗ | G∗#P = P∗}, or equivalently the set of
minimizers of L, is an infinite and non-convex subset of L2(P), and thus L is non-convex.

Despite the non-convexity, there is still hope for establishing global convergence thro-
ugh a careful analysis of the critical points. For instance, one can conjecture that there are
no spurious local minima and that the saddle points can be easily avoided. This section
offers two results towards this intuition: a characterization of critical points for general
loss functions of the form L(G#P), and a toy example such that global convergence can be
determined from initialization.

In general, no matter how we parameterize the generator, the modeled distribution
Pt = Gt#P satisfies the continuity equation during training: Assume that G(x, θ) is C1 in

x ∈ Rd and θ ∈ Θ, where Θ is some Hilbert space. Then, given any path θt that is C1 in t,
for any smooth test function φ,

d

dt

∫

φdPt =
d

dt

∫

φ
(

G(x, θt)
)

dP(x)

=
∫

∇φ
(

G(x, θt)
)

· ∇θG(x, θt)θ̇tdP(x)

=
∫

∇φ(x) · Vt(x)dPt(x) = −
∫

φd∇ · (VtPt),
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where the velocity field Vt is defined by
∫

f(x) · Vt(x) dPt(x) =
∫

f
(

G(x, θt)
)

· ∇θG(x, θt)θ̇t dP(x)

for any test function f ∈ L2(Pt, Rd). Thus, Pt is a weak solution to the continuity equation

∂tPt +∇ · (VtPt) = 0.

In particular, the equation implies that no matter how G is parameterized, the “particles”
of Pt during training can only move continuously without jumps or teleportation.

For abstraction, it is helpful to consider the Wasserstein gradient flow [3, 101]: For

any loss function L over P2(R
d) and any initialization P0 ∈ P2(R

d), define the training
trajectory Pt by

∂tPt +∇ ·
(

Pt∇
δL

δP
(Pt)

)

= 0,

where δPL is the first variation, which satisfies

d

dǫ
L
(

P + ǫ(Q − P)
)
∣

∣

ǫ=0
=
∫

δL

δP
(Pt)d(Q − P)

for any bounded and compactly-supported density function Q.
The Wasserstein gradient flow abstracts away the parametrization θ 7→ Gθ of the gen-

erator, and thus simplifies the analysis of critical points. To relate to our problem, the
following result shows that the Wasserstein gradient flow often shares the same critical
points as the parameterized loss L(θ) = L(Gθ#P), and thus we are allowed to study the
former instead.

Proposition 7.3 (Comparison of critical points). Given any loss L over P2(R
d), assume that

the first variation δPL exists, is C1, and ∇xδPL(P) ∈ L2(P, R
d) for all P ∈ P2(R

d). Define the
set of critical points

CP =
{

P ∈ P2(R
d)
∣

∣ ∇xδPL(P)(x) = 0 for P almost all x
}

.

Given any base distribution P ∈ P2(R
k) and any generator Gθ : R

k → R
d parameterized by

θ ∈ Θ, where Θ is a Hilbert space. Assume that Gθ(x) is Lipschitz in x for any θ, and C1 in θ

for any x, and that the gradient ∇θGθ at any θ is a continuous linear operator Θ → L2(P, Rd).
Define the set of generated distributions PΘ = {Gθ#P, θ ∈ Θ} and the set of critical points

CPΘ =
{

Gθ#P
∣

∣ θ ∈ Θ,∇θ L(Gθ#P) = 0
}

.

Then, CP ∩ PΘ ⊆ CPΘ. Furthermore, if the parametrization Gθ is the random feature functions

Ga ∈ H(Rk, Rd), and either Assumption 3.1 or 3.2 holds, then

CPΘ = CP ∩ PΘ.

Below is an example use case of this proposition.
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Example 7.2. Consider the GAN loss L(P) in (5.1) induced by discriminators that are ran-

dom feature functions (3.33). Assume that the target distribution P∗ ∈ P2,ac(R
d) is radially

symmetric, the parameter distribution ρ in (3.33) is radially symmetric in w conditioned
on any b, and that the activation σ is C1. Consider the point mass P = δ0. Then,

∇ δL

δP
(P)(0) = ∇

∫

k(x, x′)d(P − P∗)(x′)
∣

∣

x=0

=
∫∫

wσ′(w · 0 + b)σ(w · x′ + b)d(P − P∗)(x′)dρ(w, b)

=
1

2

∫∫

wσ′(b)σ(w · x′ + b)d(P − P∗)(x′)dρ(w|b)dρ(b)

+
1

2

∫∫

(−w)σ′(b)σ
(

(−w) · (−x′) + b
)

d(P − P∗)(x′)dρ(w|b)dρ(b)

= 0.

Thus, ∇δPL(P) = 0 for P almost all x, and P ∈ CP. It follows from Proposition 7.3 that
P is a critical point (P ∈ CPΘ) for any parameterized generator Gθ that can express the
constant zero function.

A probability measure P is called singular if P cannot be expressed as a density function

(P ∈ P(Rd)−Pac(Rd)). The critical points of an expectation-based loss are often singular
distributions such as δ0 from the previous example. The following toy model shows that
the critical points may consist of only global minima and saddle points that are singular.

Consider a one-dimensional setting. Model the generator by any function G ∈ L2(P, R),
where the base distribution P is conveniently set to be uniform over [0, 1]. Given any tar-
get distribution P∗ ∈ P2,ac(R) and any initialization G0 ∈ L2(P, R), consider the dynamics

d

dt
Gt(z) =

∫

x dπt

(

x
∣

∣Gt(z)
)

− Gt(z), (7.2)

where πt(·|·) is the conditional distribution of the optimal transport plan πt ∈ P(R × R)
between Pt = Gt#P and P∗. By Brennier’s theorem [117], since P∗ is absolutely continuous,
the optimal transport plan is unique.

Note that if Pt is also absolutely continuous, then Brennier’s theorem implies that the
transport plan is deterministic: π(·|x0) = δ∇φ(x0)

for some convex potential φ. Since

the first variation of W2
2 (P, P∗) is exactly the potential φ [101], the dynamics (7.2) when

restricted to {G | G#P ∈ Pac(R)} becomes equivalent to the gradient flow on the loss

L(G) = W2
2 (G#P, P∗).

Since the dynamics (7.2) is not everywhere differentiable, we consider stationary points
instead of critical points, and extend the definition of saddle points: A stationary point

G ∈ L2(P, Rd) is a generalized saddle point if for any ǫ > 0, there exists a perturbation h
(‖h‖L2(P) < ǫ) such that L(G + h) < L(G).

Proposition 7.4. For any target distribution P∗ ∈ P2,ac(R), the stationary points of the dynamics
(7.2) consist only of global minima and generalized saddle points. If G is a generalized saddle point,
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then G#P is a singular distribution, and there exists x such that (G#P)({x}) > 0. Moreover,
global convergence holds

lim
t→∞

W2(P∗, Pt) = 0,

if and only if the initialization P0 ∈ P2,ac(R).

This toy example confirms the intuition that despite the loss L(G) is nonconvex, global
convergence is still achievable. Moreover, all saddle points have one thing in common,
that part of the mass has collapsed onto one point.

7.3 Free generator: Mode collapse

The previous section has presented a general study of the critical points of models with
free generator, while this section focuses on a particular training failure that is common
to GANs, the mode collapse phenomenon. Mode collapse is characterized as the situation
when the generator Gt during training maps a positive amount of mass of P onto the same
point [66,77,90,100], and is identified as the primary obstacle for GAN convergence. This
characterization is analogous to the saddle points from Proposition 7.4 that are also singu-
lar distributions. Despite that in the setting of Proposition 7.4, the singular distributions
can be avoided and the toy model enjoys global convergence, how mode collapse occurs
in practice remains a mystery.

To provide some insight into the mode collapse phenomenon, we demonstrate with
toy examples two mechanisms that can lead to mode collapse.

Denote by U[x, y] the uniform distribution over the interval [x, y]. Let the base and
target distributions be P = P∗ = U[0, 1]. Model the generator by G(x) = ax, and discrimi-
nator by D(x) = bφ(x) for some φ to be specified. Consider the following GAN loss based
on (3.20):

min
a

max
b

L(a, b) =
∫

D d(G#P − P∗) +
c

2
|b|2,

where c ≥ 0 is the strength of regularization. Train a, b by continuous time gradient flow

d

dt
at = −∂a L(at, bt),

d

dt
bt = ∂bL(at, bt)

with initialization a0 > 0 and b0 = 0. Mode collapse happens when Gt#P = [−at, at]
becomes a singular distribution, i.e. when at = 0.

Case one. This example shows that a non-differentiable discriminator can lead to
mode collapse. Set

φ(x) = |x| = ReLU(x) + ReLU(−x)

2
.

Restricting to the half space {(a, b), a > 0}, the loss and training dynamics become

L(a, b) =
a − 1

2
b − cb2

2
,

d

dt
at = − b

2
,

d

dt
bt =

a − 1

2
− cb.
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Figure 7.1: Mode collapse during GAN training. Left: Case 1. Right: Case 2. The horizontal and vertical axes
are the parameters a and b. The red curves are trained with small regularization c and end up in mode collapse
a = 0, while the blue curves have larger c and converge to the stationary point (1, 0). The initialization is (2.5, 0)
and the learning rate for Case 2 is γ = 0.1.

Assume that c ∈ [0, 1). Then, the unique solution is given by

at = 1 + (a0 − 1)e−
ct
2

(

cos
(

√

1 − c2 t/2
)

+
c√

1 − c2
sin
(

√

1 − c2 t/2
)

)

,

bt =
a0√

1 − c2
e−

ct
2 sin

(

√

1 − c2 t/2
)

.

At time T = 2π/
√

1 − c2, we have

aT = 1 − (a0 − 1)e
− cπ√

1−c2 .

Thus, if a0 > 1 + ecπ/
√

1−c2
, then the trajectory at must hit the line {a = 0} at some

t ∈ (0, T), and thus mode collapse happens.

This process is depicted in Fig. 7.1 (left). In general, one can conjecture that mode
collapse may occur at the locations where ∇Dt is discontinuous.

Case two. This example shows that the accumulation of numerical error due to the
finite learning rate can lead to mode collapse. This result is analogous to [79] which shows
that if Pt is a point mass, numerical error can cause it to diverge to infinity.

Set φ = (1/2)x2. The loss and training dynamics become

L(a, b) =
a2 − 1

6
b − cb2

2
,

d

dt
at = − ab

3
,

d

dt
bt =

a2 − 1

6
− cb.
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Given a learning rate γ > 0, consider the discretized training dynamics

a(k+1)γ = akγ − γ
akγbkγ

3
, b(k+1)γ = bkγ + γ

( a2
kγ − 1

6
− cbkγ

)

for every k ∈ N.

In general, given a discrete dynamics in the form of θ(k+1)γ = θkγ + γ f (θkγ), one can

fit the sequence θkγ by the continuous time solution of an ODE (d/dt)θt = f̃ (θt), where

f̃ = f + γh for some function h. Assume that the two trajectories match at each t = kγ,

f (θkγ) = γ−1(θ(k+1)γ − θkγ)

= γ−1
∫ γ

0
f̃ (θkγ+s)ds =

∫ 1

0
( f + γh)(θ(k+s)γ)ds

=
∫ 1

0
f (θkγ) + sγ∇ f (θkγ) · f (θkγ) + γh(θkγ) +O(γ2)ds

= f (θkγ) +
γ

2
∇ f (θkγ) · f (θkγ) + γh(θkγ) +O(γ2).

It follows that
f̃ = f − γ

2
∇ f · f +O(γ2).

Plugging in θt = [at, bt], we obtain the following approximate ODE:

d

dt
at = − ab

3
+ γ

(

− ab2

18
+

a(a2 − 1)

36
− cab

6

)

,

d

dt
bt =

a2 − 1

6
− cb + γ

(

a2b

18
+

c(a2 − 1)

12
− c2b

2

)

.

Define the energy function

H(a, b) =
b2

2
+

a2 − 1

4
− log a

2
.

Then
d

dt
H(at, bt) = −cb2 + γ

(

(a2 + 1)b2

36
+

(a2 − 1)2

72
− c2b2

2

)

.

Thus, if c ≤ min(1/17, γ/144),

d

dt
H(at, bt) ≥

γ

72

[

(a2 + 1)b2 + (a2 − 1)2
]

> 0.

The energy H is strictly convex and its only minimizer is the stationary point (a, b) =
(1, 0) where H = 0. Assume that the initialization (a0, b0) 6= (1, 0) and a0 > 0. Since
the energy is non-decreasing, H(at, bt) ≥ H(a0, b0) > 0, and thus the trajectory will never
enter the set S0 = {(a, b), H(a, b) < H(a0, b0)}. Since S0 is an open set that contains (1, 0),
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there exists r > 0 such that the open ball Br((1, 0)) ⊆ S0. Since at ≥ 0, the trajectory (at, bt)
satisfies

d

dt
H(at, bt) ≥

γ

72

[

(a2 + 1)b2 + (a + 1)2(a − 1)2
]

≥ γr2

72

and thus

H(at, bt) ≥ H(a0, b0) +
γr2

72
t.

Consider the four subsets

S1 = {b ≤ 0, a > 1}, S2 = {b > 0, 0 < a ≤ 1},

S3 = {b ≥ 0, 0 < a < 1}, S4 = {b < 0, a ≥ 1}

that partition the space {(a, b) | (a, b) 6= (1, 0), a > 0}. Then, the trajectory (at, bt) re-
peatedly moves from S1 to S2 to S3 to S4 and back to S1. In particular, it crosses the line
{0 < a < 1, b = 0} for times t1, t2 . . . that go to infinity. It follow that

inf
t≥0

at ≤ inf
i∈N

ati
≤ inf

i∈N

exp

[

−2

(− log ati

2

)]

≤ inf
i∈N

exp
[

− 2H(ati
, bti

)
]

≤ inf
i∈N

exp

[

−2

(

H(a0, b0) +
γr2

72
ti

)]

= 0.

Hence, at converges to 0 exponentially fast, and then numerical underflow would lead to
mode collapse. This process is depicted in Fig. 7.1 (right).

In summary, these two examples indicate two possible causes for mode collapse. On
one hand, if the discriminator is non-smooth, then the gradient field ∇Dt may squeeze
the distribution Gt#P at the places where ∇Dt is discontinuous and thus form a singular
distribution. On the other hand, the numerical error due to the finite learning rate may
amplify the oscillatory training dynamics of Gt and Dt, and if this error is stronger than
the regularization on Dt, then the norm of Gt can diverge and lead to collapse.

Note that, however, if we consider two-time-scale training such that bt is always the
maximizer, then the loss becomes proportional to L(a) = (|a| − 1)2 or (a2 − 1)2, and train-
ing converges to the global minimum as long as a0 6= 0.

8 Discussion

This paper studied three aspects of the machine learning of probability distributions.
First, we proposed a mathematical framework for generative models and density es-

timators that allows for a unified perspective on these models. Abstractly speaking, the
diversity of model designs mainly arises from one factor, the vertical or horizontal way of
modeling discussed in Section 3.1. When applied to distribution representation, it leads to
the options of potential representation and transport representation, and the latter ramifies
into the free generator and fixed generator depending on whether a probabilistic coupling
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can be fixed. Similarly, when applied to the loss, it leads to three loss types, depending
on whether the difference is measured vertically or horizontally, with or without a fixed
target. Then, the rest of the design process is to try to realize each category in Table 3.1
by satisfying the various constraints of implementation, for instance, whether to compute
the density of G#P directly or indirectly, and which random path is chosen to achieve the
product coupling P × P∗. Thereby, all the major models are derived. By isolating the fac-
tors of distribution representation, loss type and function representation, this framework
allows for a more transparent study of training and landscape (who depend more on dis-
tribution representation and loss type) and generalization error (which depends more on
function representation).

Second, we studied the seeming conflict between the memorization phenomenon and
the generalization ability of the models, and reviewed our results that resolve this conflict.
On one hand, we confirmed that the models satisfy the universal approximation property
(some models even enjoy universal convergence) and thus memorization is inevitable.
On the other hand, function representations defined by expectations are insensitive to the

sampling error P∗ − P
(n)
∗ , so that the training trajectory tends to approximate the hidden

target distribution before eventually diverging towards memorization. In particular, our
results established generalization error bounds of the form O(n−α) with α = 1/4, 1/6, 1/8
for several models. There should be room for improvement, but for now we are content
that the models can escape from the curse of dimensionality. Considering that this gen-
eralization ability is mostly an effect of the function representations, it seems reasonable
to expect that good generalization is enjoyed by all models regardless of the choice of
distribution representation and loss type.

Third, we discussed the training dynamics and loss landscape. For the potential and
fixed generator representations, the convexity of their distribution parametrizations and
loss functions enable the estimation of the rates of global convergence. For the free genera-
tor representation, despite the loss is non-convex, we demonstrated that the critical points
have tractable forms, and also identified two general mechanisms common to the min-
max training of GANs that can provably lead to mode collapse. It seems worthwhile to
devote more effort in the design of models with the fixed generator representation, since
they are as expressive as the free generator models while their convexity greatly eases
training. It is not clear at this moment whether the product coupling P × P∗ is the best
choice for the fixed generators, and whether the diffusion SDE and linear interpolants are
the most effective random paths, so there is much to explore.

To conclude, we list a few interesting topics that have not been covered in this paper.

• Unstructured data: Our analysis was conducted only in the Euclidean space, whereas
most of the applications of distribution learning models involve unstructured data
such as images, texts and molecules. One thing of practical importance is that the
performance of generative models for unstructured data is judged by human per-
ception or perceptual loss [59], which can greatly differ from the Euclidean metric
and thus the W2 metric. To train the model to have higher fidelity, one approach is to
use the adversarial loss of GANs such that the hidden features of the discriminators
can be seen as an embedding space that captures fidelity. A related approach is to
rely on a pretrained feature embedding as in [53, 96].
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• Prior knowledge: For supervised tasks involving unstructured data, it is often help-
ful to instill prior knowledge from humans into the models through self-supervised
pretraining. A well-known example is the approximate invariance of image classifi-
cation with respect to color distortion and cropping, and models that are pretrained
to be insensitive to these augmentations can achieve higher test accuracy after train-
ing [18, 22, 42]. It could be beneficial to try to boost distribution learning models by
prior knowledge. One example is given by [131] such that a generative model for
sampling a thermodynamic system is designed to respect the spatial symmetry of
the system.

• Conditional generation: In practice, people are more interested in estimating condi-
tional distributions, e.g. generate images conditioned on text descriptions [94, 96].
Incorporating a context variable can be done by simply allowing an additional input
variable in the parameter functions [80], but it can also be accomplished with tricks
that minimize additional training [107].

• Factor discovery: For generative models, instead of using G#P as a blackbox for
sampling, it could be useful to train G in a way such that P has semantic meaning, e.g.
for image synthesis, given a random image G(Z), Z ∼ P of a face, one coordinate of Z
may control hair style and another may control head orientation. This unsupervised
task is known as factor discovery [110], and some solutions are provided by [23,48,62]
with application to semantic photo editing [74].

• Density distillation: The basic setting considered in this paper is to estimate a target
distribution given a sample set; yet, another task common to scientific computing is
to train a generative model to sample from a distribution (1/Z)e−V given a potential
function V. One popular approach [17, 70, 82, 131] is to use a modified normalizing
flow with the reverse KL-divergence.

9 Proofs

9.1 Loss function

Proof of Proposition 3.1. For any P∗, P ∈ Pac(Rd), the assumption on global minimum im-
plies that

lim
t→0+

1

t

(

L((1 − t)P∗ + tP)− L(P∗)
)

=
∫

f ′(P(x))(P(x)− P∗(x))dP∗(x) ≥ 0.

Define the map g(p) = p f ′(p). Then,

EP

[

g(P∗(x))
]

≥ EP∗
[

g(P∗(x))
]

.

Assume for contradiction that g is nonconstant on (0, ∞), then there exist a, b > 0 such

that g(a) < g(b). Let A, B ⊆ Rd be two disjoint hyperrectangles with volumes 1/2a and
1/2b. Define P as the uniform distribution over A, and P∗ as

P∗ = a1A + b1B.
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Then the above inequality is violated. It follows that g is constant and f has the form
c log p + c′. Finally, the assumption on global minimum implies that c ≤ 0.

9.2 Universal approximation theorems

Proof of Proposition 4.1. By Brennier’s theorem ([14] and [117, Theorem 2.12]), since both
P and P∗ have finite second moments and P is absolutely continuous, there exists an

L2(P, Rd) function G∗ such that G∗#P = P∗. By Lemma 9.1, there exists a sequence
{Gn}∞

n=1 ⊂ H that converges to G∗ in L2(P) norm. Hence,

lim
n→∞

W2(G#P, Gn#P) ≤ lim
n→∞

‖G − Gn‖L2(P) = 0.

The proof is complete.

The preceding proof uses the following lemma, which is a slight extension of the clas-
sical universal approximation theorem [51, 52] to cases with possibly unbounded base
distributions P. Such extension is needed since in practice P is usually set to be the unit
Gaussian.

Lemma 9.1. Given either Assumption 3.1 or 3.2, for any P ∈ P(Rd) and any k ∈ N, the space

H(Rd, Rk) is dense in L2(P, Rk).

Proof. It suffices to consider the case with output dimension k = 1. Denote H by Hσ to
emphasize the choice of the activation σ.

Given Assumption 3.1, the activation σ is ReLU. Define

σ∗(x) =
∫

σ(x + 1 + ǫ)− 2σ(x + ǫ) + σ(x − 1 + ǫ)dh(ǫ),

where h is a continuous distribution supported in [−0.1, 0.1]. Since ReLU is homogeneous,
σ∗ can be expressed by (3.33) with some bounded parameter function a, and thus σ∗ ∈
Hσ(R, R). Similarly, given Assumption 3.2, the activation σ is sigmoid. Define

σ∗(x) =
∫

σ(x + 1 + ǫ)− σ(x − 1 + ǫ)dh(ǫ).

Since the parameter distribution ρ is bounded below by some positive constant over the
ball B3, the function σ∗ can be expressed by (3.33) with bounded parameter function a, and
thus σ∗ ∈ Hσ(R, R).

Hence, we always have σ∗ ∈ Hσ(R, R) and it is integrable (‖σ∗‖L1(R) < ∞). Define

the subspace Hc
σ∗ ⊆ Hσ∗ of functions fa whose parameter functions a are compactly-

supported. Since Hc
σ∗ ⊆ Hσ, it suffices to show that Hc

σ∗ is dense in L2(P). Without

loss of generality, we denote σ∗ by σ. Since σ is L1, its Fourier transform σ̂ is well-defined.
Since σ is not constant zero, there exists a constant c 6= 0 such that σ̂(c) 6= 0. Perform
scaling if necessary, assume that σ̂(1) = 1.

It suffices to approximate the subspace C∞
c (Rd), which is dense in L2(P). Fix any f ∈

C∞
c . Its Fourier transform f̂ is integrable. Then, Step 1 of the proof of [52, Theorem 3.1]

implies that,
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f (x) =
∫

R

∫

Rd
σ(w · x + b)m(w, b) dwdb, m(w, b) = Re

[

f̂ (w)e−2πib
]

.

For any R > 0, define the signed distribution mR by

mR(w, b) = Re
[

f̂ (w)e−2πib
]

1[−R,R]d+1(w, b).

Define the function fR by

fR(x) =
∫

σ(w · x + b)dmR(w, b)

=
∫

aR(w, b)σ(w · x + b)dρ(w, b).

If Assumption 3.2 holds, then define the parameter function aR by the compactly sup-
ported function

aR(w, b) =
mR(w, b)

ρ(w, b)
.

Then,

‖ fR‖H ≤ ‖aR‖L2(ρ) ≤
‖ f‖L1(Rd)

√

minw,b∈[−R,R]d+1 ρ(w, b)
< ∞.

If Assumption 3.1 holds, then define aR by the following function over the l1 sphere
{‖w‖1 + |b| = 1}:

aR(w, b) =

∫ ∞

0 mR(λw, λb)dλ

ρ(w, b)
.

Then,

‖ fR‖H ≤ ‖aR‖L2(ρ) ≤
‖ f‖L1(Rd)

√

min‖w‖+|b|=1 ρ(w, b)
< ∞.

Thus, we always have fR ∈ Hc
σ(R

d, R).
The approximation error is bounded by

‖ f − fR‖2
L2(P) ≤

∫∫ ∫∫ ∫

hR(x, w, b, w′ , b′)dP(x)dwdw′dbdb′,

where

hR(x, w, b, w′ , b′) = |σ(w · x + b)|| f̂ (w)|1
Rd−[−R,R]d+1(w, b)

× |σ(w′ · x + b′)|| f̂ (w′)|1
Rd−[−R,R]d+1(w′, b′).

Note that 0 ≤ hR ≤ h0, and hR → 0 pointwise, and h0 is integrable
∫∫ ∫∫ ∫

h0(x, w, b, w′ , b′)dP(x)dwdw′dbdb′ ≤ ‖σ‖2
L1(R)‖ f̂ ‖2

L1(Rd)
< ∞.

Hence, the dominated convergence theorem implies that limR→∞ ‖ f − fR‖L2(P) → 0,

which completes the proof.
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Proof of Proposition 4.2. If Assumption 3.1 holds, then [109] implies that H is dense in C(K)
with respect to the supremum norm. Else, Assumption 3.2 holds, then [52] implies that H
is dense in C(K). Thus, we can apply [126, Proposition 2.1] to conclude the proof.

Proof of Proposition 4.3. It suffices to approximate the compactly-supported distributions,
which are dense with respect to the W2 metric. Fix any compactly-supported distribu-
tion P. Choose R > 0 such that the support is contained in BR. Assume that the base

distribution P has full support over R
d. The case without full support will be discussed

in the end.
By Brennier’s theorem [117, Theorem 2.12], there exists a convex function ψ over Rd

such that ∇ψ#P = P. For any δ > 0, we can define the mollified function ψδ

ψδ(x) = hδ ∗ ψ =
∫

h
(y

δ

)

ψ(x − y)dy =
∫

h

(

x − y

δ

)

ψ(y)dy,

where h is a mollifier (i.e. h is C∞, non-negative, supported in the unit ball, and
∫

h = 1).
Then, ψδ is C∞ and convex, and

lim
δ→0

W2(P,∇ψδ#P) ≤ lim
δ→0

‖∇ψ − hδ ∗ ∇ψ‖L2(P) = 0.

Thus, without loss of generality, we can assume that ψ is C∞.
Define the time-dependent transport map for τ ∈ [0, 1]

Tτ(x) = (1 − τ)x + τ∇ψ(x) = ∇
[

(1 − τ)
‖x‖2

2
+ τψ

]

,

which is C∞ in x and τ, and define the distributions Pτ = Tτ#P, which are known as
McCann interpolation. Then, define the vector field

Vτ = ∇ψ ◦ T−1
τ .

The Jacobian of Tτ is positive definite for τ ∈ [0, 1)

∇xTτ = Hess

[

(1 − τ)
‖x‖2

2
+ τψ

]

≥ (1 − τ)I,

so the inverse function theorem implies that the inverse T−1
τ exists and is C∞ over (x, τ) ∈

Rd × [0, 1), with

∇xT−1
τ ≤ 1

1 − τ
I, ∂τT−1

τ (x) = −∇xT−1(x) · ∂τTτ

(

T−1
τ (x)

)

.

Since limδ→0+ W2(P1−δ, P) = 0, we can replace the approximation target P by the sequence
{P1−1/n}, restrict τ to the interval [0, 1 − 1/n], and thus assume without loss of generality

that sup∇xT−1
τ < ∞. It follows that T−1

τ and Vτ are C∞ over Rd × [0, 1]. By Picard-
Lindelöf theorem, the ODE ẋτ = Vτ(xτ) has unique solution locally, and it is straightfor-
ward to check that xt = Tt(x0) is exactly the solution.
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For any r > R + 1 and any ǫ ∈ (0, 1), the universal approximation theorem [51] implies

that there exists a random feature function Vr,ǫ ∈ H(Rd+1, Rd) such that

‖V − Vr,ǫ‖C0(Br×[0,1]) < ǫ. (9.1)

Denote its flow map (3.5) by Gτ. For any x0 ∈ Br, let xτ, yτ denote the solutions to the
ODEs

ẋτ = V(xτ , τ), ẏτ = Vr,ǫ(yτ, τ), x0 = y0.

Recall that Vτ(xτ) is simply the vector x1 − x0, where x1 ∈ sprtP ⊆ BR. Then, for any
x ∈ Br − BR+1 and τ ∈ [0, 1],

x

‖x‖ · V(x, τ) ≤ −1,
x

‖x‖ · Vr,ǫ(x, τ) ≤ −1 + ǫ

and this remains true despite the surgeries we performed on V (the mollification of ψ and
the restriction of t to [0, 1 − 1/n]). It follows that the solutions xτ, yτ are contained in Br.
By [113, Theorem 2.8],

‖x1 − y1‖ ≤ ‖V − Vr,ǫ‖C0(Br×[0,1])
e
‖∇V‖

C0(Br×[0,1]) − 1

‖∇V‖C0(Br×[0,1])
< ǫ exp ‖∇V‖C0(Br×[0,1]).

Thus
W2

(

T1#P|Br , G1#P|Br

)

< ǫ exp ‖∇V‖C0(Br×[0,1]).

Meanwhile, for any m > 0, define the random feature function gm ∈ H

gm(x, τ) = m
∫

n σ
(

m(n · x − (r + 1))
)

d(h1/m ∗ USd−1)(n),

where USd−1 is the uniform distribution over the unit sphere and h1/m is a mollifier. Since
σ is sigmoid, as m → ∞, we have ‖gm(x)‖ → 0 uniformly over Br while ‖gm(x)‖ → ∞

uniformly over R
d − Br+2. Replace Vr,ǫ by Vr,ǫ − gm with m sufficiently large enough such

that (9.1) continues to hold, while for all x ∈ Rd − Br+2 and t ∈ [0, 1]

x

‖x‖Vr,ǫ(x, t) < 0.

It follows that ‖G1(x0)‖ ≤ ‖x0‖ for all x0 ∈ Rd − Br+2. Thus

W2

(

T1#P|
Rd−Br

, G1#P|
Rd−Br

)

<

∫

Rd−Br+2

(‖x‖+ r + 2)2dP(x).

Hence,

lim
r→∞

lim
ǫ→0

W2(P, G1#P)

≤ lim
r→∞

lim
ǫ→0

W2

(

T1#P|Br , G1#P|Br

)

+ W2

(

T1#P|
Rd−Br

, G1#P|
Rd−Br

)
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≤ lim
r→∞

lim
ǫ→0

ǫ exp ‖∇V‖C0(Br×[0,1]) +
∫

Rd−Br+2

(‖x‖+ r + 2)2dP(x)

≤ lim
r→∞

∫

Rd−Br+2

(‖x‖+ r + 2)2dP(x) ≤ 0.

We conclude that P is a limit point of G#P.
Finally, consider the general case when the support of the base distribution P is not

necessarily Rd. For any ǫ ∈ (0, 1), define Pǫ = (1 − ǫ)P + ǫN , where N is the unit

Gaussian distribution. Choose a velocity field Vǫ ∈ H(Rd+1, R
d) such that its flow Gτ

satisfies W2(P, G1#Pǫ) < ǫ. Then

W2(P, G1#P) ≤ W2(P, G1#Pǫ) + W2(G1#Pǫ, G1#P)

< ǫ + W2(G1#ǫN , G1#ǫP)

≤ ǫ + W2(ǫG1#N , ǫδ0) + W2(ǫδ0, ǫG1#P)

≤ ǫ + ǫ

(

√

∫

‖x‖2dN (x) +

√

∫

‖x‖2dP(x)

)

.

Taking ǫ → 0 completes the proof.

9.3 Generalization error

Proof of Proposition 6.2. This proof is a slight modification of the proof of Proposition 6.1

([126, Proposition 3.9]). By [126, Eq. (17)], with probability 1− δ over the sampling of P
(n)
∗ ,

|L(a)− L(n)(a)| ≤ 4
√

2 log 2d +
√

2 log(2/δ)√
n

‖a‖L2(ρ). (9.2)

Since the regularized loss is strongly convex in a, the minimizer a
(n)
λ exists and is unique.

Then

L
(

a
(n)
λ

)

≤ L(n)
(

a
(n)
λ

)

+
4
√

2 log 2d +
√

2 log(2/δ)√
n

∥

∥a
(n)
λ

∥

∥

L2(ρ)

≤ L(n)(a
(n)
λ

)

+
λ√
n

∥

∥a
(n)
λ

∥

∥

L2(ρ)

≤ L(n)(a∗) +
λ√
n
‖a∗‖L2(ρ)

≤ L(a∗) +

(

λ +
4
√

2 log 2d +
√

2 log(2/δ)√
n

)

‖a∗‖L2(ρ),

where the first and last inequalities follow from (9.2) and the third inequality follows from

the fact that a
(n)
λ is the global minimizer. Hence,

KL(P∗‖P
(n)
λ ) = L(a

(n)
λ )− L(a∗) ≤

2λ‖a∗‖L2(ρ)√
n

.

The proof is complete.
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9.4 Training and loss landscape

Proof of Proposition 7.3. Since Gθ is Lipschitz for any θ ∈ Θ, the set of generated distribu-

tions PΘ ⊆ P2(R
d), so the loss L(θ) = L(Gθ#P) is well-defined. Denote the evaluation of

any linear operator l over the Hilbert space Θ by 〈l, θ〉. By assumption, for any θ0, θ1 ∈ Θ,
the velocity field

〈∇θGθ0
, θ1〉 ∈ L2(P, R

k).

Thus, we can define a linear operator Vθ : Θ → L2(Gθ#P, Rd) by
∫

f (x) · 〈Vθ0
, θ1〉(x) d(Gθ#P)(x) :=

∫

f
(

G(x)
)

· 〈∇θGθ0
, θ1〉(x) dP(x),

where f ∈ L2(Gθ0
#P, Rd) is any test function. This operator is continuous since ‖Vθ‖op ≤

‖∇θ Gθ‖op < ∞.
For any perturbation h ∈ Θ,

d

dǫ
L(θ + ǫh)

∣

∣

ǫ=0
= lim

ǫ→0

1

ǫ

(

L(Gθ+ǫh#P)− L(Gθ#P)
)

= lim
ǫ→0

1

ǫ

∫

δL

δP

∣

∣

Gθ+ǫh#P
d(Gθ+ǫh#P − Gθ#P)

= lim
ǫ→0

1

ǫ

∫

δL

δP

(

Gθ+ǫh(x)
)

− δL

δP

(

Gθ(x)
)

dP(x)

= lim
ǫ→0

1

ǫ

∫

∇ δL

δP

(

Gθ(x)
)

·
(

Gθ+ǫh(x)− Gθ(x)
)

dP(x)

=
∫

∇ δL

δP

(

Gθ(x)
)

· 〈∇θ Gθ, h〉(x) dP(x)

=
∫

∇ δL

δP
(x) · 〈Vθ , h〉(x) d(Gθ#P)(x).

Hence, the loss L is differentiable in θ and the derivative is the following operator:

〈∇θ L(θ), ·〉 =
∫

∇ δL

δP
(x) · 〈Vθ , ·〉(x) d(Gθ#P)(x).

For any θ ∈ Θ such that Gθ#P ∈ CP,

〈∇θ L(θ), ·〉 =
∫

0 · 〈Vθ , ·〉(x) d(Gθ#P)(x) = 0.

Thus, CP ∩ PΘ ⊆ CPΘ.
For the second claim, we first verify that the random feature functions Gθ satisfy the

smoothness assumptions: For any a ∈ L2(ρ, Rd) and x, x′ ∈ Rk,

‖Ga(x)− Ga(x
′)‖ ≤

∫

‖a(w, b)‖|σ(w · x + b)− σ(w · x′ + b)|dρ(w, b)

≤ ‖a‖L2(ρ)‖σ‖Lip

√

∫

‖w‖2dρ(w, b)‖x − x′‖
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≤ C‖a‖L2(ρ)‖x − x′‖,

where C =
√

d if Assumption 3.1 holds and C = 1 if Assumption 3.2 holds. Thus, Ga is
Lipschitz. Meanwhile, since the parametrization a 7→ Ga is linear

〈∇aGa(x), a′〉 = Ga′ .

Then, for any a, a′ ∈ L2(ρ, R
d) and any x ∈ R

k

‖〈∇aGa(x), a′〉‖ = ‖Ga′(x)‖ ≤ ‖a′‖L2(ρ)

(

|σ(0)|+
√

∫

‖w‖2 + |b|2dρ(w, b)
√

‖x‖2 + 1

)

≤ C‖a′‖L2(ρ)

√

‖x‖2 + 1,

‖〈∇aGa(·), a′〉‖L2(P) = ‖Ga′‖L2(P) ≤ C

(

1 +

√

∫

‖x‖2dP(x)

)

‖a′‖L2(ρ),

where C =
√

d + 1 if Assumption 3.1 holds and C = 1 if Assumption 3.2 holds. Thus,

Ga(x) is C1 in a for any x, and ∇aGa is a continuous operator L2(ρ, Rd) → L2(P, Rd).
Consider any a ∈ L2(ρ, Rd) such that Ga#P ∈ CPΘ. Then, for any a′ ∈ L2(ρ, Rd),

0 =
∫

∇ δL

δP

(

Ga(x)
)

·
〈

∇aGa, a′
〉

(x) dP(x)

=
∫

a′(w, b) ·
∫

∇ δL

δP

(

Ga(x)
)

σ(w · x + b) dP(x)dρ(w, b).

If σ is Lipschitz, then the integrand is continuous in (w, b), so for any (w, b) ∈ sprtρ, we
have

∫

∇ δL

δP

(

Ga(x)
)

σ(w · x + b) dP(x) = 0.

Thus, if either Assumption 3.1 or 3.2 holds, the equality holds for all (w, b) ∈ Rk+1. It
follows that, by universal approximation theorem [52], ∇δPL(Ga(x)) = 0 for P almost
all x. Or equivalently, δPL(x) = 0 for Ga#P almost all x. Hence, the reverse inclusion
CPΘ ⊆ CP ∩ PΘ holds.

Proof of Proposition 7.4. For any G ∈ L2(P, Rd), let π be the optimal transport plan between
G#P and P∗. Define the function

m(x) =
∫

x′ dπ(x′
∣

∣x). (9.3)

Then, G is a stationary point if and only if G = m ◦G. If G#P is absolutely continuous, then
π is concentrated on the graph of ∇φ for some convex function φ by Brennier’s theorem
[117]. Then, m = ∇φ, and G#P = (m ◦ G)#P = ∇φ#(G#P) = P∗, so G is a global
minimum.

It follows that if G is a stationary point but not a global minimum, then P = G#P

must be singular. Since the cumulant function of P is non-decreasing, there are at most
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countably many jumps. Thus, P can be expressed as P = Pac + Psg where Pac is a den-
sity function (the Lebesgue derivative of the continuous part of the cumulant) and Psg

is a countable sum of point masses at the jumps xi. Since Psg is nonzero, there exists

x∗ ∈ sprtP such that P({x∗}) > 0. Let S+, S− be a disjoint partition of G−1({x∗}) such
that P(S+) = P(S−) = P(x∗)/2. Since P∗ is absolutely continuous, Brennier’s theorem
implies that the transport plan π(x0, x1) has the conditional distribution π(·|x1) = δ∇ψ(x1)

for some convex potential ψ. Since ∇ψ is non-decreasing, there exists an interval [x−, x+]
such that ∇ψ maps [x−, x+] to {x∗} and P∗([x−, x+]) = P({x∗}). Choose xo ∈ (x−, x+)
such that P∗([x−, xo]) = P∗((xo, x+]) = P({x∗})/2. Define the means

m− =
2

P({x∗})
∫ xo

x−
x dP∗(x), m+ =

2

P({x∗})
∫ x+

xo

x dP∗(x).

Then, x− < m− < xo < m+ < x+ and x∗ = (m− + m+)/2. For any ǫ, define the function

h = ǫ
(

(x+ − m+)1S+ + (x− − m−)1S−
)

and the map

∀x ∈ sprtP∗, F(x) =











(1 − ǫ)x∗ + ǫm−, if x ∈ [x−, xo],

(1 − ǫ)x∗ + ǫm+, if x ∈ (xo, x+],

∇ψ(x), else.

Then, for any ǫ ∈ (0, 1),

L(G)− L(G + h)

≥ 1

2

∫

|x −∇ψ(x)|2 − |x − F(x)|2dP∗(x)

=
1

2

∫ xo

x−
|x − x∗|2 − |x − (1 − ǫ)x∗ − ǫm−|2dP∗(x)

+
1

2

∫ x+

xo

|x − x∗|2 − |x − (1 − ǫ)x∗ − ǫm+|2dP∗(x)

=
ǫ2

2

∫ xo

x−
|x − x∗|2 − |x − m−|2dP∗(x) +

ǫ2

2

∫ x+

xo

|x − x∗|2 − |x − m+|2dP∗(x) > 0.

Thus, G is a generalized saddle point.
For any initialization G0 ∈ L2(P), let Gt be a trajectory defined by the dynamics (7.2).

Let mt be the function (9.3) defined by the optimal transport plan πt between Pt = Gt#P

and P∗. Then, the dynamics (7.2) can be written as

d

dt
Gt = mt ◦ Gt − Gt.

By cyclic monotonicity [117], the coupling πt must be monotone: for any (x0, x1), (x′0, x′1) ∈
sprtπt,

(x0 − x′0)(x1 − x′1) ≥ 0.
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Thus, the trajectory Gt is order-preserving

G0(z) < G(z′) → Gt(z) < Gt(z
′).

It follows that the cumulant function

F(z) := Pt

(

(−∞, Gt(z)]
)

=
∫

1Gt(z′)≤Gt(z)dP(z) =
∫

1G0(z′)≤G0(z)
dP(z)

is constant in t.
Since P∗ is absolutely continuous, its cumulant function F∗(x) = P∗((−∞, x]) is a con-

tinuous, non-decreasing function from R to [0, 1]. For any p ∈ [0, 1], define its inverse by

F−1
∗ (p) = argminx{F∗(x) ≤ p}.

It follows that for any z, the support of πt(·|Gt(z)) must lie in the closed interval

I(z) =
[

F−1
∗
(

Pt((−∞, Gt(z)))
)

, F−1
∗
(

Pt((−∞, Gt(z)])
)

]

=
[

F−1
∗
(

lim
ǫ→0+

F(z − ǫ)
)

, F−1
∗ (F(z))

]

.

It follows that for any z ∈ sprtP, the conditional distribution π(·|G(z)) is exactly P∗ con-
ditioned on the subset I(z). Hence, the function

mt ◦ Gt(z) =











∫

I(z) xdP∗(x)

P∗(I(z))
, if |I(z)| > 0,

F−1∗
(

F(z)
)

, else

is constant in t. It follows that the trajectory Gt satisfies

d

dt
Gt = m0 ◦ G0 − Gt

and thus
Gt = e−tG0 + (1 − e−t)m0 ◦ G0.

It follows that Pt converges to m0#P0. If P0 ∈ Pac, then as discussed above, m0 is exactly
the optimal transport map from P0 to P∗, and thus we have global convergence. Else, there
exists some x0 such that Po({x0}) > 0, so (m0#P0)({m0(x0)}) ≥ P0({x0}) > 0, and thus
m0#P0 is not absolutely continuous. Since P∗ ∈ Pac, we have m0#P0 6= P∗.
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