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Abstract. Shape optimization based on analytical shape derivatives is meanwhile a
well-established tool in engineering applications. For an appropriate discretization of
the underlying problem, the technique of algorithmic differentiation can also be used
to provide a discrete analogue of the analytic shape derivative. The present article is
concerned with the comparison of both types of gradient calculation and their effects
on a gradient-based optimization method with respect to accuracy and performance,
since so far only a few attempts have been made to compare these approaches. For this
purpose, the article discusses both techniques and analyses the obtained numerical
results for a generic test case from electromagnetic shaping. Since good agreement of
both methods is found, algorithmic differentiation seems to be worthwhile to be used
also for more demanding shape optimization problems.
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1 Introduction and motivation

Gradient-based optimization methods are frequently used in engineering applications. In
particular, shape optimization is quite indispensable for designing and constructing in-
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dustrial components. Many problems that arise in application, particularly in structural
mechanics and in the optimal control of distributed parameter systems, can be formulat-
ed as the minimization of functionals defined over a class of admissible domains.

Analytic shape optimization methods are known to be an efficient numerical tool
for free boundary computations in electromagnetic shaping, see e.g. [4, 6, 11, 29, 34–36].
In [15, 16], the first two authors developed first and second order algorithms for elliptic
shape optimization problems with additional functional constraints. A wavelet-based
boundary element method was used for the computation of the objective and related first
and second order shape derivatives. These algorithms have successfully been applied
in [17] for exterior electromagnetic shaping.

As an alternative approach to provide derivatives one may use Algorithmic Differen-
tiation (AD). AD yields exact derivative information for a function evaluation given as
computer code. A comprehensive introduction to AD can be found in [23].

In the context of optimal control problems, the forward mode of AD can be seen as
a discrete version of the sensitivity approach. Conversely, the reverse mode of AD in-
volves a discrete adjoint somehow related to the continuous adjoint equation. Despite
the fact that these parallels have already been hinted at in [22], a detailed theoretical
analysis of the relations between the exact discrete derivatives provided by AD and the
corresponding continuous derivative formulation is only available for optimal control
problems based on ODEs, see e.g. [19, 41]. The influences of the different derivative in-
formation, i.e., either the exact discrete derivatives of the evaluation program, provided
by AD, or the continuous derivatives provided by the adjoint equations, on the whole
optimization problem were studied in [21] for small ODE-based optimization problem-
s. In [31], the gradient computation for a rather small two-dimensional optimization
problem based on Navier-Stokes equations was considered using a Taylor-Hood finite
element discretization in space and an implicit Euler scheme in time.

The aim of the present article is to use first the analytic gradient derived from the
analytical setting. For the implementation of both, the objective and the analytical gradi-
ent, a wavelet-based boundary element method is chosen. Subsequently, it will be shown
that also the application of AD is feasible for this problem of medium to large-scale size.
Finally, the whole optimization process obtained with the analytic gradient is compared
with similar computations based on gradients generated by the AD tool ADOL-C [42].

This article is organized as follows. Section 2 repeats the main aspects about the
underlying model and analytic gradients in electromagnetic shaping. The discretization
of the unknown shape, the numerical solution of the boundary integral equation by a
wavelet-based boundary element method, and the optimization method for the resulting
finite dimensional optimization problem are discussed in Section 3. In Section 4, we
recall basic facts about the concept of algorithmic differentiation and its implementation.
Finally, Section 5 summarizes our comparison tests with various respects. In Section 6,
we state concluding remarks.
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2 Modelling and analytic shape calculus

2.1 Physical model

Let a cylindric vertical column of molten liquid metal with planar, simply connected
cross section Ω⊂R2 and fixed area V0 falling down in an electromagnetic field which is
created by vertical conductors. The frequency of the imposed current is very high so that
the magnetic field does not penetrate into the metal and the electromagnetic forces are
reduced to the magnetic pressure acting on the interface. They are in equilibrium with
surface tension forces of the matter. Following e.g. [4], the unknown equilibrium shape
is characterized by an overdetermined boundary value problem for the magnetostatic
Maxwell equation, see also [17, 29, 36] for more details.

In order to state the respective boundary value problem, we shall introduce the fol-
lowing quantities. Geometric quantities are the outward unit normal n= [n1,n2]⊤ of Ω,
the curvature κ of Γ :=∂Ω, and the volume of the domain V(Ω)= |Ω|. Physical quantities
are the magnetic permeability µ0, the surface tension of the liquid σ, the magnetic field B,
and the density current vector j0. As one readily verifies, in the situation under consider-
ation, the density current vector takes the form j0(x)= [0,0, j(x)]⊤ with x=[x1,x2]⊤∈R2,
and, hence, B(x)= [B1(x),B2(x),0]⊤.

In case of the equilibrium, the cross section Ω of the liquid metal and the related
magnetic field B satisfy the system of equations

∇×B=µ0j0 in (R2\Ω)×R, (2.1)

∇·B=0 in (R2\Ω)×R, (2.2)

B·
[

n
0

]
=0 on Γ×R, (2.3)

∥B∥2

2µ0
+σκ= p constant on Γ×R, (2.4)

B=O(∥x∥−2) as ∥x∥→∞, (2.5)

provided that Ω fullfils the volume constraint V(Ω)=V0. The unknowns of the problem
are the boundary Γ=∂Ω and the pressure constant p in the equilibrium condition (2.4).

2.2 Shape optimization problem

Introducing a scalar potential u : Ω 7→R, condition (2.2) implies the ansatz

B(x)=µ0∇×

 0
0

u(x)

=µ0

 ∂u
∂x2

(x)
− ∂u

∂x1
(x)

0

.
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Hence, in view of (2.1) and (2.5), the scalar potential u has to satisfy the following bound-
ary value problem in the exterior domain Ωc :=R2\Ω:

−∆u= j in Ωc,
u=0 on Γ,
u=O(1) as ∥x∥→∞,

∥∇u∥=O(∥x∥−2) as ∥x∥→∞.

(2.6)

After rescaling physical constants, determing the free surface Γ⋆ = ∂Ω⋆ is equivalent to
the shape optimization problem

E(Ω)→ min
Ω⊂R2

subject to V(Ω)=V0, (2.7)

where the (scaled) total energy is given by

E(Ω)= J(Ω)+AP(Ω).

Here, the volume and the perimeter of a domain are defined as usual

V(Ω)=
∫

Ω
dx, P(Ω)=

∫
Γ

dσx,

while the Dirichlet energy computes as

J(Ω)=−
∫

Ω
∥∇u∥2dx

with u being the solution of (2.6).
The magnetic field is assumed to be generated by a current flow in vertical live wires

at position xi and of amperage αi each, where i = 1,.. .,M. The sign of αi is determined
by the direction of the currents in the particular wires. We model the wires by constant
densities on circular conductors with finite diameter ε>0, that is

j(x)=
M

∑
i=1

αi

πε2 χBε(xi), x∈R2, (2.8)

where

Bε(xi) :=
{

x∈R2 :∥x−xi∥≤ ε
}

.

Motivated from a physical point of view, we introduce the additional assumption ∑M
i=1 αi=

0, which means that the overall flow in both directions is equilibrated.
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2.3 Computation of the objective

The exterior boundary value problem with respect to u can be reformulated as a bound-
ary integral equation, provided that we find an appropriate Newton potential Nj∈C1,1(R)
which satisfies the equation

−∆Nj = j in R2,

Nj =O(1) as ∥x∥→∞,

∥∇Nj∥=O(∥x∥−2) as ∥x∥→∞.

(2.9)

Then, the ansatz
u=Nj+v (2.10)

would yield the problem of seeking a harmonic function v which satisfies

∆v=0 in Ω,
v=−Nj on Γ,

v=O(1) as ∥x∥→∞,

∥∇v∥=O(∥x∥−2) as ∥x∥→∞.

(2.11)

We recall the following result from [17].

Lemma 2.1. Let the density j be modeled in accordance with (2.8). Then, a Newton potential
Nj ∈C1,1(R) which satisfies (2.9) is given by

Nj =
M

∑
i=1

Ni,j, where Ni,j(x)=

{
αi
4π

[
1− ∥x−xi∥2

ε2 −2logε
]

, x∈Bε(xi),

− αi
2π log∥x−xi∥, x ̸∈Bε(xi).

(2.12)

In particular, there holds

J(Ω)=
∫

Ω
−j(x)u(x)dx=

∫
supp j

−j(x)Nj(x)dx+
∫

Γ
Nj(x)

∂u
∂n

(x)dσ. (2.13)

Remark 2.1. By Lemma 2.1, the objective becomes numerically computable. Especially,
the behaviour of Nj at infinity as well as in a neighbourhood of Γ is shape independent of
ε provided that minM

i=1dist(Ω,xi)> ε. This implies that the integral over supp j on the
right-hand side of (2.13) is independent of the particular domain Ω and can be neglected
in computations.

2.4 Computation of the shape gradient

We next recall the shape derivatives of all functionals which appear in problem (2.7).
Applying, for example, the perturbation of identity approach by a smooth perturbation
field U∈

[
C2(R)

]2, i.e., using

Ωt =
{

x+tU(x) : x∈Ω
}

,
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the solution ut and the shape functionals J(Ωt), V(Ωt), P(Ωt) are well defined provided
that t is sufficiently small. By using standard results (cf. [39]), we arrive at the following
expression for the directional derivatives:

δJ(Ω)[U]=
∫

Γ
⟨U,n⟩∥∇u∥2dσ=

∫
Γ
⟨U,n⟩

[
∂u
∂n

]2

dσ,

δP(Ω)[U]=
∫

Γ
⟨U,n⟩κdσ, δV(Ω)[U]=

∫
Γ
⟨U,n⟩dσ.

(2.14)

We like to emphasize that only the Neumann data ∂u/∂n of the state enter the shape
gradient of the Dirichlet energy J(Ω). They need also to be computed for evaluating the
Dirichlet energy itself by (2.13), compare also Remark 2.1. Therefore, the additional effort
to compute the shape gradient is negligible.

Applying a Lagrange formalism by means of

L(Ω,λ) :=E(Ω)−λ
(
V(Ω)−V0

)
yields immediately the following theorem.

Theorem 2.1 (Necessary condition). If Ω⋆ is optimal, then there exists a λ⋆ ̸=0 such that{
∥∇u∥2+Aκ−λ⋆

}∣∣∣
Γ⋆
≡0 and |Ω⋆|=V(Ω⋆)=V0.

Remark 2.2. Theorem 2.1 is the key theorem to establish the equivalence of the free sur-
face problem (2.1)–(2.5) to the shape optimization problem (2.7): The necessary condi-
tion is just the additional equilibrium condition for the overdetermined boundary value
problem. In particular, the Lagrange multiplier λ⋆ determines the (a-priori) unknown
equilibrium pressure, which is constant along Γ⋆.

3 Discretization and optimization methods

3.1 Boundary variation and finite approximation of the shapes

The outer security set of the shape problem (2.7) is given as D=R2 (the hold all set). As
admissible domains, we consider all bounded domains Ω⊂D⊂R2 that are star-shaped
with respect to 0 and of smoothness C2.

Our setup enables us to identify the domain Ω∈C2 with a parametric representation
of its boundary Γ= ∂Ω. Due to the star-shapedness, this parametric representation can
be chosen in polar coordinates

Γ :=
{

γ(ϕ)= r(ϕ)er(ϕ) : ϕ∈ [0,2π]
}

,

where r∈C2
per([0,2π]) is a positive function with r(ϕ)≥δ>0 for all ϕ∈ [0,2π],

C2
per([0,2π])=

{
r∈C2([0,2π]) : r(i)(0)= r(i)(2π), i=0,1,2

}
, (3.1)
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and er(ϕ)=[cosϕ,sinϕ]⊤ denotes the unit vector in the radial direction with respect to Ω.
As standard variation for perturbed domains Ωε and boundaries Γε, respectively, we

introduce a function δr∈C2
per([0,2π]) and set

rε(ϕ)= r(ϕ)+εδr(ϕ),

where γε(ϕ)= rε(ϕ)er(ϕ) is always a Jordan curve.

Remark 3.1. The main advantage of the present setup is an embedding of the shape
problem into a Banach space setting. That is both, the shapes and their increments, can be
viewed as elements of C2

per([0,2π]). Notice that the analytical shape gradients (2.14) can
be expressed in polar coordinates, too (cf. [17]).

We shall next proceed with a Ritz-Galerkin approximation of the shape optimiza-
tion problem (2.7) under consideration. Namely, we can express the smooth function
r∈C2

per([0,2π]) by the Fourier series

r(ϕ)= a0+
∞

∑
n=1

an cos(nϕ)+a−n sin(nϕ).

Hence, it is reasonable to take the truncated Fourier series

rN(ϕ)= a0+
N

∑
n=1

an cos(nϕ)+a−n sin(nϕ) (3.2)

as approximation of r. We mention that also other boundary representations like B-
splines might be considered as well. The advantages of our approach is an exponential
convergence rN → r if the shape is analytical, see also [18].

3.2 Augmented Lagrangian method

Since rN from (3.2) has the 2N+1 degrees of freedom a−N ,a1−N ,. . .,aN , we arrive at a finite
dimensional optimization problem in the open set

AN :=
{

a−N ,a1−N ,. . .,aN ∈R : rN(ϕ)>0, ϕ∈ [0,2π]
}
⊂R2N+1.

Thus, via the identification rN⇐⇒ΩN , the finite dimensional approximation of the shape
optimization problem (2.7) reads as

E(ΩN)→min subject to V(ΩN)=V0. (3.3)

The associated gradients have to be computed with respect to all directions

δr=cos(Nϕ),cos
(
(N−1)ϕ

)
,. . .,sin

(
(N−1)ϕ

)
,sin(Nϕ).
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For the solution of the discrete shape optimization (3.3), we consider an augmented
Lagrangian method for equality constraints

Lc(Ω,λ)=E(Ω)−λ
(
V(Ω)−V0

)
+

c
2
(
V(Ω)−V0

)2, (3.4)

where the constant c is appropriately chosen (we use c=10 in our numerical experiments).
The optimization algorithm for the augmented Lagrangian method reads as follows:

• initialization: choose initial guesses λ(0) and Ω(0) for λ⋆ and Ω⋆, respectively,

• inner iteration: solve
Ω(n+1)=argminLc(Ω,λ(n))

with initial guess Ω(n),

• outer iteration: update

λ(n+1)=λ(n)−c
(
V(Ω)−V0

)
.

In the inner iteration, we employ a quasi-Newton scheme, which is updated by the in-
verse BFGS-rule without damping. The step size is determined by a quadratic line-search.
We refer the reader to, e.g., [10, 25] for more details on the used numerical optimization
algorithms.

3.3 Boundary integral equation

In view of (2.13) and (2.14), it suffices to provide the normal derivative ∂u/∂n of the
state in order to compute the objective and its gradient, i.e., for performing a first order
optimization method.

The ansatz (2.10) leads to the normal derivative ∂u/∂n according to

∂u
∂n

=
∂v
∂n

+
∂Nj

∂n

with the Newton potential Nj defined in (2.12) and v satisfying the boundary value prob-
lem (2.11). We introduce the modified single layer operator V and the double layer operator
K defined by

(Vu)(x) :=− 1
2π

∫
Γ

log∥x−y∥
{

u(y)−
∫

Γ

u(z)
|Γ| dσz

}
dσy+

∫
Γ

u(z)
|Γ| dσz,

(Ku)(x) :=
1

2π

∫
Γ

⟨ny,x−y⟩
∥x−y∥2 u(y)dσy.

Then, the normal derivative of v is given by the Dirichlet-to-Neumann map

V ∂v
∂n

=
(1

2
−K

)
Nj. (3.5)
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Notice that V :H−1/2(Γ)→H1/2(Γ) is a symmetric, elliptic, and continuous operator while
1
2 −K : H1/2(Γ)→H1/2(Γ) is continuous. We refer to, e.g., the books [37, 40] for the varia-
tional formulation and further details of the operators V and K.

3.4 Boundary element method

Boundary element methods provide a common tool for the solution of boundary integral
equations, see, for example, [32, 33]. In general, cardinal B-splines are used as ansatz
functions in the Galerkin formulation. But discretizing the boundary integral equation
(3.5) with respect to such single-scale bases yields densely populated system matrices. In
combination with the ill-posedness of the single layer operator, the numerical solution is
of at least quadratic complexity.

The crucial idea of the wavelet-based boundary element method is a change of bases,
i.e., applying appropriate wavelet bases instead of the traditional single-scale bases. On
the one hand, based on the well-known norm equivalences of wavelet bases, the diag-
onals of the system matrices define optimal preconditioners, cf. [7, 9, 38]. On the oth-
er hand, the resulting quasi-sparse system matrices can be compressed without loss of
accuracy such that the complexity for the solution of the boundary integral equations
becomes of linear complexity, cf. [8, 26].

For all the details of the current implementation, including error estimates, we re-
fer the reader to [17, 26]. In particular, to achieve the optimal rate of convergence, we
discretize the Neumann data by piecewise constant wavelets and the Dirichlet data by
piecewise linear wavelets. Finally, we end up with a discretized system of equations

VLvL =
(1

2
ML−KL

)
G−1

L uL,

where L refers to the discretization level corresponding to 2L boundary elements. This
system can be solved by e.g. an iterative conjugate gradient method. We like to stress that
the stiffness matrices VL, KL, the mass matrix GL with respect to piecewise linear ansatz
and test functions and the mass matrix ML with respect to piecewise linear ansatz and
piecewise constant test functions, as well as the right-hand side uL depend on the actual
shape.

Remark 3.2. We want to mention that, in the present approach, the discretization of the
shape and the discretization of the state equation are decoupled. Consequently, they can
be chosen independently according to accuracy requirements.

4 Basics on algorithmic differentiation and ADOL-C

Suppose that the function F : Rn 7→Rm, y= F(x) which describes an arbitrary algebraic
mapping from Rn to Rm is defined by an evaluation procedure in a high-level computer

OPEN ACCESS

DOI https://doi.org/10.4208/jms.v52n3.19.01 | Generated on 2025-04-09 07:43:36



236 K. Eppler, H. Harbrecht, S. Schlenkrich et al. / J. Math. Study, 52 (2019), pp. 227-243

language like Fortran or C. In the application considered here, F is equal to the aug-
mented Lagrangian function Lc(Ω,λ), including the computation of the discretized total
energy E(Ω) and of the discretized volume V(Ω). Therefore, n=2N+1 and m=1.

The technique of algorithmic differentiation provides derivative information of ar-
bitrary order for the code segment in the computer that evaluates F(x) within working
accuracy [24]. For this purpose, the basic differentiation rules such as, e.g., the product
rule are applied to each statement of the given code segment. This local derivative in-
formation is then combined by the chain rule to calculate the overall derivatives. Hence,
the code is decomposed into a long sequence of simple evaluations, e.g., additions, mul-
tiplications, and calls to elementary functions such as sin(x) or exp(x), the derivatives
of which can easily be calculated. Exploiting the chain rule yields the derivatives of the
whole sequence of statements with respect to the input variables.

The so-called forward mode of AD propagates the derivatives together with the func-
tion evaluation. Alternatively, one may propagate the derivative information from the
dependents y to the independents x. This yields the so-called reverse mode of AD. Over
the last decades, extensive research activities led to a thoroughly understanding and anal-
ysis of the two basic modes of AD, where the complexity results are based on the opera-
tion count OF of the underlying vector function F. Using the forward mode of AD, one
column of the Jacobian ∇F can be calculated at no more than five times OF [23]. One row
of ∇F, e.g. the gradient of a scalar-valued component function of F, is theoretically ob-
tained also at no more than five times OF by using the reverse mode in its basic form [23].
It is important to note that this bound for the reverse mode is completely independent of
the number n of input variables. Hence, for the application considered here, the reverse
mode is especially attractive since we have a scalar-valued target function with m=1.

Beside the theoretical foundation, numerous AD tools have been developed, e.g.
TAF [20], ADOL-C [42], Tapenade [27], for the Automatic Differentiation of Fortran and
C/C++ codes. Several AD tools have matured over the past years to a state that they are
able to produce tangent and adjoint linearisations of large and unstructured Fortran and
C/C++ codes. Additional information about tools and literature on AD can be found on
the web-page of the AD-community www.autodiff.org.

So far the AD tools use either the technique of source transformation or the approach
of operator overloading. In source transformation, given a source code for evaluating a
function, the AD tool generates a new source code for evaluating the required derivative
information. This technique is especially well suited for the automatic differentiation
of Fortran 77 codes because this programming language allows an appropriate analy-
sis of the code. Subsequently, a new source file is generated for computing the desired
derivative objects. It is used, for example, by the packages TAF and Tapenade. It is
considerably more difficult to obtain the required information for an efficient AD imple-
mentation, e.g., a dependency analysis, for C/C++ codes, due to language features like
pointers, class definitions, and templates. Therefore, currently an implementation of AD
based on operator overloading is better suited for programs written in C or C++.

The key ingredient of AD by overloading is the concept of an active variable that con-
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tains the usual real part that corresponds to the double computation performed during
the function evaluation and a logging facility. All variables that may be considered as
differentiable quantities at some time during the program execution must be of an active
type. These are all variables that lie on the way from the input variables, i.e., the indepen-
dents, to the output variable. In data flow terminology, the set of active variable names
must contain all its successors in the dependency graph. Variables that do not depend
on the independent variables but enter the calculation, for example, as parameters, may
remain one of the passive types double, float, or int.

The derivative calculation is then based on an internal function representation, which
is created during a separate so-called tracing phase of the function evaluation. All calcu-
lations, involving active variables that occur during the tracing, are recorded on a sequen-
tial data set called trace. That is, for each operation, the involved variables, the operation
itself and, if required, additional real values are stored. Once this internal function repre-
sentation is generated, appropriate drivers can be applied for the derivative calculation.
The AD-tools ADOL-C [42] and CppAD [2], for example, are based on this technique.

For the optimization results presented in this article, we use the AD-tool ADOL-C
to provide the exact discrete derivative information for the evaluation program. Due
to the particular discretization of the total energy by a boundary element method, the
derivatives computed by ADOL-C, i.e., the gradient of the discretized augmented La-
grangian function Lc(Ω,λ) with respect to the input values a−N ,a1−N ,. . .,aN , correspond
to the computation of the shape derivatives given in (2.14). Details on the agreement, the
corresponding memory requirement, and runtime effects are discussed in the subsequent
section.

5 Numerical results

5.1 Benchmark problem

The numerical shape optimization algorithm has been implemented as C++ program. For
our numerical tests, we set N=32, which yields 65 design parameters, cf. Subsection 3.1,
and L=10, which yields 1024 boundary elements, cf. Subsection 3.4.

The unit circle is chosen as initial shape as seen in the left plot of Figure 1. For the
augmentation of the Lagrangian, the setting c=10 leads to satisfying results, cf. (3.4).

Error estimates for the numerically computed objective and shape gradient have been
proven in [17]. Namely, it holds

|J(Ω)− JL(Ω)|.h3
L,

|δJ(Ω)[δr]−δJL(Ω)[δr]|.h2
L,

where h=2−L refers to the mesh size of the boundary element discretization.
Since the shape optimization problem at hand is well-posed, see [30], the convergence

theory from [18] applies. As known from the literature, optimal solutions of problem
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Figure 1: Shape deformation of the test problem.

(2.6), (2.7) are analytical shapes, cf. [29]. Thus, the Fourier series (3.2) provides an expo-
nential approximation. Consequently, a reasonable overall accuracy can be guaranteed
for the particular discretization. Nevertheless, we have to deal with about 90 million
operations per function evaluation.

5.2 Case studies for optimization runs

We shall compare the analytic shape gradient and the discrete shape gradient provided
by algorithmic differentiation. In some cases, the usage of these different derivative ob-
jects yields also different numerical results, see, e.g., [1]. For this reason, we compare
here the result of the optimization procedure using either analytic gradient information
or discrete gradients provided by AD.

The optimization is performed by 50 outer iterations with five inner iterations each.
The graph of the optimized shape is displayed in the right plot of Figure 1.

We performed an optimization run with analytic gradient evaluation and another
one with gradients generated by AD. The convergence history of the objective function
for the optimization run using AD gradients is shown in Figure 2. Here, the objective
function value is plotted for all inner and outer iterations. The result is almost equal
to the optimization with analytic gradient evaluation. Consequently, the discrepancy
of the objective function values, obtained during the optimization process by applying
either analytic gradients or AD gradients, almost vanishes as seen in Figure 3. This figure
shows the absolute difference of the function value, computed with AD gradients, and
the function value, computed with analytic gradients, for all inner and outer iterations.
As can be seen, the obtained results during the optimization coincide up to numerical
noise.
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Figure 2: Convergence history of AD-based optimization.
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Figure 3: Discrepancy of optimization runs using analytic gradients and AD gradients.

5.3 Comparison of gradients

In accordance with (2.13) and (2.14), the main challenge to compute the target function as
well as the analytical gradient is the provision of the normal derivative ∂u/∂n. It is given
in its analytic form in (3.5) as

V ∂v
∂n

=
(1

2
−K

)
Nj.

As described in Subsection 3.3, the discretization of the analytical gradient yields a sys-
tem of equations given by

VLvL =
(1

2
ML−KL

)
G−1

L uL, (5.1)

where L refers to the discretization level, corresponding to N = 2L boundary elements.
The boundary element matrices VL, KL, the mass matrix GL with respect to piecewise
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linear ansatz and test functions and the mass matrix ML with respect to piecewise linear
ansatz and piecewise constant test functions, as well as the right-hand side uL depend
on the actual shape. The representation (5.1) can be used for approximating both, the
objective (2.13) and the analytical shape gradient (2.14), during the optimization.

In case of AD, stating explicitly the dependency on the shape for the discretized ver-
sion, one obtains as solution

vL(AN)=V−1
L (AN)

(1
2

ML(AN)+KL(AN)
)

G−1
L (AN)uL(AN).

Thus, the application of algorithmic differentiation, i.e., the chain rule, yields the deriva-
tive computation

∂vL(AN)

∂AN
=

(
∂V−1

L (AN)

∂AN

(1
2

ML(AN)−KL(AN)
)

G−1
L (AN)uL(AN)

)
·
((1

2
∂ML(AN)

∂AN
− ∂KL(AN)

∂AN

)
G−1

L (AN)uL(AN)

)
·
(∂G−1

L (AN)

∂AN
uL(AN)

)
· ∂uL(AN)

∂AN
.

One obtains therefore a quite complicated representation of the derivative of the dis-
cretized variables vL with respect to the design variables AN . Despite this rather sophis-
ticated representation of the derivative information, one finds for our application that
the analytic gradient and the discrete gradient, provided by algorithmic differentiation,
coincide up to discretization error accuracy. Figure 4 displays the convergence history of
the gradient evaluated by AD (left graph) and its discrepancy to the analytic gradient for
each outer iteration (right graph).
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Figure 4: Convergence history and comparison of gradients.
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This result also confirms the linear convergence rate of the gradient based optimiza-
tion method. The evaluation time of the analytical gradient requires the same key in-
gredient like the computation of the function value. Hence, the computing time of 0.3
seconds for one analytic gradient corresponds to the time required to evaluate the func-
tion value itself. The computation of one gradient using ADOL-C requires 5.3 seconds.
This yields a ratio of 18 of the computing time for one AD gradient and the computing
time of the underlying function. Hence, the gradient computation by ADOL-C is roughly
four times slower than the theory outlined in Section 4 predicts.

6 Concluding remarks

Due to well-posedness and the considered accuracy level, one achieves a good agree-
ment of the analytically computed shape gradient projected to the finite dimensional
ansatz space and the AD gradient. We observed that the difference increase on coarser
discretization levels, where the AD gradient provides the ‘correct’ gradient for the fully
discretized problem. This reflects the fact that the discretization error of the analytical
shape gradient is larger on coarser levels.

The analytical gradient is computed ‘almost for free’ in our particular situation. This
might be one reason that the ratio between analytical gradient computation and AD gra-
dient computation is a bit worser than predicted by the theory. The bottleneck for the AD-
application is the generation of the two stiffness matrices VL and KL in (5.1), more pre-
cisely, the related matrix compression of the wavelet-based boundary element method.
The efficient exploitation of the particular structure of the compression pattern will be
thus a subject of future work.
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