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Abstract. The efficient generation of meshes is an important component in the numer-
ical solution of problems in physics and engineering. Of interest are situations where
global mesh quality and a tight coupling to the solution of the physical partial dif-
ferential equation (PDE) is important. We consider parabolic PDE mesh generation
and present a method for the construction of adaptive meshes in two spatial dimen-
sions using stochastic domain decomposition that is suitable for an implementation
in a multi– or many–core environment. Methods for mesh generation on periodic do-
mains are also provided. The mesh generator is coupled to a time dependent physical
PDE and the system is evolved using an alternating solution procedure. The method
uses the stochastic representation of the exact solution of a parabolic linear mesh gen-
erator to find the location of an adaptive mesh along the (artificial) subdomain in-
terfaces. The deterministic evaluation of the mesh over each subdomain can then be
obtained completely independently using the probabilistically computed solutions as
boundary conditions. A small scaling study is provided to demonstrate the parallel
performance of this stochastic domain decomposition approach to mesh generation.
We demonstrate the approach numerically and compare the mesh obtained with the
corresponding single domain mesh using a representative mesh quality measure.
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1 Introduction

The numerical solution of many partial differential equations (PDEs) benefits from the
construction of an adaptive grid automatically tuned by the solution itself. The quasi–
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Lagrangian (QL), r–refinement, approach used here keeps the number of mesh points and
the mesh topology fixed, moving the mesh continuously in time using a moving mesh
PDE (MMPDE). The solution of the mesh PDE gives a continuous mesh transformation
between an underlying computational co-ordinate and the required physical co-ordinate.
Both the mesh and the solution are obtained at each time step. The QL approach can
be implemented in either an alternating or simultaneous manner. The simultaneous QL
approach treats the MMPDE and physical PDE as one large coupled system. At each time
the new mesh and new solution on that mesh are found concurrently. Hence the mesh
reacts instantly to changes in the physical solution. This highly nonlinear coupling may
destroy exploitable structure which exists in the discretization of the physical PDE alone.
The alternating approach uses the current mesh and physical solution to update the mesh
alone, this new mesh then facilitates the computation of the updated physical solution.
This introduces a time lag in the mesh as the new mesh is based only on the current
physical solution. Computationally, however, this decoupling reduces the size of the
discrete problem. Furthermore, the solver becomes more modular; the mesh and physical
solvers can be called in alternating fashion; each solver can be designed to take advantage
of the structure inherent in each subsystem. The simultaneous approach is generally
thought to be more difficult and expensive to solve and hence the alternating method
(or a variant thereof) is typically used in two or more spatial dimensions. As we will
see below, the alternating approach fits well with the stochastic domain decomposition
approach we describe to parallelize our computations.

The general QL approach has shown great promise in recent years, solving problems
in meteorology [7], relativistic magnetohydrodynamics [14], combustion and convection
in a porous medium [9], groundwater flow and transport of nonaqueous phase liquids
[16], Stefan problems [4], semiconductor devices [30], and viscoelastic flows [31], phase
change problems [3], multiphase flows [26], and low speed viscous flow [18], to name just
a few. A thorough overview of PDE based moving mesh methods may be found in [15].

Recently, motivated by the alternating solution method, one of the authors has stud-
ied the parallel solution of the nonlinear MMPDE alone using a Schwarz based domain
decomposition approach. In [12], Haynes and Gander propose and analyze classical,
optimal and optimized Schwarz methods in one spatial dimension at the continuous
level. A numerical study of classical and optimized Schwarz domain decomposition for
2D nonlinear mesh generation has been presented in [13]. In [10], a monolithic domain
decomposition method, simultaneously solving a linear mesh generator coupled to the
physical PDE, was presented for a shape optimization problem. The authors used an
overlapping domain decomposition approach to solve the coupled problem.

In this paper, we present an efficient, parallel strategy for the solution of the moving
mesh PDE based on a stochastic domain decomposition method proposed by Acebrón
et al. [1]. The motivation is two–fold. First, we wish to reduce (by parallelization) the
potential burden of having to solve an additional (mesh) PDE. Second, it is often mesh
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quality, not an extremely accurate solution of the mesh PDE, which is important. As we
will see, the stochastic domain decomposition approach is a means to these ends.

A stochastic domain decomposition (SDD) method to find adaptive meshes for steady
state elliptic problems was presented in [5]. The SDD approach, as originally formulated
in [1], uses a probabilistic form of the point–wise solution for linear elliptic boundary
value problems. The point–wise solution is evaluated only at the introduced subdomain
interfaces. The approximation of the solution at each interface point is obtained indepen-
dently using Monte–Carlo simulations and these evaluations are then used as Dirichlet
boundary conditions for the (deterministic) subdomain solves which can be computed
in parallel. The mesh PDEs are generally not solved to high accuracy. Mesh quality, al-
lowing an accurate representation of the physical PDE, is what is generally required. The
parallel algorithm and lower accuracy requirement makes the proposed SDD method
computationally attractive. The lower accuracy requirement allows one to terminate the
Monte–Carlo simulations well before convergence.

The existence of a stochastic representation of the exact solution of linear parabolic
problems allowed us to extend the SDD approach to (linear) parabolic mesh generators
in [5]. There we considered the time relaxed form of the Winslow–Crowley variable dif-
fusion mesh generation method, first described in [29]. Only the solution of the mesh
generator for a specified analytic mesh density function was considered.

Here we consider the generation of time dependent meshes where the mesh PDE is
coupled to a physical PDE of interest. The coupling to the physical solution u, is pro-
vided by, for example, an arc-length type function ρ =

√
1+α(u2

x+u2
y). The parameter

α is chosen to provide a balanced coupling with the physical PDE. Furthermore, due to
a stochastic representation for the solution of PDEs subject to periodic boundary con-
ditions, we give, for the first time, a method to generate meshes for periodic problems
using a stochastic domain decomposition approach.

In Section 2 we describe the time dependent mesh generator used in this paper and
how the coupling between the physical PDE and mesh PDE is handled for the global,
single domain solution. Furthermore, we describe a mesh generator for a spatially peri-
odic problem. Section 3 provides some background on the stochastic solution of linear
time dependent, periodic and non-periodic PDEs and describes how this is used to gen-
erate a non-iterative domain decomposition algorithm. We precisely illustrate how to
obtain approximations to the point–wise solution of the mesh PDEs using the stochastic
approach and finally how to generate the meshes using the stochastic domain decompo-
sition framework. In Section 4 we illustrate the algorithm for various examples including
Burgers’ equation in both the non-periodic and periodic situations and the shallow water
equations on a periodic domain. A small scaling study is provided to show the poten-
tial of the approach. We conclude with some observations and items for further study in
Section 5.
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2 Mesh generation approach

As discussed extensively in the references above, in 1D the QL r–refinement approach
generates a physical mesh x∈ [0,1], via a continuous mesh transformation x(ξ), where
ξ ∈ [0,1] is an underlying computational variable. A guiding principle is the equidistri-
bution principle of de Boor (in 1D) [8, 11, 28], which finds a mesh transformation x(ξ) by
enforcing ∫ ξ

0
ρ(t,u, x̃)dx̃= ξ

∫ 1

0
ρ(t,u, x̃)dx̃,

where the mesh density function ρ gives a measure of the level of difficulty or error in the
physical solution u. The physical solution u may be given analytically or as the solution
of a physical PDE. In differential form, the mesh transformation may be found as the
solution of the quasilinear BVP

d
dξ

(
ρ(x)

dx
dξ

)
=0, x(0)= a, x(1)=b. (2.1)

Here we have suppressed the t and u dependency in ρ. This gives the physical co–
ordinates xi = x(ξi) as a function of a (typically uniform) computational grid ξi. This
BVP can be written as a linear BVP in terms of the inverse mesh transformation ξ(x) as

d
dx

(
1

ρ(x)
dξ

dx

)
=0, ξ(a)=0,ξ(b)=1. (2.2)

The linearity of the BVP for ξ(x) makes it easier to solve (in some sense) and in higher
dimensions has the additional benefit that it is easy to say concrete things about the well–
posedness of the mesh transformation. As will be discussed below, the linearity of a mesh
generator is also a prerequisite for the stochastic domain decomposition method. The
obvious disadvantage is that the solution of the BVP for ξ(x) does not give the mesh lo-
cations in the physical variables x. One alternative is to transform the physical PDE from
the physical variables to the new computational co-oordinates. Alternatively, inverse lin-
ear interpolation could be used to find the x locations by projecting ξ(x) onto a uniform
ξ grid.

Indeed, in [5] we constructed our stochastic DD method for steady state mesh gener-
ation using the natural 2D extension of the linear BVP (2.2). In the time dependent case
considered in this paper we will construct a stochastic DD method directly in the physi-
cal co-ordinates. The time stepping will provide a natural linearization as we will show
below.

A natural way to derive the BVPs above (and which extends to higher dimensions)
is as the Euler–Lagrange equations whose solutions minimize certain functionals of the
required mesh transformations. For example minimizing the functional

I[x]=
1
2

∫ 1

0

(
ρ(x)

dx
dξ

)2

dξ
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leads to the quasi–linear BVP (2.1) above. A minimizer ξ(x) of the functional

I[ξ]=
1
2

∫ b

a

1
ρ(x)

(
dξ

dx

)2

dx

satisfies the linear BVP (2.2) above.
For time dependent PDEs it is useful to use a formulation which involves the mesh

speed, such a mesh equation is called a moving mesh PDE (MMPDE). If ρ= ρ(t,x) the
functional I[ξ] becomes

I[ξ]=
1
2

∫ b

a

1
ρ(t,x)

(
dξ

dx

)2

dx.

As described in [15], the direction ξ which reduces I[ξ] is given by the gradient flow
equation

dξ

dt
=

P
τ

d
dx

(
1

ρ(t,x)
dξ

dx

)
,

where τ > 0 is a user specified constant which determines the response of the mesh to
changes in ρ (or u). Here P is a positive definite differential operator that we choose with
some flexibility.

We can switch the roles of x and ξ in the gradient flow equation to get a mathemati-
cally equivalent moving mesh PDE in the physical variables x:

∂x
∂t

=
1
τ

∂x
∂ξ

P
(

ρ
∂x
∂ξ

)−2(∂x
∂ξ

)−1 ∂

∂ξ

(
ρ

∂x
∂ξ

)
.

Hence this resulting equation would retain the nice well–posedness properties.
If we choose P=(ρxξ)

2, then we get

∂x
∂t

=
1
τ

∂

∂ξ

(
ρ

∂x
∂ξ

)
, (2.3)

which is referred to as MMPDE5. Our focus here is the generation of time dependent
meshes by using this nonlinear parabolic mesh generator.

The coupling to the physical PDE and physical solution u is provided by the mesh
density function ρ(x,u). In a typical deterministic implementation, the mesh and physical
solution are updated by discretizing MMPDE5 and the physical PDE in time and either
solving the resulting large nonlinear system of algebraic equations for both the mesh and
physical solution simultaneously or proceeding in an alternating fashion. The alternating
or MP approach [15] used in this paper freezes ρ in the time discretized mesh equation at
the current un to compute the next mesh xn+1 and then integrates the physical PDE, using
mesh xn+1, to obtain un+1. The stochastic solution representation given below requires
the PDE to be linear. This MP procedure effectively linearizes the MMPDE (2.3).

OPEN ACCESS

DOI https://doi.org/10.4208/jms.v48n2.15.02 | Generated on 2024-12-19 08:12:07



A. Bihlo, R. D. Haynes, E. J. Walsh / J. Math. Study, 48 (2015), pp. 106-124 111

In two spatial dimensions we use the mesh generator

xt =
∇ξρ

ρ
·∇ξ x+∇2

ξ x, yt =
∇ξρ

ρ
·∇ξy+∇2

ξy,

x(0,ξ)= x0=Lxξ, y(0,ξ)=y0=Lyη,
(2.4)

where ξ = (ξ,η) and ∇ξ = (∂/∂ξ,∂/∂η), which we solve over the square computational
domain Ωc=[0,1]×[0,1]. For the sake of simplicity we assume a rectangular domain Ωp=
[0,Lx]×[0,Ly], where Lx>0, Ly>0. At the actual boundaries of the computational domain
Ωc, we employ the fixed boundary conditions x(t,0,η)=0, x(t,1,η)= Lx, y(t,ξ,0)=0 and
y(t,ξ,1)=Ly. The remaining boundary conditions, x(t,ξ,0), x(t,ξ,1), y(t,0,η) and y(t,1,η)
are found by solving the respective one-dimensional forms of the mesh generator (2.4)
along these boundaries.

Note that the mesh generator (2.4) is obtained by first dividing the two dimensional
version of (2.1) by ρ and then relaxing the equation in time. We have found in prac-
tice that this form of a relaxed mesh generator gives better meshes than by relaxing the
original version (2.1). In the discrete formulation, these two possible time relaxed mesh
generators are related by a scaled time step.

We are also interested in mesh generation on periodic domains. It has been pointed
out in [27], that in order to use the mesh generator (2.4) on a rectangular periodic domain
of physical dimensions Ωp=0,Lx[×[0,Ly[,

x(t,1,η)= x(t,0,η)+Lx, y(t,ξ,1)=y(t,ξ,0)+Ly,

one should express the mesh and physical PDEs in terms of the displacements X=x−Lξ,
where L=diag(Lx,Ly), x=(x,y) and X=(X,Y), which are directly periodic on Ωc. In this
new set of variables, the mesh generator (2.4) becomes

Xt =
∇ξρ

ρ
·∇ξ X+∇2

ξ X+
ρξ

ρ
(1+Lx), Yt =

∇ξρ

ρ
·∇ξY+∇2

ξY+
ρη

ρ
(1+Ly).

An alternative to the procedure proposed in [27] works directly in the original vari-
ables x and y and properly extends the computational domain using the periodicity of the
grid. This allows one to evaluate the derivatives of x on the boundaries without having
to take into account the actual size of the physical domain Ωp. As this approach allows
one to work with the physical coordinates x directly, we use this second method in this
paper.

3 Stochastic domain decomposition and mesh generation

In this section we describe stochastic domain decomposition methods for mesh genera-
tion on periodic and non-periodic domains and describe an implementation which cou-
ples the mesh generator to the solution of a physical PDE.
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3.1 Stochastic domain decomposition for linear PDEs

The main idea of stochastic domain decomposition as proposed in [1] (see also [2]) rests
on the stochastic representation of the exact solution to linear elliptic (resp. parabolic)
boundary value problems. This now classical connection between stochastic analysis and
boundary value problems was first uncovered by Kakutani [19,20] for the Dirichlet prob-
lem using Brownian motion. The monographs [21, 24] provide a more recent exposition.

Numerically evaluating this stochastic representation of the exact solution of a linear
boundary value problem using Monte–Carlo methods enables one to compute the point-
wise numerical solution to the underlying PDE. From the practical point of view, this is
fundamentally different to solving a PDE using, say, finite differences, which requires the
computation of the numerical solution over the entire domain even if it is only needed in
a single point.

Notoriously, Monte–Carlo methods converge slowly, with convergence rates propor-
tional to N−1/2 where N is the number of Monte–Carlo simulations, if pseudo-random
numbers are used [25]. Hence they play a role mostly for higher dimensional problems,
where they can be shown to outperform deterministic methods.

An alternative is to use them in the context of domain decomposition. Namely, split-
ting the entire domain into non-overlapping subdomains, the stochastic solution can be
used to compute the point-wise interface solutions between the subdomains. Once these
interface solutions are determined with sufficient accuracy, they act as Dirichlet bound-
ary values for the individual subdomains. The PDE solution over each subdomain is
computed deterministically using an appropriate discretization of the underlying PDE.
The main advantage of this method is that iteration, as is required in classical domain
decomposition methods (such as Schwarz methods), can be completely avoided. Also,
the solutions over each subdomain can be obtained in parallel and thus the method is
suitable for massively parallel computing architectures.

In [5, 6] we have shown that the stochastic domain decomposition technique is an
effective way for the parallel generation of adaptive meshes. A main motivator for the
approach is that it is, in general, not necessary to compute the meshes with high accuracy.
What is important is to obtain meshes with high mesh quality. It was shown in [5, 6]
that even meshes that are not accurate solutions to the mesh PDEs can have good mesh
quality. This characteristic of mesh generation enables an increase in the efficiency of the
stochastic domain decomposition method.

3.2 Stochastic analysis for Dirichlet boundary value problems

In this section we give the specifics of the stochastic analysis required to generate the
solution of linear parabolic boundary value problems. Specifically, we consider system
(2.4) where the unknowns x = x(t,ξ,η) and y = y(t,ξ,η) are required on the time-space
domain given by [0,T]×Ωc, with T being some finite final time. System (2.4) is supple-
mented with the boundary conditions x(t,ξ,η)|∂Ωc = f (t,ξ,η) and y(t,ξ,η)|∂Ωc = g(t,ξ,η),
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for given continuous functions f and g. The initial values are x(0,ξ,η) = x0(ξ,η) and
y(0,ξ,η)=y0(ξ,η).

It is important to stress here that (2.4) is nonlinear if the mesh density function is
a function on the physical domain, that is ρ = ρ(t,x,y). However, as was indicated in
Section 2, in the practical implementation it is possible to freeze ρ at time layer tn when
computing the mesh at time tn+1. This effectively boils down to a linearization of the
mesh generator (2.4). It is thus appropriate to assume that ρ in (2.4) is not a function of x
and y but of some auxiliary variables x̃ and ỹ (and time), i.e. we assume that ρ=ρ(t, x̃,ỹ).
Then this mesh generator becomes linear and allows for a stochastic representation of its
exact solution [23], given by

x(t,ξ,η)=E
[

x0(Φ(t))1[τ∂Ωc>t]

]
+E
[

f (t−τ∂Ωc ,Φ(τ∂Ωc))1[τ∂Ωc<t]

]
,

y(t,ξ,η)=E
[
y0(Φ(t))1[τ∂Ωc>t]

]
+E
[

g(t−τ∂Ωc ,Φ(τ∂Ωc))1[τ∂Ωc<t]

]
,

(3.1a)

where the stochastic process Φ(t) satisfies the stochastic differential equation (SDE)

dΦ(t)=
1
ρ
∇ξρdt+

√
2dW(t). (3.1b)

In (3.1), E[·] is the expected value, τ∂Ωc is the first exit time of the stochastic process Φ(t)
starting at (ξ,η), W is two-dimensional Brownian motion and 1 is the indicator function.
See [21, 23, 24] for a more extensive discussion of this subject. We note that the stochastic
solution (3.1a) has contributions from both the specific initial condition and boundary
values of the mesh generator.

3.3 Stochastic analysis for periodic problems

Freezing ρ the mesh generator (2.4) is in the form of a system of linear, second order,
parabolic PDEs. In Section 3.2 we wrote the stochastic point–wise solution assuming a
Dirichlet boundary value problem. On periodic domains, the celebrated Kac–Feynman
formula can be used to obtain the stochastic representation of the mesh generator (2.4),
see e.g. [23]. In this case, only initial values x(0,ξ,η)= x0(ξ,η) and y(0,ξ,η)=y0(ξ,η) are
given. The solution to (2.4) can then be written as

x(t,ξ,η)=E[x0(Φ)], y(t,ξ,η)=E[y0(Φ)], (3.2)

where Φ satisfies the same stochastic differential equation as given in (3.1b).

3.4 Stochastic domain decomposition on periodic and non-periodic domains

While the stochastic solutions (3.1) and (3.2) can in principle be used to obtain the solution
to the parabolic mesh generator at any time t>0, our mesh generation problem is slightly
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more complicated. The mesh density function ρ is linked to the solution of the physical
PDE system, which changes over time. For this reason, in practice we use (3.1) and (3.2)
only to advance the mesh over a single time step, ∆t, from tn to tn+1.

We discretize the SDE (3.1b) using the Euler–Maruyama method,

Φk+1=Φk+
∇ξρ

ρ

∣∣∣∣
(tn,Φk)

∆ts+
√

2∆tsW(0,1), (3.3)

with constant time step ∆ts=∆t/M, k=0,.. .,M−1, where W is a two-dimensional vector
of Gaussian distributed random numbers with zero mean and variance one. In other
words, one time step of size ∆t is split into M sub-time steps. This splitting is necessary so
that the use of an excessively small time step ∆t for the solution of the physical differential
equation can be avoided. The mesh density function ρ remains fixed at time step tn. The
derivatives ∇ξρ are approximated with finite differences.

In practice, the starting points of the stochastic process at time tn, Φ0, coincide with
the grid points where the stochastic solution is required. Once the new values Φk+1 at
time tk+1 are computed, both ρ and ∇ξρ have to be approximated at Φk+1. For this,
bi-linear interpolation is used. The procedure is repeated until ΦM is computed, which
coincides with the value of the stochastic process at time tn+1. We then evaluate the
initial values of x0 and y0 given at time tn at the new location ΦM using bi-cubic interpo-
lation. This gives the values x̃0(Φ

M) and ỹ0(Φ
M), which approximate the actual values

x0(Φ
n+1) and y0(Φ

n+1) that are needed in both the solutions (3.1a) (for the first term)
and (3.2).

Solving Dirichlet boundary value problems stochastically, a boundary test has to be
applied to determine whether the process Φk+1 has left the domain within the sub-time
step [tk,tk+1]. A linear Brownian bridge is used as interpolating process as discussed
in [17]. If the process left the domain before time tn+1, the integration can be stopped and
the second term in (3.1a) can be evaluated. No such boundary test is needed for periodic
domains.

In order to estimate the expected value using the arithmetic mean, the procedure is
repeated N times.

3.5 Local subdomain problem

In the domain decomposition solution to the problem (2.4), we only use the stochastic
solutions (3.1) and (3.2) to generate the subdomain interface solutions for the Dirichlet
and periodic problems. Once these solutions are computed, the solution to the mesh
generation problem on the individual subdomains becomes a Dirichlet boundary value
problem. In order to solve this problem, the original parabolic mesh generator (2.4) has
to be solved with the Dirichlet boundary conditions

x|∂Ωi
c
= f i,
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where ∂Ωi
c denotes the boundary of the i–th subdomain of the computational domain and

f i are the values obtained either from the stochastic representation (3.1) or the boundary
conditions on the global mesh where ∂Ωi

c
⋂

∂Ωc 6=∅.

For the local subdomain solver we discretize (2.4) using centered finite differences for
the spatial derivatives and an implicit Euler method for the time stepping.

3.6 Domain decomposition solution

The domain decomposition strategy relies on combining the stochastic evaluation along
the interfaces with the deterministic subdomain solver. At each time step, the stochas-
tic solution procedure provides the Dirichlet boundary conditions for the deterministic
single-domain solver. This allows the computation of the new mesh at the time step tn+1.
The solution values can either be evaluated stochastically at each (ξi,ηj) along the artifi-
cial interfaces or a sample can be evaluated with the rest obtained by interpolation. An
optimal placement strategy for the interpolation nodes was presented in [5].

Once the new mesh is computed, the mesh density function ρ(tn+1,x,y) is evaluated
on the new mesh and the solution procedure is repeated with the new mesh density
function.

3.7 Mesh quality

As mentioned previously, there is a crucial difference between the SDD method as pro-
posed in [1] for the computation of numerical solutions of general linear elliptic boundary
value problems and for the mesh generation case. The latter does not necessarily require
a very accurate solution of the mesh equation; here, mesh quality is more important.

There are several ways of assessing the quality of an adaptive mesh and different
mesh quality measures based on properties such as equidistribution and alignment have
been derived. See [15] for an extensive discussion of mesh quality measures. In [5] it was
proposed to use the geometric mesh quality measure for the assessment of the quality
of meshes generated using the SDD method. The geometric mesh quality measure is
defined by

Q(K)=
1
2

tr(JT J)√
det(JT J)

, (3.4)

where J is the Jacobian of the transformation x=x(ξ,η), y=y(ξ,η) and K is a mesh element
in Ωc. The quantity Q(K) measures how far the mesh cell is from being equilateral, that
is we have Q(K)≥1 with Q(K)=1 precisely for an equilateral cell.

In [5] we argued that using this measure is appropriate as meshes computed using
stochastic methods show several kinks when they are far away from convergence. Thus,
the values of Q(K) are in general larger for such meshes compared to grids that are com-
puted using deterministic methods. Of course, the absolute value of Q(K) depends on
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the mesh density function used and the underlying problem for which an adaptive grid
is computed. We are therefore not interested in the absolute value of Q(K) but only in
the ratio between QSD(K), the geometric mesh quality measure of the reference mesh ob-
tained on a single domain, and QSDD(K), the geometric mesh quality measure of the grid
obtained using the SDD method. If this ratio R(K)=QSD/QSDD is close to one, the mesh
obtained from the SDD method is a good approximation to the single domain mesh.

The quantity R is a function of each individual mesh cell. In the next section, for the
sake of convenience, we only list the maximum and mean values, Rmax and Rmean over
all mesh cells.

4 Numerical results

In this section, numerical experiments in 2D are presented to demonstrate the effective-
ness of the domain decomposition algorithm and its suitability for problems with both
Dirichlet and periodic boundary conditions.

4.1 Burgers’ equation with Dirichlet boundary conditions

The first test problem considered is the scalar form of the two-dimensional Burgers’ equa-
tion

ut+(u2/2)x+(u2/2)y+ν(uxx+uyy)=0, (4.1)

[x,y]∈Ωp = [0,1]×[0,1]. The initial and Dirichlet boundary conditions are chosen such
that the exact solution is

u=
(

1+exp
(

x+y−t0

2ν

))−1

,

and we consider the case of a moderately small diffusion coefficient ν = 0.005. In this
problem the smaller ν, the more convection dominates, and large gradients develop and
move to the boundaries for t>0, thus requiring a higher concentration of mesh points to
resolve the oblique shock that propagates with time. This is a common test problem in
the moving mesh literature [22,32]. The coordinate transformation (x,y)=(x(ξ,t),y(ξ,t))
is used to rewrite the 2D Burgers’ equation in QL form in computational coordinates, and
this is discretized in the computational domain using centered differences in space and a
trapezoidal rule for the time integration. This is coupled to the mesh generator (2.4). Both
(2.4) and (4.1) are then solved alternately in time (the MP procedure) for each subdomain
using an arc-length mesh density function

ρ=
√

1+α(u2
x+u2

y),

with α=10/‖u2
x+u2

y‖∞. The Dirichlet boundary conditions (at the subdomain interfaces)
are found by evaluating (3.1a) using (3.3). At the physical boundary a 1D version of (2.4)
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(a) t=0.75 (b) t=1.00 (c) t=1.25

(d) t=0.75 (e) t=1.00 (f) t=1.25

Figure 1: Evolution of mesh for Burgers’ equation using the stochastic DD method with 2×2 (top) and 4×4
(bottom) subdomains.

is solved. We integrate the finite difference discretization of (4.1) using 41×41 grid points
on the physical domain Ωc = [0,1]×[0,1] with a time step ∆t= 0.001. The initial time is
t0=0.25. We use N=10000 Monte–Carlo simulations with a time step ∆ts=∆t/10 for the
solution of the stochastic differential equation (3.3). In Fig. 1 the evolution of the mesh is
shown when the physical domain is split into 2×2 and 4×4 subdomains.

We report the mesh qualities and the l∞-norm comparing the exact solution to the
numerical solution at times t f =0.75, t f =1 and t f =1.25 in Table 1. The geometric mesh
quality measure is computed for the single domain solution and compared to the DD
solution obtained by splitting the physical domain into 2×2, 3×3 and 4×4 subdomains.

Table 1 shows that all the l∞-errors on meshes generated using SDD are approximately
equal to the errors found on the associated single domain meshes. Also, the ratios of the
geometric mesh quality measures of the single domain and DD solutions are close to one
for all times, indicating that the DD solutions are a good approximation to the single
domain solution.
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Table 1: Mesh quality and l∞-errors for Burgers’ equation with Dirichlet boundary conditions.

t f lSD
∞ l2×2

∞ R2×2
max R2×2

mean l3×3
∞ R3×3

max R3×3
mean l4×4

∞ R4×4
max R4×4

mean

0.75 0.027 0.023 0.99 0.99 0.031 0.95 0.98 0.026 0.95 0.98
1 0.031 0.033 0.99 0.99 0.320 0.97 0.99 0.034 0.97 0.99

1.25 0.030 0.031 1 1 0.35 0.92 1 0.24 1 1

The scaling properties of the SDD algorithm are reported in Table 2. For this study
we solved Burgers’ equation with Dirichlet boundary conditions on a varying number of
subdomains, including 2×2, 4×4, 8×8 and 16×16 subdomains. Three series of experi-
ments with a total of N×N=81×81, N×N=97×97 and N×N=113×113 points covering
the physical domain were carried out.

Table 2: Time in seconds required per time step to construct the mesh for Burgers’ equation with Dirichlet
boundary conditions.

Ntotal×Ntotal SD 2×2 4×4 8×8 16×16
81×81 0.22 0.45 0.33 0.24 0.12
97×97 0.34 0.56 0.40 0.27 0.16

113×113 0.84 0.68 0.51 0.35 0.17

It can be seen from Table 2 that increasing the number of processors (and thus the
number of subdomains) indeed leads to a decreased computational time per time step
required to construct the adaptive mesh. For a total of N×N = 81×81 mesh points, the
solution on 16×16 subdomains is computationally cheaper than the single domain so-
lution. Increasing the number of total points to N×N=97×97 makes both the solution
on 8×8 and 16×16 subdomains cheaper compared to the single domain solution. If
N×N=113×113 total points are used, the domain decomposition solution is computa-
tionally faster than the single domain solution for all numbers of subdomains.

The results of Table 2 thus demonstrate the potential of the stochastic domain de-
composition algorithm to be significantly more efficient in generating adaptive meshes
for problems with a large number of total points provided that enough parallel compute
cores are available.

4.2 Periodic mesh generation

In order to demonstrate the generation of meshes over periodic domains we first study
the case of a prescribed mesh density function. In particular, we revisit the five ring
problem in the form considered in [5]. That is, we consider an analytically specified
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(a) single domain solution (b) solution with 4×4 subdomains

Figure 2: A comparison of the single domain mesh and the mesh obtained for 4×4 subdomains for the five ring
problem.

velocity function of the form

u= tanh
[

R
(

x2+y2− 1
8

)]
+tanh

[
R

((
x− 1

2

)2

+

(
y− 1

2

)2

− 1
8

)]

+tanh

[
R

((
x− 1

2

)2

+

(
y+

1
2

)2

− 1
8

)]
+tanh

[
R

((
x+

1
2

)2

+

(
y− 1

2

)2

− 1
8

)]

+tanh

[
R

((
x+

1
2

)2

+

(
y+

1
2

)2

− 1
8

)]
,

on the domain Ωp=[−1,1[×[−1,1[, with R=30. A simple arc-length mesh density func-
tion

ρ=
√

1+α(u2
x+u2

y),

with α=0.2 is used. The physical domain is discretized using 41×41 grid points, the final
integration time is t=0.05 with a time step ∆t=5×10−4. Since this time step is quite small,
we use ∆ts =∆t for the solution of the discretized SDE (3.3) as well. Again, N = 10000
Monte–Carlo simulations were used. In Fig. 2 the mesh generated on a single domain is
compared to the mesh generated by splitting the physical domain into 4×4 subdomains.

On inspection these meshes appear to be of similar quality and the computed mea-
sures of mesh quality confirm this, with Rmax=1 and Rmean=1 for the 2×2, 3×3 and 4×4
configurations. The mesh quality is identical to the single domain reference case.
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4.3 Burgers’ equation on a periodic domain

We repeat here the integration of Burgers’ equation (4.1) but now using a doubly periodic
domain of size Ωp=[0,2π[×[0,2π[. The initial condition is

u=u0+Asin(x+y−2π),

where u0 = 0.75 and A = 0.5. The diffusion coefficient is ν = 0.001. Again, 41×41 grid
points are used and the time step of the integration was ∆t=0.005, which coincides with
the time step used in the SDE (3.3). Only N=1000 Monte–Carlo simulations were used.
The results of the integration at times t=0.85 and t=1 are collected in Table 3.

Table 3: Mesh qualities for Burgers’ equation with periodic boundary conditions.

t f R2×2
max R2×2

mean R3×3
max R3×3

mean R4×4
max R4×4

mean

0.85 0.99 1 1 1 0.99 1
1 0.99 1 0.99 1 0.99 1

The results in Table 3 confirm that the domain decomposition solution leads to meshes
with almost the same geometric mesh quality as the single domain reference solution.

4.4 Shallow water equations on a periodic domain

In this final example we solve the system of shallow-water equations in nondimensional
form

ut+uux+vuy+hx =0,

vt+uvx+vvy+hy =0,

ht+uhx+vhy+h(ux+vy)=0,

(4.2)

where (u,v) is the two-dimensional velocity field and h is the height of a water column
over a constant reference level. For this problem, periodic boundary conditions are con-
sidered.

We discretize system (4.2) in computational coordinates using centered differences
for the spatial derivatives and a trapezoidal rule for the time integration. The physical
domain is of size Ωp =[0,2π[×[0,2π[, which is discretized using 41×41 grid points. The
time step of the integration was ∆t=0.005, which again coincides with the time step used
for the solution of the SDE (3.3). We found that using N=1000 Monte–Carlo simulations
gives sufficiently good results.

The initial condition is a pile of water of height h= 12.5 in the center of the domain
over a base level at height h=10. This initial condition simulates the breaking of a dam,
i.e. the evolution of the water level once the walls holding the pile of water have been
removed.

OPEN ACCESS

DOI https://doi.org/10.4208/jms.v48n2.15.02 | Generated on 2024-12-19 08:12:07



A. Bihlo, R. D. Haynes, E. J. Walsh / J. Math. Study, 48 (2015), pp. 106-124 121

(a) single domain solution (b) solution with 4×4 subdomains

Figure 3: A comparison of the single domain solution and that obtained for 4×4 subdomains for the shallow
water equations at t=0.15.

Since the initial pile of water decays rapidly into gravity waves, we kept the inte-
gration times short and report our mesh quality results only at t= 0.05 and t= 0.15. A
comparison of the mesh for the single domain solution and that computed for 4×4 sub-
domains can be seen in Fig. 3.

As we saw in the previous examples the meshes appear to be of similar quality and
this is substantiated by the computed mesh quality measures which can be found in
Table 4. The mesh qualities obtained from the domain decomposition solution are very
close to that of the single domain reference solution.

Table 4: Mesh quality for the shallow-water equations with periodic boundary conditions.

t f R2×2
max R2×2

mean R3×3
max R3×3

mean R4×4
max R4×4

mean

0.05 0.99 1 0.97 1 0.99 1
0.15 0.99 1 0.99 1 0.99 1

5 Conclusion

Originally, the SDD method has been proposed in [1] for the parallel solution of linear
elliptic boundary value problems. In [5, 6] we have extended the method to the parallel
generation of adaptive meshes for prescribed mesh density functions. In this paper we
have for the first time demonstrated the use of stochastic domain decomposition for the
generation of adaptive moving meshes for time dependent PDE problems. Furthermore,
we have provided the first stochastic domain decomposition method for the generation
of meshes on periodic domains.

Our algorithm hinges on the alternating MP procedure for PDE based mesh genera-
tion in higher dimensions. A fully parallel algorithm would result if the physical PDE
was also solved in parallel using domain decomposition or other approaches.
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Indeed the linearization provided by the MP procedure has the undesirable affect of
decoupling the physical solution from the mesh. This effect can be reduced using a MkP
procedure. This produces a mesh which more closely satisfies the equidistribution princi-
ple. In this case, we approximate xn+1 by a sequence of sub-meshes xn+1,k, where xn+1,k+1

is obtained from xn+1,k by using a step of ∆tn/K with a linearized MMPDE. In this case
ρ is approximated by ρn+1,k obtained by constructing a piecewise linear interpolant of
(xn,ρn) values onto xn+1,k. A MνP algorithm, which updates from tn to tn+1 using vari-
able time steps can also be used. The time lag between the mesh and physical solution
can be reduced by iterating between the mesh and physical PDE l times, resulting in a
(MP)l algorithm. The algorithm (MP)∞ is equivalent to the simultaneous solution (if
the iteration converges). These solution variants are discussed at length in [15]. The im-
plementation of these variants and a study of their efficacy within the stochastic domain
decomposition framework is a topic of current investigation.

During our experiments we also detected that fewer Monte–Carlo simulations are
needed to generate quality periodic meshes. This seems to be due to the absence of an exit
time test for the periodic case. Work to fully understand and utilize this is also underway.
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