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Abstract In order to study the effects of external environmental noise on the
interaction dynamics between predator and prey populations, in this paper, we
develop a predator-prey model with the stage structure for predator and Lévy
noise. By constructing an appropriate Lyapunov function, we first prove that
the proposed model exists the uniqueness of global positive solution. Then,
we analyze the persistence and extinction of the proposed model. Finally, we
perform some numerical simulations to verify the correctness of the theoretical
results.
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1. Introduction

Predation relationships are the most common in nature, the research on predator-
prey models has attracted the attention of many researchers [1–6]. These researches
laid the foundation for the future work. For the typical predator-prey model, it is
generally assumed that predators are equally capable of hunting prey species. But
the physiology of species in nature is complex. In many species, individuals are
only able to hunt when they are adults, and the immature predators have to rely
on mature ones for nourishment. Thus predatory ability could be ignored, such as
sparrows, penguins and so on. Recently, some scholars have paid attention to the
predator-prey models with the stage structure, and they have done some work in
this research direction [7–10]. In addition, scholars have developed many predator-
prey models with different functional response functions, especially for the Holling
type II functional response, which is the most commonly used and takes the form
of f(x) = bx

1+mx , where b is the search rate and m is the search rate multiplied by
the handling time [11–14].

Some research work on the predator-prey model with Holling type II functional
response has been developed and investigated. For example, Wang and Chen [15]
proposed and analyzed the following predator-prey model with Holling type II func-
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tional response and the stage structure for predator:

dx(t)

dt
=x(t)(r − ax(t))− bx(t)z(t)

1 +mx(t)
,

dy(t)

dt
=
kbx(t)z(t)

1 +mx
− (D + d1)y(t),

dz(t)

dt
=Dy(t)− d2z(t),

x(0) =x0, y(0) = y0, z(0) = z0,

(1.1)

where x = x(t), y = y(t) and z = z(t) denote the densities of prey, immature and
mature predators at time t, respectively. r is the intrinsic growth rate of the prey,
a represents the intraspecific competition rate of the prey, b is the consumption
rate of mature predators to prey, k(0 < k < 1) is the conversion efficiency of prey
into newborn immature predators, d1 and d2 represent the death rates of immature
and mature predators, D is the rate at which immature predators become mature
predators, x(0) = x0, y(0) = y0 and z(0) = z0 are initial values. All the parameters
are positive constants. By defining the basic reproduction number of the predator
R0 = kbDr

d2(a+mr)(D+d1)
as the average number of offsprings produced by a mature

predator in its lifetime, Georgescu and Morosanu [16] showed that if R0 ≤ 1, then
the prey-only equilibrium

(
r
a , 0, 0

)
is globally asymptotically stable on R3

+, while if

R0 > 1, the prey-only equilibrium
(
r
a , 0, 0

)
is unstable, and there exists only one

positive equilibrium.
However, there exists certain limitation for the deterministic model (1.1), and it

cannot reflect the effect of environmental factors on the dynamical behavior of model
(1.1). Thus, by taking into account the influence of external environment noise,
Liu [17] introduced the standard white noise into model (1.1) and then obtained
the following stochastic model:

dx =

[
x(r − ax)− bxz

1 +mx

]
dt+ σ1xdB1(t),

dy =

[
kbxz

1 +mx
− (D + d1) y

]
dt+ σ2ydB2(t),

dz = [Dy − d2z] dt+ σ3zdB3(t),

(1.2)

where σ2
1 , σ

2
2 , σ

2
3 are the intensities of the environment white noise, B1(t), B2(t) and

B3(t) are mutually independent standard Brownian motions with B1(0) = B2(0) =
B3(0) = 0.

In addition, sudden environmental disturbance, such as hurricanes, earthquakes,
floods, etc, can also have a significant impact on the predator and prey species. In
order to better understand the effects of these phenomena on the dynamics of the
predator-prey model, it is worth studying the predator-prey model with jumps
process. Applebaum and Siakalli [18] extended Mao’s techniques to the case of
nonlinear stochastic differential equations driven by Lévy jumps and studied the
probability stability, almost certainty stability and moment exponential stability of
the stochastic differential equation. Zhao and Yuan [19] pointed out that Lévy noise
can affect the optimal harvesting strategy of inshore and offshore fisheries. Liu and
Bao et al. [20, 21] analyzed the Lotka-Volterra system affected by Lévy noise, and
the results indicated that Lévy noise has a certain effect on the dynamics of the
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system. For this reason, we developed the following model incorporating the Lévy
noise:

dx(t)=

[
x(t)(r−ax(t))− bx(t)z(t)

1 +mx(t)

]
dt+σ1x(t)dB1(t)+

∫
Y

γ1(u)x(t
−)Ñ(dt,du),

dy(t)=

[
kbx(t)z(t)

1 +mx(t)
− (D+d1) y(t)

]
dt+σ2y(t)dB2(t) +

∫
Y

γ2(u)y(t
−)Ñ(dt,du),

dz(t)=[Dy(t)− d2z(t)] dt+ σ3z(t)dB3(t) +

∫
Y

γ3(u)z(t
−)Ñ(dt, du),

(1.3)
where x(t−), y(t−) and z(t−) are the left limits of x(t), y(t) and z(t), N is the

Poisson counting measure with compensator Ñ and characteristic measure λ on a
measurable subset Y of (0,∞) with λ(Y) < ∞, and it is assumed that λ is a Lévy

measure such that Ñ(dt, du) = N(dt,du)− λ(du)dt.

In this paper, we mainly discuss the persistence and extinction of the model
(1.3). The structure of the paper is organized as follows. In section 2, we give
some notations and lemmas which will be useful in the subsequent proof process.
In section 3, we prove the existence and uniqueness of global positive solution of
the model. In sections 4 and 5, the sufficient conditions of the persistence and
extinction of model (1.3) are obtained. Finally, numerical simulations are carried
out to verify the correctness and feasibility of the obtained results.

2. Preliminaries

In this section, for the sake of narration, we give some notations, lemmas and
assumptions which will be used later. Let (Ω,F , {Ft}t≥0 ,P) denote a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions. Define

R3
+ =

{
(x(t), y(t), z(t)) ∈ R3 : x(t) > 0, y(t) > 0, z(t) > 0

}
,

c1 = D + d1 −
(θ − 1)σ2

2

2
− 1

θ

∫
Y

[
(1 + γ2(u))

θ − 1− θγ2(u)
]
λ(du),

c2 = d2 −
(θ − 1)σ2

3

2
− 1

θ

∫
Y

[
(1 + γ3(u))

θ − 1− θγ3(u)
]
λ(du),

⟨f⟩t =
1

t

∫ t

0

f(s)ds, ⟨f⟩∗ = lim
t→∞

sup
1

t

∫ t

0

f(s)ds, ⟨f⟩∗ = lim
t→∞

inf
1

t

∫ t

0

f(s)ds,

Mi(t)=

∫ t

0

∫
Y

ln(1+γi(u))Ñ(ds,du), Hi=

∫
Y

[
γi(u)−ln(1+γi(u))

]
λ(du), i = 1, 2, 3.

Assumption 2.1. For model (1.3), there exist two constants C1, C2 > 0 such that∫
Y

{
|γi(u)|2 ∨ [ln(1 + γi(u))]

2
}
λ(du) ≤ C1 <∞,

∫
Y

[
(1 + γi(u))

θ − 1− θγi(u)
]
λ(du) ≤ C2 <∞.
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Lemma 2.1. Assume that γi(u) is a bounded function and |γi(u)| < δ
υ < 1, u ∈

R, i = 1, 2, 3, where δ, υ are positive constants, υ ∈ (0, 1). By Taylor formula, we
have

Hi =

∫
Y

[
γi(u)− ln(1 + γi(u))

]
λ(du)

≤
∫
Y

[
γi(u)− γi(u) +

γ2i (u)

2!(1− γi(u)υ)2

]
λ(du)

≤ δ2

2(1− δ)2υ2
.

Lemma 2.2 ( [22]). Suppose that x(t) ∈ C(Ω× [0,∞],R+).

(i) If there are three positive constants T , δ and δ0 such that

lnx(t) ≤ δt−δ0
∫ t

0

x(t)ds+

n∑
i=1

αiBi(t)+

n∑
i=1

ki

∫ t

0

∫
Y
ln(1+γi(u))Ñ(dt, du) a.s.,

for all t > T , where αi, δ and Bi are constants, then we have⟨x⟩∗ ≤ δ

δ0
a.s., ifδ ≥ 0;

lim
t→∞

x(t) = 0 a.s., ifδ ≤ 0.

(ii) If there exist three positive constants T , δ and δ0 such that

lnx(t) ≥ δt−δ0
∫ t

0

x(t)ds+

n∑
i=1

αiBi(t)+

n∑
i=1

ki

∫ t

0

∫
Y
ln(1+γi(u))Ñ(dt, du) a.s.,

for all t > T , where αi, δ and ki are constants, then we have ⟨x⟩∗ ≥ δ

δ0
a.s.

Lemma 2.3. For any initial value, the system (1.3) has the following properties.

lim
t→∞

∫ t

0
x(s)dB1(s)

t
= 0, lim

t→∞

∫ t

0
y(s)dB2(s)

t
= 0,

lim
t→∞

∫ t

0
z(s)dB3(s)

t
= 0, lim

t→∞

∫ t

0

∫
Y
γ1(u)x(s

−)Ñ(ds,du)

t
= 0,

lim
t→∞

∫ t

0

∫
Y
γ2(u)y(s

−)Ñ(ds,du)

t
= 0, lim

t→∞

∫ t

0

∫
Y
γ3(u)z(s

−)Ñ(ds,du)

t
= 0,

lim
t→∞

Mi(t)

t
= 0(i = 1, 2, 3), lim

t→∞

∫ t

0

∫
Y
ln(1 + γi(u))Ñ(ds,du)

t
(i = 1, 2, 3).

The process of proving is similar to the references [23,24]. Here we omit it.
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3. Existence and uniqueness of the global positive
solution

In this section, we will prove that system (1.3) has a unique global positive solution
with any positive initial value. Then, we have the following theorem.

Theorem 3.1. For any initial value (x(0), y(0), z(0)) ∈ R3
+, there exists a unique

solution (x(t), y(t), z(t)) of system (1.3) on t > 0 and the solution will remain in
R3

+ with probability one, namely (x(t), y(t), z(t)) ∈ R3
+ for all t > 0 almost surely

(a.s.).

Proof. Since the coefficients of system (1.3) satisfy the local Lipschitz condition,
then for any initial value (x(0), y(0), z(0)) ∈ R3

+, there exists a unique local solution
(x(t), y(t), z(t)) ∈ R3

+ on t ∈ [0, τe), where τe denotes the explosion time. Now we
will prove the solution is global. To this end, let n0 > 1 be sufficiently large such

that (x(t), y(t), z(t)) all lie within the interval
[

1
n0
, n0

]
. For each integer n ≥ n0,

define the stopping time as [25]

τn = inf

{
t ∈ [0, τe) : min {x (t) , y (t) , z (t)} ≤ 1

n
or max {x (t) , y (t) , z (t)} ≥ n

}
.

Throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set).
Clearly, limn→∞ τn = τ∞ as n → ∞ and (x(t), y(t), z(t)) ∈ R3

+, t ≥ t0. This is to
say, we need to prove τ∞ = ∞ a.s. If the assertion is not true, then here exists a
pair of constants T > 0 and ε ∈ (0, 1) such that P (τ∞ ≤ T ) > ε. Hence, there
exists an integer n1 ≥ n0 such that

P (τn ≤ T ) ≥ ε for all n ≥ n1. (3.1)

Define a C2-function V : R3
+ → R by

V (x, y, z) =
(
x− c− c ln

x

c

)
+

1

k
(y − 1− ln y) + (z − 1− ln z) ,

where c is a positive constant to be determined later. The nonnegativity of this
function can be seen from

u− 1− lnu ≥ 0 for any u > 0.

Applying Itô,s formula [26] to function V , we have

dV =LV dt+ σ1 (x(t)− c) dB1(t) +
σ2
k

(y(t)− 1) dB2(t) + σ3 (z(t)− 1) dB3(t)

− c

∫
Y

[
ln (1 + γ1 (u))−

γ1 (u)x (t
−)

c

]
Ñ(dt, du)

− 1

k

∫
Y

[
ln (1 + γ2 (u))− γ2 (u) y

(
t−
)]
Ñ(dt,du)

−
∫
Y

[
ln (1 + γ3 (u))− γ3 (u) z

(
t−
)]
Ñ(dt,du).

According to the definition of the operator L, we can get

LV =
(
1− c

x

)[
x (r − ax)− bxz

1 +mx

]
+

1

k

(
1− 1

y

)[
kbxz

1 +mx
− (D + d1) y

]
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+
cσ2

1

2
+
σ2
2

2k
+

(
1− 1

z

)
[Dy − d2z] +

σ2
3

2
+ cH1 +

H2

k
+H3

=− ax2 + (ac+ r)x− bxz

y (1 +mx)
− Dy

z
+Dy − D + d1

k
y +

cbz

1 +mx

− d2z − cr +
cσ2

1

2
+

1

k

(
D + d1 +

σ2
2

2

)
+ d2 +

σ2
3

2
+ cH1 +

H2

k
+H3

≤− ax2 + (ac+ r)x+
(k − 1)Dy

k
− d1y

k
+ cbz − d2z +

cσ2
1

2

+
1

k

(
D + d1 +

σ2
2

2

)
+ d2 +

σ2
3

2
+ cH1 +

H2

k
+H3

≤− ax2 + (ac+ r)x+
(k − 1)Dy

k
+ cbz − d2z +

1

k

(
D + d1 +

σ2
2

2

)
+
cσ2

1

2
+ d2 +

σ2
3

2
+ cH1 +

H2

k
+H3

≤ (ac+ r)
2

4a
+

1

k

(
D + d1 +

σ2
2

2

)
+ d2 + (cb− d2) z +

cσ2
1

2
+
σ2
3

2

+ cH1 +
H2

k
+H3,

where the third inequality is obtained by 0 < k ≤ 1. Letting c =
d2
b
, we can get

cb− d2 = 0. Then we have

LV ≤ (ac+ r)
2

4a
+

1

k

(
D + d1 +

σ2
2

2

)
+ d2 +

cσ2
1

2
+
σ2
3

2
+ cH1 +

H2

k
+H3.

From Lemma 2.1, we can get

LV ≤ (ac+ r)
2

4a
+

1

k

(
D + d1 +

σ2
2

2

)
+ d2 +

cσ2
1

2
+
σ2
3

2
+

cδ2

2 (1− δ)
2
υ2

+
δ2

2k (1− δ)
2
υ2

+
δ2

2 (1− δ)
2
υ2

:= K.

So we obtain

dV ≤Kdt+ σ1 (x(t)− c) dB1 (t)− c

∫
Y

[
ln (1 + γ1 (u))−

γ1 (u)x (t
−)

c

]
Ñ(dt,du)

+
σ2
k

(y(t)− 1)− 1

k

∫
Y

[
ln (1 + γ2 (u))− γ2 (u) y

(
t−
)]
Ñ(dt,du)

+ σ3 (z(t)− 1)−
∫
Y

[
ln (1 + γ3 (u))− γ3 (u) z

(
t−
)]
Ñ (dt, du) . (3.2)

Integrating both sides of (3.2) from 0 to τn ∧ T = min {τn, T} yields∫ τn∧T

0

dV =K(τn ∧ T ) + σ1

∫ τn∧T

0

(x(s)− c) dB1 (s)

+
σ2
k

∫ τn∧T

0

(y(s)− 1) dB2 (s) + σ3

∫ τn∧T

0

(z(s)− 1) dB3 (s)

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2023.394 | Generated on 2024-12-19 07:02:31



400 X. Wu & S. Yuan

− c

∫ τn∧T

0

∫
Y

[
ln (1 + γ1 (u))−

γ1 (u)x (s
−)

c

]
Ñ (ds,du)

− 1

k

∫ τn∧T

0

∫
Y

[
ln (1 + γ2 (u))− γ2 (u) y

(
s−
)]
Ñ (ds,du)

−
∫ τn∧T

0

∫
Y

[
ln (1 + γ3 (u))− γ3 (u) z

(
s−
)]
Ñ (ds,du) . (3.3)

Since the solution (x(t), y(t), z(t)) is Ft-adapted, taking the expectation on both
sides of (3.3), we have

EV (x, y, z) ≤ V (x (0) , y (0) , z (0)) +KE (τn ∧ T ) ≤ V (x (0) , y (0) , z (0)) +KT.
(3.4)

Letting Ωn = {ω ∈ Ω : τn = τn (ω) ≤ T} for n ≥ n1 and from (3.1), we have
P (τn ≤ T ) ≥ ε. Note that for every ω ∈ Ωn, there is at least one of x (τn, ω)

and y (τn, ω) and z (τn, ω) equaling either n or
1

n
. Hence, one can get that

V (x (τn, ω) , y (τn, ω) , z (τn, ω))

≥
(
n− c− c ln

n

c

)
∧ (n− 1− lnn) ∧

(
1

n
− c+ c ln (nc)

)
∧
(
1

n
− 1 + lnn

)
.

It then follows from (3.4) that

V (x(0), y(0), z(0)) +KT

≥E
[
IΩ

n(ω)
V (x(τn, ω), y(τn, ω), z(τn, ω))

]
≥ε
{(

n− c− c ln
n

c

)
∧ (n− 1− lnn) ∧

(
1

n
− c− c ln

1

nc

)
∧
(
1

n
− 1 + lnn

)}
,

where IΩn is the indicator function of Ωn. Letting n→ ∞, then one can see that

∞ > V (x(0), y(0), z(0)) +KT = ∞,

which leads to the contradiction, thus we must have τ∞ = ∞ a.s. The proof is thus
completed.

4. Extinction of model (1.3)

Definition 4.1 ( [27]). (1) The population x is said to be persistent in the mean if

limt→∞
1
t

∫ t

0
x(s)ds > 0. (2) The population x is said to be extinct if limt→∞ x(t) =

0, a.s.

Theorem 4.1. Let (x(t), y(t), z(t)) be the solution of model (1.3) with any given
positive initial value (x(0), y(0), z(0)). If 2r < σ2

1, then we have

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0, a.s.

Proof. Applying Itô,s formula to the first equation of model (1.3) yields

d lnx(t) =

[
r − ax− bz

1 +mx
− σ2

1

2
+

∫
Y

(ln(1 + γ1(u))− γ1(u))λ(du)

]
dt
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+ σ1dB1(t) +

∫
Y

ln(1 + γ1(u))Ñ(dt,du)

≤
[
r − ax− bz

1 +mx
− σ2

1

2

]
dt+ σ1dB1(t) +

∫
Y

ln(1 + γ1(u))Ñ(dt,du)

≤
[
r − σ2

1

2

]
dt+ σ1dB1(t) +

∫
Y

ln(1 + γ1(u))Ñ(dt,du), (4.1)

where∫
Y

[γ1(u)− ln(1 + γ1(u))]λ(du) =

∫
Y

[1 + γ1(u)− 1− ln(1 + γ1(u))]λ(du) ≥ 0.

Integrating both sides of (4.1) from 0 to t, we obtain

lnx(t)− lnx(0) ≤
[
r − σ2

1

2

]
t+ σ1B1(t) +M1(t). (4.2)

Dividing both sides of (4.2) by t and taking the supremum, then by Lemma 2.2, we
can get

lim
t→∞

sup
lnx(t)

t
< r − σ2

1

2
< 0. (4.3)

Let W (t) = y(t) + z(t). Then applying Itô,s formula to lnW yields

d lnW =

[
kbxz
1+mx − d1y − d2z

y + z
− σ2

2y
2 + σ2

3z
2

2(y + z)2

+

∫
Y

[
ln

(
1 +

γ2(u)y(t
−)

y(t−) + z(t−)

)
− γ2(u)y(t

−)

y(t−) + z(t−)

]
λ(du)

+

∫
Y

[
ln

(
1 +

γ3(u)z(t
−)

y(t−) + z(t−)

)
− γ3(u)z(t

−)

y(t−) + z(t−)

]
λ(du)

]
dt

+
σ2y

y + z
dB2(t) +

∫
Y

ln

(
1 +

γ2(u)y(t
−)

y(t−) + z(t−)

)
Ñ(dt,du)

+
σ3z

y + z
dB3(t) +

∫
Y

ln

(
1 +

γ3(u)z(t
−)

y(t−) + z(t−)

)
Ñ(dt,du)

≤[kbx−min{d1, d2}]dt+
σ2y

y + z
dB2(t) +

σ3z

y + z
dB3(t)

+

∫
Y

ln

(
1 +

γ2(u)y(t
−)

y(t−) + z(t−)

)
Ñ(dt, du)

+

∫
Y

ln

(
1 +

γ3(u)z(t
−)

y(t−) + z(t−)

)
Ñ(dt, du)

≤[kbx−min{d1, d2}]dt+ σ2dB2(t) + σ3dB3(t) +

∫
Y

ln(1 + γ2(u))Ñ(dt, du)

+

∫
Y

ln(1 + γ3(u))Ñ(dt,du). (4.4)

Integrating both sides of (4.4) from 0 to t yields

lnW (t)− lnW (0) ≤ [kbx−min {d1, d2}] t+ σ2dB2(t) + σ3dB3(t) +M2(t) +M3(t).
(4.5)
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Dividing by t on both sides of (4.5) yields

lnW (t)− lnW (0)

t
≤kbx−min {d1, d2}+

σ2dB2(t)

t
+
σ3dB3(t)

t
+
M2(t)

t
+
M3(t)

t
.

(4.6)

By inequality (4.3), we know that x(t) → 0 exponentially a.s. Then there exist t0
and a set Ωε ⊂ Ω such that

P (Ωε) > 1− ε and
kbx

1 +mx
≤ kbx ≤ kbε for t ≥ t0 and ω ∈ Ωε.

Taking the supremum on both sides of (4.6), we can get

lim sup
t→∞

W (t)

t
≤ kbε−min {d1, d2} < 0.

Letting ε → 0, we have lim supt→∞
W (t)

t ≤ −min {d1, d2} < 0. Therefore we have
that limt→∞ y(t) = limt→∞ z(t) = 0, a.s. The proof is thus completed.

5. Persistence of model (1.3)

Theorem 5.1. For model (1.3), when c1, c2 > 0, there exists a positive constant
K such that

P {ω : [kx(t) + y(t) + z(t)] < K} > 1− ε,∀t ≥ 0.

Proof. Let M1(t) = xθ(t) + yθ(t) + zθ(t). Applying Itô,s formula to M1(t), we
have

dM1(t) =e
t

{
xθ(t) + yθ(t) + zθ(t) + θxθ−1(t)

[
x(t)(r − ax(t))− bx(t)z(t)

1 +mx(t)

]
+
θ(θ − 1)σ2

1x
θ(t)

2
+ xθ(t)

∫
Y

[
(1 + γ1(u))

θ − 1− θγ1(u)
]
λ(du)

+ θyθ−1(t)

[
kbx(t)z(t)

1 +mx(t)
− (D + d1)y(t)

]
+
θ(θ − 1)σ2

1y
θ(t)

2

+ yθ(t)

∫
Y

[
(1 + γ2(u))

θ − 1− θγ2(u)
]
λ(du) + θzθ−1(t)[Dy(t)− d2z(t)]

+
θ(θ − 1)σ2

3z
θ(t)

2
+ zθ

∫
Y

[
(1 + γ3(u))

θ − 1− θγ3(u)
]
λ(du)

}
dt

+ θetσ1x
θ(t)dB1(t) + θetσ2y

θ(t)dB2(t) + θetσ3z
θ(t)dB3(t)

+ etxθ(t)

∫
Y

(
(1 + γ1(u))

θ − 1
)
Ñ(dt,du)

+ etyθ(t)

∫
Y

(
(1 + γ2(u))

θ − 1
)
Ñ(dt,du)

+ etzθ(t)

∫
Y

(
(1 + γ3(u))

θ − 1
)
Ñ(dt, du)

≤et
{
θxθ(t)

(
r +

1

θ
+

(θ − 1)σ2
1

2
+

1

θ

∫
Y

[
(1 + γ1(u))

θ − 1− θγ1(u)
]
λ(du)

)
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− aθxθ+1(t) + θyθ−1(t)
kbx(t)z(t)

1 +mx(t)
− c1θy

θ(t) +Dθzθ−1(t)y(t)

−c2θzθ(t)
}
dt+ θetσ1x

θ(t)dB1(t) + θetσ2y
θ(t)dB2(t) + θetσ3z

θ(t)dB3(t)

+ etxθ(t)

∫
Y

(
(1 + γ1(u))

θ − 1
)
Ñ(dt,du)

+ etyθ(t)

∫
Y

(
(1 + γ2(u))

θ − 1
)
Ñ(dt,du)

+ etzθ(t)

∫
Y

(
(1 + γ3(u))

θ − 1
)
Ñ(dt, du)

△
=etH(t)dt+ θetσ1x

θ(t)dB1(t) + θetσ2y
θ(t)dB2(t) + θetσ3z

θ(t)dB3(t)

+ etxθ(t)

∫
Y

(
(1 + γ1(u))

θ − 1
)
Ñ(dt,du)

+ etyθ(t)

∫
Y

(
(1 + γ2(u))

θ − 1
)
Ñ(dt,du)

+ etzθ(t)

∫
Y

(
(1 + γ3(u))

θ − 1
)
Ñ(dt, du), (5.1)

where
H(t) = θxθ(t)

(
r + 1

θ +
(θ−1)σ2

1

2 + 1
θ

∫
Y

[
(1 + γ1(u))

θ − 1− θγ1(u)
]
λ(du)

)
−aθxθ+1(t) + θyθ−1(t)kbx(t)z(t)1+mx(t) − c1θy

θ(t) +Dθzθ−1(t)y(t)− c2θz
θ(t) ≤ g(θ) <∞.

Integrating both sides of (5.1) from 0 to t and taking expectation, then we have

etE(M1(t)) = E(M1(0)) + E

∫ t

0

es(H(s))ds ≤M1(0) + g(θ)et.

According to the definition of M1(t), we have

lim sup
t→∞

E[xθ(t) + yθ(t) + zθ(t)] ≤ g(θ).

From |x(t) + y(t) + z(t)| ≤ x(t) + y(t) + z(t), we have

lim sup
t→∞

E |x(t) + y(t) + z(t)| ≤ g(1) = g1,

lim sup
t→∞

E |x(t) + y(t) + z(t)|2 ≤ g(2) = g2.

Let M2(t) = kx(t) + y(t) + z(t). Applying Itô,s formula to M2(t), we have

dM2(t) =
[
krx− krax2 − (D + d1)y +Dy − d2z

]
dt+ kσ1xdB1(t) + σ2ydB2(t)

+ σ3zdB3(t) + k

∫
Y

γ1(u)x(t
−)Ñ(dt,du) +

∫
Y

γ2(u)y(t
−)Ñ(dt,du)

+

∫
Y

γ3(u)z(t
−)Ñ(dt, du)

≤[krx+Dy]dt+ kσ1xdB1(t) + σ2ydB2(t) + σ3zdB3(t)

+ k

∫
Y

γ1(u)x(t
−)Ñ(dt, du) +

∫
Y

γ2(u)y(t
−)Ñ(dt, du)

+

∫
Y

γ3(u)z(t
−)Ñ(dt, du)
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≤[S(x+ y + z)]dt+ kσ1xdB1(t) + σ2ydB2(t) + σ3zdB3(t)

+ k

∫
Y

γ1(u)x(t
−)Ñ(dt, du) +

∫
Y

γ2(u)y(t
−)Ñ(dt, du)

+

∫
Y

γ3(u)z(t
−)Ñ(dt, du), (5.2)

where S = max[kr,D, 1]. From (5.2), when t ≥ 0, we have

E

[
sup

t≤s≤t+1
[kx(s) + y(s) + z(s)]

]
≤E[S(x(t) + y(t) + z(t))] + kσ1E

[
sup

t≤s≤t+1

∫ t+1

t

x(s)dB1(s)

]
+ σ2E

[
sup

t≤s≤t+1

∫ t+1

t

y(s)dB2(s)

]
+ σ3E

[
sup

t≤s≤t+1

∫ t+1

t

z(s)dB3(s)

]
+ kE

[
sup

t≤s≤t+1

∫ t+1

t

∫
Y

γ1(u)x(s)Ñ(ds,du)

]
+ E

[
sup

t≤s≤t+1

∫ t+1

t

∫
Y

γ2(u)y(s)Ñ(ds,du)

]
+ E

[
sup

t≤s≤t+1

∫ t+1

t

∫
Y

γ3(u)z(s)Ñ(ds,du)

]
.

By using Burkholder-Davis-Gundy inequality [28] and the Hölder inequality, we can
get

E

[
sup

t≤s≤t+1

∫ t+1

t

x(s)dB1(s)

]
≤ JE

(∫ t+1

t

x2(s)ds

) 1
2

≤ J

(
E

∫ t+1

t

|x(s) + y(s) + z(s)|2
) 1

2

,

E

[
sup

t≤s≤t+1

∫ t+1

t

y(s)dB2(s)

]
≤ JE

(∫ t+1

t

y2(s)ds

) 1
2

≤ J

(
E

∫ t+1

t

|x(s) + y(s) + z(s)|2
) 1

2

,

E

[
sup

t≤s≤t+1

∫ t+1

t

z(s)dB3(s)

]
≤ JE

(∫ t+1

t

z2(s)ds

) 1
2

≤ J

(
E

∫ t+1

t

|x(s) + y(s) + z(s)|2
) 1

2

(5.3)

and

E

[
sup

t≤s≤t+1

∫ t+1

t

∫
Y

γ1(u)x(s)Ñ(ds,du)

]
≤ JE

(∫ t+1

t

∫
Y

γ21(u)x
2(s)N(ds,du)

)
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≤ J

(∫
Y

γ21(u)λ(du)

) 1
2
(
E

∫ t+1

t

|x(s) + y(s) + z(s)|2 ds
) 1

2

. (5.4)

Similarly, we have

E

[
sup

t≤s≤t+1

∫ t+1

t

∫
Y

γ2(u)y(s)Ñ(ds,du)

]

≤ J

(∫
Y

γ2(u)λ(du)

) 1
2
(
E

∫ t+1

t

|x(s) + y(s) + z(s)|2 ds
) 1

2

,

E

[
sup

t≤s≤t+1

∫ t+1

t

∫
Y

γ3(u)z(s)Ñ(ds,du)

]

≤ J

(∫
Y

γ3(u)λ(du)

) 1
2
(
E

∫ t+1

t

|x(s) + y(s) + z(s)|2 ds
) 1

2

. (5.5)

Submitting (5.3), (5.4) and (5.5) into (5.2) results in

E

[
sup

t≤s≤t+1
[kx(s) + y(s) + z(s)]

]
≤ Sg1 + (kσ1 + σ2 + σ3)Jg

1
2
2 + 2C

1
2
1 g

1
2
2 .

Thus, there exists a positive constant G such that

E

[
sup

t≤s≤t+1
[kx(s) + y(s) + z(s)]

]
≤ G, t = 0, 1, 2, ....

Let K be a sufficient large number such that K = G
ε . By Chebyshev inequality we

obtain

P {ω : |kx(t) + y(t) + z(t)| > K} ≤ K−1E |kx(t) + y(t) + z(t)| ≤ K−1G = ε.

Therefore, we have

P {ω : [kx(t) + y(t) + z(t)] ≤ K} > 1− ε, t ≥ 0.

This completes the proof.

Theorem 5.2. Let(x(t), y(t), z(t)) be the solution of system with any initial value
(x(0), y(0), z(0)) ∈ R+

3 . We have

(1) If r−σ2
1

2 >0, then lim supt→∞ ⟨x⟩t ≤ x̃∗; if r−σ2
1

2 −H1>0, then lim inft→∞ ⟨x⟩t
≥ x̃∗. Here

x̃∗ = a−1

(
r − σ2

1

2

)
, x̃∗ =

(
r − σ2

1

2
−H1

)
(a+ b(D + d1)

−1d−1
2 Dkr)−1.

(2) If κ < rx̃∗
a , then we have

lim sup
t→∞

⟨z⟩t ≤ η1, lim inf
t→∞

⟨z⟩t ≥ η2,

where

η1 = d−1
2 D(D + d1)

−1krx̃∗, η2 = d−1
2 D(D + d1)

−1(krx̃∗ − kaκ).

Moreover, we have

lim sup
t→∞

⟨y⟩t ≤ (D + d1)
−1[krx̃∗ − kaκ], lim inf

t→∞
⟨y⟩t ≥ (D + d1)

−1kax̃∗.
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Proof.

d lnx(t) =

[
r − ax− bz

1 +mx
− σ2

1

2
+

∫
Y

(ln(1 + γ1(u))− γ1(u))λ(du)

]
dt

+ σ1dB1(t) +

∫
Y

ln(1 + γ1(u))Ñ(dt, du). (5.6)

Integrating both sides of (5.6) from 0 to t, we can get

lnx(t)− lnx(0) =

(
r − σ2

1

2

)
t− a

∫ t

0

x(s)ds− b

∫ t

0

z(s)

1 +mx(s)
ds

+ σ1B1(t)−H1t+M1(t).

Then

lnx(t) ≤
(
r − σ2

1

2

)
t− a

∫ t

0

x(s)ds+ F (t) := λ− λ0

∫ t

0

x(s)ds+ F (t), (5.7)

where F (t) = lnx(0) +M1(t), and limt→∞
F (t)
t = 0. From Lemma 2.2, we know

that

lim sup
t→∞

1

t

∫ t

0

x(s)dx ≤ λ

λ0
,

which means

lim sup
t→∞

⟨x⟩t ≤ a−1

(
r − σ2

1

2

)
= x̃∗.

Let M = Dkx+Dy + (D + d1)z, then we have

dM =Dkdx+Ddy + (D + d1)dz

= [Dkx(r − ax)− (D + d1)d2z] dt+Dkσ1xdB1(t) +Dσ2ydB2(t)

+ (D + d1)σ3xdB3(t) +Dk

∫
Y

γ1(u)x(t
−)Ñ(dt, du)

+D

∫
Y

γ2(u)y(t
−)Ñ(dt, du) + (D + d1)

∫
Y

γ3(u)z(t
−)Ñ(dt,du). (5.8)

Integrating (5.8) from 0 to t on both sides, we can get

Dk(x(t)− x(0)) +D(y(t)− y(0)) + (D + d1)(z(t)− z(0))

=Dkr

∫ t

0

x(s)ds−Dka

∫ t

0

x2(s)ds− (D + d1)d2

∫ t

0

z(s)ds

+Dkσ1

∫ t

0

x(s)dB1(s) +Dσ2

∫ t

0

y(s)dB2(s) + (D + d1)σ3

∫ t

0

z(s)dB3(s)

+Dk

∫ t

0

∫
Y

γ1(u)x(s
−)Ñ(ds,du) +D

∫ t

0

∫
Y

γ2(u)y(s
−)Ñ(ds,du)

+ (D + d1)

∫ t

0

∫
Y

γ3(u)z(s
−)Ñ(ds,du).

Therefore, we can get∫ t

0

z(s)ds =(D + d1)
−1d−1

2

[
Dkr

∫ t

0

x(s)ds−Dka

∫ t

0

x2(s)ds
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+Dkσ1

∫ t

0

x(s)dB1(s) +Dk

∫ t

0

∫
Y

γ1(u)x(s
−)Ñ(ds,du)

+D

∫ t

0

∫
Y

γ2(u)y(s
−)Ñ(ds,du) +Dσ2

∫ t

0

y(s)dB2(s)

+ (D + d1)σ3

∫ t

0

z(s)dB3(s) + (D + d1)

∫ t

0

∫
Y

γ3(u)z(s
−)Ñ(ds,du)

−
[
Dk(x(t)− x(0)) +D(y(t)− y(0)) + (D + d1)(z(t)− z(0))

]]

=(D + d1)
−1d−1

2

[
Dkr

∫ t

0

x(s)dx−Dka

∫ t

0

x2(s)dx

]
+ ψ(t), (5.9)

where

ψ(t) =(D + d1)
−1d−1

2

[
Dkσ1

∫ t

0

x(s)dB1(s) +Dσ2

∫ t

0

y(s)dB2(s)

+ (D + d1)σ3

∫ t

0

z(s)dB3(s) +Dk

∫ t

0

∫
Y

γ1(u)x(s
−)Ñ(ds,du)

+D

∫ t

0

∫
Y

γ2(u)y(s
−)Ñ(ds,du) + (D + d1)

∫ t

0

∫
Y

γ3(u)z(s
−)Ñ(ds,du)

−
[
Dk(x(t)− x(0)) +D(y(t)− y(0)) + (D + d1)(z(t)− z(0))

]]
.

Integrating both sides of (5.6) from 0 to t yields

lnx(t)− lnx(0) =

(
r − σ2

1

2

)
t− a

∫ t

0

x(s)ds− b

∫ t

0

z(s)

1 +mx(s)
ds+ σ1B1(t)

−H1t+M1(t)

≥

(
r − σ2

1

2
−H1

)
t− a

∫ t

0

x(s)ds− b

∫ t

0

z(s)ds+ σ1B1(t) +M1(t).

(5.10)

Substituting (5.9) into (5.10) yields

lnx(t)− lnx(0) ≥

(
r − σ2

1

2
−H1

)
t− a

∫ t

0

x(s)ds+ σ1B1(t) +M1(t)

− b

[
(D + d1)

−1d−1
2

(
Dkr

∫ t

0

x(s)ds−Dka

∫ t

0

x2(s)ds

)
+ ψ(t)

]
.

(5.11)

Dividing by t on both sides of (5.11), we have

t−1 ln
x(t)

x(0)
≥

(
r − σ2

1

2
−H1

)
− (a+ b(D + d1)

−1d−1
2 Dkr) ⟨x⟩t
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+ b(D + d1)
−1d−1

2 t−1Dka

∫ t

0

x2(s)ds+ ϱ(t)

≥

(
r − σ2

1

2
−H1

)
− (a+ b(D + d1)

−1d−1
2 Dkr) ⟨x⟩t + ϱ(t)

:=λ− λ0 ⟨x⟩t + ϱ(t),

where

ϱ(t) =t−1

[
− bψ(t) + σ1B1(t) +M1(t)

]
,

and limt→∞ ϱ(t) = 0.
From lemma 2.2, we can get

lim inf
t→∞

⟨x⟩t ≥
(
r − σ1

2
−H1

)(
a+ b(D + d1)

−1d−1
2 Dkr

)
= x̃∗.

Integrating the first two equations of the model (1.3) yields

k(x(t)− x(0)) + y(t)− y(0)

t

=
kr
∫ t

0
x(s)ds

t
−
ka
∫ t

0
x2(s)ds

t
−

(D + d1)
∫ t

0
y(s)ds

t

+
kσ1

∫ t

0
x(s)dB1(s)

t
+
σ2
∫ t

0
y(s)dB2(s)

t
+
k
∫ t

0

∫
Y
γ1(u)x(s

−)Ñ(ds,du)

t

+

∫ t

0

∫
Y
γ2(u)y(s

−)Ñ(ds,du)

t
.

Then we have∫ t

0
y(s)ds

t
=(D + d1)

−1

[
kr
∫ t

0
x(s)ds

t
−
ka
∫ t

0
x2(s)ds

t
+
kσ1

∫ t

0
x(s)dB1(s)

t

+
σ2
∫ t

0
y(s)dB2(s)

t
+
k
∫ t

0

∫
Y
γ1(u)x(s

−)Ñ(ds,du)

t

+

∫ t

0

∫
Y
γ2(u)y(s

−)Ñ(ds,du)

t
− k(x(t)− x(0)) + y(t)− y(0)

t

]
.

(5.12)

Integrating the third formula of the model (1.3) yields

z(t)− z(0)

t
=
D
∫ t

0
y(s)ds

t
−
d2
∫ t

0
z(s)ds

t
+
σ3
∫ t

0
z(s)dB3(s)

t

+

∫ t

0

∫
Y
γ3(u)z(s

−)Ñ(ds,du)

t
. (5.13)

Substituting (5.12) into (5.13), we can get∫ t

0
z(s)ds

t
=d−1

2 D(D + d1)
−1

[
kr
∫ t

0
x(s)ds

t
−
ka
∫ t

0
x2(s)ds

t
+
kσ1

∫ t

0
x(s)dB1(s)

t
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+
σ2
∫ t

0
y(s)dB2(s)

t
+
k
∫ t

0

∫
Y
γ1(u)x(s

−)Ñ(ds,du)

t

+

∫ t

0

∫
Y
γ2(u)y(s

−)Ñ(ds,du)

t
− k(x(t)− x(0)) + y(t)− y(0)

t

]
+ d−1

2

[
σ3
∫ t

0
z(s)dB3(s)

t
+

∫ t

0

∫
Y
γ3(u)z(s

−)Ñ(ds,du)

t
− z(t)− z(0)

t

]

=d−1
2 D(D + d1)

−1

[
kr
∫ t

0
x(s)ds

t
−
ka
∫ t

0
x2(s)ds

t

]
+ θ(t), (5.14)

where

θ(t) =d−1
2 D(D + d1)

−1

[
kσ1

∫ t

0
x(s)dB1(s)

t
+
σ2
∫ t

0
y(s)dB2(s)

t

+
k
∫ t

0

∫
Y
γ1(u)x(s

−)Ñ(ds,du)

t
+

∫ t

0

∫
Y
γ2(u)y(s

−)Ñ(ds,du)

t

− k(x(t)− x(0)) + y(t)− y(0)

t

]
+ d−1

2

[
σ3
∫ t

0
z(s)dB3(s)

t
+

∫ t

0

∫
Y
γ3(u)z(s

−)Ñ(ds,du)

t
− z(t)− z(0)

t

]
.

From Lemma 2.3, we can get limt→∞ θ(t) = 0.

Taking the limit of (5.14) as t→ ∞ yields

lim
t→∞

t−1

∫ t

0

z(s)ds = d−1
2 D(D + d1)

−1

[
kr
∫ t

0
x(s)ds

t
−
ka
∫ t

0
x2(s)ds

t

]
.

From Theorem 5.1, there exists a positive constant κ such that

0 ≤

∣∣∣∣∣ limt→∞

∫ t

0
x2(s)ds

t

∣∣∣∣∣ ≤ κ. (5.15)

Therefore, we have

lim sup
t→∞

t−1

∫ t

0

z(s)ds ≤ d−1
2 D(D + d1)

−1krx̃∗ = η1,

lim inf
t→∞

t−1

∫ t

0

z(s)ds ≥ d−1
2 D(D + d1)

−1(krx̃∗ − kaκ) = η2.

On the other hand, from equality (5.12) and Lemma 2.3, we know that

lim
t→∞

∫ t

0
y(s)ds

t
= (D + d1)

−1

[
kr
∫ t

0
x(s)ds

t
−
ka
∫ t

0
x2(s)ds

t

]
.

From (5.15), we know that

lim inf
t→∞

t−1

∫ t

0

y(t)ds ≥ (D + d1)
−1[krx̃∗ − kaκ],
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lim sup
t→∞

t−1

∫ t

0

y(t)ds ≤ (D + d1)
−1kax̃∗.

This completes the proof.

6. Numerical simulations

In this section, we will use Euler numerical approximation [29] to verify our results.

First of all, considering the absence of environmental noise, we select the pa-
rameters of the model as follows: r = 0.6, a = 0.15, b = 0.1,m = 0.5, k = 0.3, D =
0.3, d1 = 0.03, d2 = 0.02, σ1 = σ2 = σ3 = 0, γ1 = γ2 = γ3 = 0. At this time, model
(1.3) is a deterministic system, and the dynamic behavior of system (1.3) is shown
in the Fig. 1.

0 500 1000 1500 2000
0

2

4

6

8

Figure 1. The time series of prey x(t), immature predators y(t), and mature predators z(t). Here the
blue line represents the prey x(t), the red line represents the densities of immature predators y(t) and
the green line denotes mature predators z(t).

Considering the influence of external environment on the system and keeping the
inherent parameters unchanged, the parameters of environmental noise are selected
as follows: σ2

1 = 1.44, σ2
2 = 0.25, σ2

3 = 0.01, γ1 = 0.001, γ2 = 0.002, γ3 = 0.03.
According to Theorem 4.1, we can get 1.2 = 2r < σ2

1 = 1.44. From Fig. 2, we can
see that system (1.3) is extinct with probability one.

0 100 200 300 400 500
0

1

2

3

Figure 2. The time series of the extinction of immature and mature predator and prey with the

σ2
1 = 1.44, σ2

2 = 0.25, σ2
3 = 0.01, γ1 = 0.001, γ2 = 0.002, γ3 = 0.03.
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Now, we take the following parameter values:

σ2
1 = 0.25, σ2

2 = 0.0001, σ2
3 = 0.0001, γ1 = 0.001, γ2 = 0.01, γ3 = 0.01, κ = 0.4.

According to Theorem 5.1, we compute that

c1 = D + d1 −
(θ − 1)σ2

2

2
− 1

θ

∫
Y

[
(1 + γ2(u))

θ − 1− θγ2(u)
]
λ(du) = 0.324658,

c2 = d2 −
(θ − 1)σ2

3

2
− 1

θ

∫
Y

[
(1 + γ3(u))

θ − 1− θγ3(u)
]
λ(du) = 0.014658.

From Theorem 5.2, we can get

r − σ2
1

2
−H1 = 0.475 > 0, κ <

rx̃∗
a

= 2.2708,

x̃∗ = a−1

(
r − σ2

1

2

)
= 3.1663,

x̃∗ =

(
r − σ2

1

2
−H1

)
(a+ b(D + d1)

−1d−1
2 Dkr)−1 = 0.5677,

(D + d1)
−1[krx̃∗ − kaκ] = 0.0909, (D + d1)

−1kax̃∗ = 0.4318,

η1 = d−1
2 D(D+ d1)

−1krx̃∗ = 25.9094, η2 = d−1
2 D(D+ d1)

−1(krx̃∗ − kaκ) = 1.3727.

Then, we have

0.5677 ≤ lim inf
t→∞

t−1

∫ t

0

x(s)ds ≤ lim sup
t→∞

t−1

∫ t

0

x(s)ds ≤ 3.1667,

0.0909 ≤ lim inf
t→∞

t−1

∫ t

0

y(s)ds ≤ lim sup
t→∞

t−1

∫ t

0

y(s)ds ≤ 0.4318,

1.3727 ≤ lim inf
t→∞

t−1

∫ t

0

z(s)ds ≤ lim sup
t→∞

t−1

∫ t

0

z(s)ds ≤ 25.9094.

From Fig. 3(a), we can see that the prey x is persistent in the mean, and from
Figs. 3(b) and 3(c) we can see that immature predator y and mature predator z
are both persistent in the mean. This means that model (1.3) is persistent in the
mean.

Finally, we keep the other parameters unchanged and change the intensity of
the noise. Letting γ1 = 0.3, γ2 = 0.11, γ3 = 0.1, from Fig. 4 we know that system
(1.3) is extinct. Comparing Fig. 3 with Fig. 4, we can find that the Lévy jumps
may suppress the survival of the species.

7. Conclusions

In this paper, we analyze a stochastic predator-prey model with the stage structure
for predator and Holling type II functional reaction. By constructing appropriate
Lyapunov functions, we first prove that the proposed model exists a uniqueness
global positive solution. Then we obtain the sufficient conditions for the extinc-
tion and persistence in the mean of the proposed model. Finally, some numerical
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Figure 3. The time series of the immature and mature predator and prey with σ2
1 = 0.25, σ2

2 =

0.0001, σ2
3 = 0.0001, γ1 = 0.001, γ2 = 0.01, γ3 = 0.01, κ = 0.4.

0 100 200 300 400 500
0

1

2

3

4

Figure 4. The time series of immature and mature predators and prey with γ1 = 0.3, γ2 = 0.11,
γ3 = 0.1.

simulations are carried out to verify the correctness of the theoretical results. By
numerical results, we find that large environmental noise is not conducive to the
survival of species, even leads to species extinction.

Some interesting questions deserve further investigation. On one hand, one can
consider other functional responses of model (1.3). On the other hand, one can
introduce the continuous-time Markov chain or impulsive effects into model (1.3).
Of course, these investigations will be more complex, and we will devote ourselves
to these investigations in the future.
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