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Positive Solutions for Hilfer Fractional Differential
Equation Boundary Value Problems at Resonance∗
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Abstract In this paper, we investigate the positive solutions for Hilfer frac-
tional differential equation boundary value problems at resonance. First, we
give the expression of the solution with Mittag-Leffler function. Next, we ob-
tain the existence of the positive solutions by using fixed point index theorem.
Finally, we give relevant examples to prove our main results.
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1. Introduction

In this paper, we consider the following Hilfer fractional differential equation bound-
ary value problem (FBVP) at resonance{

Dα,β
0+ x(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = ηx(ξ),
(1.1)

where 1 < α < 2, 0 ≤ β ≤ 1, 1 < γ = α+ β(2− α) < 2, 0 < ξ < 1, and ηξγ−1 = 1.

Dα,β
0+ is Hilfer fractional derivative and f : [0, 1]× [0,+∞)→ R is continuous.

Boundary value problem (BVP) (1.1) is resonant as the corresponding homoge-
neous BVP {

Dα,β
0+ x(t) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = ηx(ξ)
(1.2)

has a nontrivial solution ctγ−1, where c ∈ R, c 6= 0.
Fractional differential equations can describe the objective world more accurately

than integer differential equations, so they are widely used in physical mechanics,
biomedicine, viscoelastic system, finance and other aspects (see [1,9,22]). There are
various definitions for fractional integrals and derivatives, and the most commonly
used are Riemann-Liouville derivative and Caputo derivative (see [5, 8, 10,14,19]).

Hilfer fractional derivative is an interpolation between Riemann-Liouville deriva-
tive and Caputo fractional derivative. When β = 0, it corresponds to Riemann-
Liuoville fractional derivative. When β = 1, it corresponds to Caputo fractional

†The corresponding author.
Email address: sshrong@163.com (S. Sun), liuzhiyuan2273@163.com (Z. Liu)

1School of Mathematical Sciences, University of Jinan, Jinan, Shandong
250022, China
∗The authors were supported by the Natural Science Foundation of China
(Grant No. 62073153) and Shandong Provincial Natural Science Foundation
(Grant No. ZR2020MA016).

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2023.695 | Generated on 2025-04-20 01:58:26

http://dx.doi.org/10.12150/jnma.2023.695


696 Z. Liu & S. Sun

derivative. Therefore, it is important to study Hilfer fractional derivative, which
includes both Riemann-Liuoville and Caputo fractional derivative. Recently, many
scholars have devoted themselves to the study on fractional differential equations
with Hilfer derivative and have obtained abundant results (see [6, 11–13,16,20]).

For the special case of Hilfer fractional derivative β = 0 and β = 1, Wang
studied BVP (1.1) in the sense of Riemann-Liouville fractional derivative (see [18]),
and Yang studied BVP (1.1) in the sense of Caputo fractional derivative (see [21]).

Wang investigated the following Hilfer FBVP at non-resonance by fixed point
theorem (see [16]) D

α,β
a+ u(t) = f(t, u(t)), t ∈ (a, b],

I1−γ
a+ u(a+) =

m∑
i=1

λiu(τi), τi ∈ (a, b],

where 0 < α < 1, 0 ≤ β ≤ 1, Γ(γ) 6=
m∑
i=1

λi(τi − a)γ−1, and Dα,β
a+ is Hilfer fractional

derivative.
Yong investigated the following Hilfer FBVP at resonance by upper and lower

solutions (see [12])D
α,β
0+ x(t) = f(t, x(t)), t ∈ (0, T ] = J \ {0},

I1−γ
0+ x(0) =

m∑
i=1

cix(τi), τi ∈ J,

where 0 < α < 1, 0 ≤ β ≤ 1, Γ(γ) =
m∑
i=1

ci(τi)
γ−1, and Dα,β

0+ is Hilfer fractional

derivative.
First, most of studies on the Hilfer fractional derivative are considered in the

case of 0 < α < 1 (see [6,11–13,16,20]), while in this paper, we consider the case of
the higher order 1 < α < 2. Higher order differential equations can be applied to the
establishment of control systems and diffusion systems. For example, Nigmatullin
derived fractional diffusion-wave equation (see [17])

0D
α
t u(x, t) =

d2u(x, t)

dx2
.

When α = 1, it is the traditional diffusion equation, when α = 2, it is the traditional
wave equation, and when 1 < α < 2, it is an intermediate state between diffusion
and wave.

Secondly, the studies on the Hilfer FBVPs are limited to the non-resonant cases
(see [11, 13, 16, 20]), and there is little research on the resonant case (see [6, 12]).
Especially, as far as we know, no relevant results have been obtained for the existence
of positive solutions so far. The study of positive solutions has important theoretical
significance and practical value in practical problems. For example, the optimal
control problem the HIV model can be abstracted into the following fractional
differential equations of the same order (see [15]){

C
0 D

α
Tx(t) = f(t, x(t), u(t)),

x(0) = x0,

where 0 < α < 1, x(t) is the n-dimensional state vector, u(t) is the m-control
vector, and f is the n-dimensional vector function. For a given control function,
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the existence of optimal control for positive solutions is obtained in the minimum
functional sense.

In this paper, we consider the existence of positive solutions for Hilfer FBVPs
at resonance. This paper is organized as follows. In Section 2, we review the basic
definitions, lemmas and theorems. In Section 3, by fixed point index theorem and
spectral theory of linear operators, we study the positive solutions for Hilfer FBVPs
at resonance. In Section 4, we give relevant examples to prove our main results. In
Section 5, the paper is summarized and prospected.

2. Preliminaries

Definition 2.1 ( [7]). The Riemann-Liouville fractional integral of order α > 0 of
a function x : (0,+∞)→ R is given by

Iα0+x(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds,

provided the right-hand side is point-wise defined on (0,+∞).

Definition 2.2 ( [7]). The Riemann-Liouville fractional derivative of order α > 0
of a function x : (0,+∞)→ R is given by

Dα
0+x(t) =

dn

dtn
(In−α0+ x)(t),

provided the right-hand side is point-wise defined on (0,+∞), where n is the small-
est integer greater than or equal to α.

Definition 2.3 ( [3]). The Hilfer fractional derivative of order 1 < α < 2, and the
type 0 ≤ β ≤ 1 of a function x ∈ L1[0, 1] is given by

Dα,β
0+ x(t) = (I

β(2−α)
0+ Dγ

0+x)(t),

where γ = α + β(2 − α). If β = 0, Dα,0
0+ = Dα

0+ represents Riemann-Liouville

fractional derivative. If β = 1, Dα,1
0+ =c Dα

0+ represents Caputo fractional derivative.

Definition 2.4 ( [7]). Mittag-Leffler function with two parameters of order α > 0
of a function z ∈ C is given by

Eα,β(z) =

+∞∑
k=0

zk

Γ(kα+ β)
.

Remark 2.1 ( [7]). Mittag-Leffler function with two parameters is absolutely con-
vergent in the whole complex plane.

Lemma 2.1 ( [4]). Let 1 < α < 2, 0 ≤ β ≤ 1, and γ = α+β(2−α). If x ∈ C[0, 1],
then the following equations hold:

Iγ0+D
γ
0+x = Iα0+D

α,β
0+ x,

Dγ
0+I

α
0+x = D

β(2−α)
0+ x,

Dα,β
0+ Iα0+x = I

β(2−α)
0+ D

β(2−α)
0+ x.
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Lemma 2.2 ( [7]). Let 1 < α < 2. If x ∈ C[0, 1], then the following equation holds:

Iα0+Dα
0+x(t) = x(t)− c1tα−1 − c2tα−2, c1, c2 ∈ R.

Lemma 2.3 ( [7]). If α > 0, β > 0, then the following equations hold:

Iα0+tβ−1 =
Γ(β)

Γ(α+ β)
tα+β−1,

Dα
0+tα−1 = 0.

Theorem 2.1 ( [12]). For any α > 0, λ ∈ R. We get

(1) for any x ∈ C1−γ [[0, 1],R],
+∞∑
k=0

λkIkα0+ x(t) is convergent, and

+∞∑
k=0

λkIkα0+ x(t) = x(t) + λ

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)x(s)ds;

(2) operator I − λIα0+ : C1−γ [[0, 1],R]→ C1−γ [[0, 1],R] is reversible and contin-
uous, and

(I − λIα0+)−1x(t) =

+∞∑
k=0

λkIkα0+ x(t).

Denote

g(t) =
1

Γ(α− 2)
+

+∞∑
k=1

tk

Γ(kα+ α− 2)
.

We can get

g′(t) =

+∞∑
k=1

ktk−1

Γ(kα+ α− 2)
> 0, t ∈ (0,+∞);

g(0) =
1

Γ(α− 2)
< 0, lim

t→+∞
g(t) = +∞.

Then, g(t) has a unique λ∗ > 0 such that g(λ∗) = 0 on (0,+∞).
In this paper, we give the following assumptions.
(A1) λ ∈ (0, λ∗].
(A2) f : [0, 1]× [0,+∞)→ R is continuous.
Consider the following FBVP which is equivalent to (1.1){

−Dα,β
0+ x(t) + λx(t) = f(t, x(t)) + λx(t), t ∈ (0, 1),

x(0) = 0, x(1) = ηx(ξ).
(2.1)

Theorem 2.2. If (A1) holds and y ∈ C[0, 1], then the unique solution to problem{
−Dα,β

0+ x(t) + λx(t) = y(t), t ∈ (0, 1),

x(0) = 0, x(1) = ηx(ξ)
(2.2)

is

x(t) =

∫ 1

0

K(t, s)y(s)ds, (2.3)
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where

K(t, s) = K0(t, s) +Hλ(t)w(s),

K0(t, s) =


Gλ(1− s)Hλ(t)−Gλ(t− s)Hλ(1)

Hλ(1)
, 0 ≤ s < t ≤ 1,

Gλ(1− s)Hλ(t)

Hλ(1)
, 0 ≤ t ≤ s ≤ 1,

w(s) =
ηK0(ξ, s)

Hλ(1)− ηHλ(ξ)
,

Gλ(t) = tα−1Eα,α(λtα),

Hλ(t) = tγ−1Eα,γ(λtα).

Proof. (i) If x is the solution to (2.2), then it can be expressed as (2.3). Applying
Iα0+ to both sides of (2.2),

−Iα0+D
α,β
0+ x(t) + λIα0+x(t) = Iα0+y(t).

By Lemma 2.1, we have

−Iγ0+D
γ
0+x(t) + λIα0+x(t) = Iα0+y(t).

From Lemma 2.2, we get

− x(t) + c1t
γ−1 + c2t

γ−2 + λIα0+x(t) = Iα0+y(t). (2.4)

By the boundary condition x(0) = 0, we have c2 = 0. Then,

(I − λIα0+)x(t) = −Iα0+y(t) + c1t
γ−1.

From Theorem 2.1 and Lemma 2.3, we obtain

x(t) =(I − λIα0+)−1(−Iα0+y(t) + c1t
γ−1)

=

+∞∑
k=0

λkIkα0+ (−Iα0+y(t) + c1t
γ−1)

=−
+∞∑
k=0

λkIkα+α
0+ y(t) + c1

+∞∑
k=0

λkIkα0+ tγ−1

=−
∫ t

0

+∞∑
k=0

λk
(t− s)kα+α−1

Γ(kα+ α)
y(s)ds+ c1

+∞∑
k=0

λk
Γ(γ)tkα+γ−1

Γ(kα+ γ)

=−
∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)y(s)ds+ ctγ−1Eα,γ(λtα)

=−
∫ t

0

Gλ(t− s)y(s)ds+ cHλ(t), c = c1Γ(γ).

Therefore,

x(1) = −
∫ 1

0

Gλ(1− s)y(s)ds+ cHλ(1),
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x(ξ) = −
∫ ξ

0

Gλ(ξ − s)y(s)ds+ cHλ(ξ).

By the boundary condition x(1) = ηx(ξ), we have

c =

∫ 1

0
Gλ(1− s)y(s)ds− η

∫ ξ
0
Gλ(ξ − s)y(s)ds

Hλ(1)− ηHλ(ξ)
.

Then, x(t) can be expressed as follows.

x(t)

= −
∫ t

0

Gλ(t− s)y(s)ds+

∫ 1

0
Gλ(1 − s)y(s)ds− η

∫ ξ
0
Gλ(ξ − s)y(s)ds

Hλ(1) − ηHλ(ξ)
Hλ(t)

=
−
∫ t
0
Gλ(t− s)Hλ(1)y(s)ds+

∫ 1

0
Gλ(1 − s)Hλ(t)y(s)ds

Hλ(1)
−
∫ 1

0
Gλ(1 − s)Hλ(t)y(s)ds

Hλ(1)

+

∫ 1

0
Gλ(1 − s)y(s)ds

Hλ(1) − ηHλ(ξ)
Hλ(t) −

η
∫ ξ
0
Gλ(ξ − s)y(s)ds

Hλ(1) − ηHλ(ξ)
Hλ(t)

=

∫ 1

0

K0(t, s)y(s)ds+
η
∫ 1

0
Gλ(1 − s)Hλ(ξ)y(s)ds

Hλ(1)[Hλ(1) − ηHλ(ξ)]
Hλ(t)−

η
∫ ξ
0
Gλ(ξ − s)Hλ(1)y(s)ds

Hλ(1)[Hλ(1) − ηHλ(ξ)]
Hλ(t)

=

∫ 1

0

K0(t, s)y(s)ds+
η[
∫ 1

0
Gλ(1 − s)Hλ(ξ)y(s)ds−

∫ ξ
0
Gλ(ξ − s)Hλ(1)y(s)ds]

Hλ(1)[Hλ(1) − ηHλ(ξ)]
Hλ(t)

=

∫ 1

0

[
K0(t, s) +Hλ(t)w(s)]y(s)ds

=

∫ 1

0

K(t, s)y(s)ds.

(ii) We proof that (2.3) is the solution to (2.2).
Applying Dγ

0+ to both sides of (2.4),

−Dγ
0+x(t) + c1D

γ
0+t

γ−1 + c2D
γ
0+t

γ−2 + λDγ
0+I

α
0+x(t) = Dγ

0+I
α
0+y(t).

By Lemmas 2.1 and 2.3, we get

−Dγ
0+x(t) + λD

β(2−α)
0+ x(t) = D

β(2−α)
0+ y(t). (2.5)

Applying I
β(2−α)
0+ to both sides of (2.5),

−Iβ(2−α)
0+ Dγ

0+x(t) + λI
β(2−α)
0+ D

β(2−α)
0+ x(t) = I

β(2−α)
0+ D

β(2−α)
0+ y(t).

From Lemma 2.2, we have

−Dα,β
0+ x(t) + λx(t) = y(t).

This completes the proof.

Definition 2.5. Function x ∈ C[0, 1] satisfying (2.3) is called the solution to
FBV P (2.2).

Lemma 2.4. If (A1) holds, then the following inequalities hold:
(1) K(t, s) > 0, ∀t, s ∈ (0, 1);
(2) m2(s)tγ−1 ≤ K(t, s) ≤ m1(s)tγ−1, ∀t, s ∈ (0, 1), where m1(s) = Gλ(1− s) +

Hλ(1)w(s), and m2(s) = w(s)
Γ(γ) .
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Proof. (i) By the definitions of Gλ(t) and Hλ(t), we get

G′λ(t) =

+∞∑
k=0

λktkα+α−2

Γ(kα+ α− 1)
> 0, t ∈ (0, 1].

Since Gλ(t) is continuous at t = 0 and increasing on (0, 1], monotonicity can be
extended to endpoints. Then, Gλ(t) is increasing on [0, 1] and Gλ(t) > 0 on (0, 1].

H ′λ(t) =

+∞∑
k=0

λktkα+γ−2

Γ(kα+ γ − 1)
> 0, t ∈ (0, 1].

Then, Hλ(t) is increasing on [0, 1] and Hλ(t) > 0 on (0, 1].
By the definition of Hλ(t), we have

tγ−1

Γ(γ)
≤ Hλ(t) =

+∞∑
k=0

λktkα+γ−1

Γ(kα+ γ)
≤

+∞∑
k=0

λktγ−1

Γ(kα+ γ)
= tγ−1Hλ(1), t ∈ [0, 1].

When 0 < t ≤ s < 1, we obtain

K(t, s) =
Gλ(1− s)Hλ(t)

Hλ(1)
+Hλ(t)w(s)

≤Gλ(1− s)tγ−1 + tγ−1Hλ(1)w(s) = m1(s)tγ−1.

When 0 < s < t < 1, we get

K(t, s) =
Gλ(1− s)Hλ(t)−Gλ(t− s)Hλ(1)

Hλ(1)
+Hλ(t)w(s)

≤Gλ(1− s)Hλ(t)

Hλ(1)
+Hλ(t)w(s)

≤m1(s)tγ−1.

(ii) By the property of g(t), we have

G′′λ(t) =

+∞∑
k=0

λktkα+α−3

Γ(kα+ α− 2)
= tα−3(

1

Γ(α− 2)
+

+∞∑
k=1

λktkα

Γ(kα+ α− 2)
)

= tα−3g(λtα) ≤ tα−3g(λ) ≤ tα−3g(λ∗) = 0, t ∈ (0, 1).

Then, G′λ(t) is decreasing on (0, 1].
Therefore,

∂

∂s
[Gλ(1− s)Hλ(t)−Gλ(t− s)Hλ(1)]

=−G′λ(1− s)Hλ(t) +G′λ(t− s)Hλ(1)

≥G′λ(1− s)[Hλ(1)−Hλ(t)].

Integrating both sides with respect to s, we obtain

Gλ(1− s)Hλ(t)−Gλ(t− s)Hλ(1)

≥
∫ s

0

G′λ(1− τ)[Hλ(1)−Hλ(t)]dτ

=[Gλ(1)−Gλ(1− s)][Hλ(1)−Hλ(t)] > 0.
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That is to say, when 0 < s < t < 1, we have

K0(t, s) =
Gλ(1− s)Hλ(t)−Gλ(t− s)Hλ(1)

Hλ(1)
> 0.

When 0 < t ≤ s < 1, we get

K0(t, s) =
Gλ(1− s)Hλ(t)

Hλ(1)
> 0.

Therefore,

K(t, s) = K0(t, s) +Hλ(t)w(s) ≥ Hλ(t)w(s)

≥ tγ−1

Γ(γ)
w(s) = m2(s)tγ−1.

(iii) By ηξγ−1 = 1 and the definition of Mittag-Leffler function, we have

E′α,γ(t) =

+∞∑
k=0

ktk−1

Γ(kα+ γ)
> 0, t ∈ (0, 1]

and

Hλ(1)− ηHλ(ξ) = Eα,γ(λ)− ηξγ−1Eα,γ(λξα) = Eα,γ(λ)− Eα,γ(λξα) > 0.

Therefore,

w(s) =
ηK0(ξ, s)

Hλ(1)− ηHλ(ξ)
> 0.

By (ii), we get

K(t, s) ≥ tγ−1

Γ(γ)
w(s) > 0.

This completes the proof.
Let E = C[0, 1] with ‖x‖ = max

0≤t≤1
|x(t)|. Then E is a Banach space. Denote

Pr = {x ∈ E : ‖x‖ < r}. Define a cone

P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}.

Let

Ax(t) =

∫ 1

0

K(t, s)[f(s, x(s)) + λx(s)]ds,

Lx(t) =

∫ 1

0

K(t, s)x(s)ds.

Lemma 2.5 ( [18]). If (A1) holds, then the first eigenvalue of L is λ, and the
corresponding eigenfunction is x0(t) = tγ−1. That is, x0 = λLx0.

Lemma 2.6 ( [2]). Let E be a Banach space. P is a cone, and Pr is a bounded
open set in E. A : Pr ∩ P → P is a completely continuous operator.

(1) If ∃x0 ∈ P \ {θ} such that x − Ax 6= µx0, ∀µ ≥ 0, and x ∈ ∂Pr ∩ P , then
i(A,Pr ∩ P, P ) = 0.

(2) If Ax 6= µx, ∀µ ≥ 1, and x ∈ ∂Pr ∩ P , then i(A,Pr ∩ P, P ) = 1.
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3. Main results

Theorem 3.1. If (A1), (A2) and the following inequalities hold

lim inf
x→0+

min
0≤t≤1

f(t, x)

x
> 0, (3.1)

lim sup
x→+∞

max
0≤t≤1

f(t, x)

x
< 0, (3.2)

then FBVP (1.1) has at least one positive solution.

Proof. (i) By (3.1), there exists r1 > 0 such that

f(t, x) ≥ 0, ∀(t, x) ∈ [0, 1]× [0, r1].

Ax(t) =

∫ 1

0

K(t, s)[f(s, x(s)) + λx(s)]ds ≥
∫ 1

0

K(t, s)λx(s)ds = λLx(t). (3.3)

Suppose that A has no fixed point on ∂Pr1 ∩ P . We prove that

x−Ax 6= µx0, ∀µ ≥ 0, x ∈ ∂Pr1 ∩ P. (3.4)

Otherwise, there exists µ0 ≥ 0 and x1 ∈ ∂Pr1 ∩ P such that

x1 −Ax1 = µ0x0.

By Lemma 2.4, we obtain

x1 ≥ µ0x0.

Let

µ∗ = sup{µ : x1 ≥ µx0}.

Then, x1 ≥ µ∗x0. By (3.3) and Lemma 2.5, we get

x1 = Ax1 + µ0x0 ≥ λLx1 + µ0x0 ≥ µ∗λLx0 + µ0x0 = µ∗x0 + µ0x0 = (µ∗ + µ0)x0.

It contradicts the definition of µ∗. Then, (3.4) holds, and by Lemma 2.6,

i(A,Pr1 ∩ P, P ) = 0. (3.5)

(ii) By (3.2), there exists r2 > r1 > 0 and 0 < δ < 1 such that

f(t, x) ≤ −δλx, ∀(t, x) ∈ [0, 1]× [r2,+∞). (3.6)

Let

Ω = {x ∈ P : x = µAx, 0 ≤ µ ≤ 1}.

Now, we present that Ω is bounded. For x ∈ Ω, let x̃(t) = min{x(t), r2}. By (3.6)
and (A2),

f(t, x) ≤ −δλx+ f(t, x̃(t)) + λx̃(t). (3.7)
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By Lemma 2.4, we get

Ax̃(t) =

∫ 1

0

K(t, s)[f(s, x̃(s)) + λx̃(s)]ds

≤
∫ 1

0

m1(s)tγ−1[f(s, x̃(s)) + λx̃(s)]ds

≤ max
(t,x)∈[0,1]×[0,r2]

{f(t, x) + λx}
∫ 1

0

m1(s)ds = M.

(3.8)

By (3.7) and (3.8), we have

x(t) = µAx(t) ≤ Ax(t) =

∫ 1

0

K(t, s)[f(s, x(s)) + λx(s)]ds

≤
∫ 1

0

K(t, s)[−δλx(s) + f(s, x̃(s)) + λx̃(s) + λx(s)]ds

= Ax̃(t) + λ(1− δ)Lx(t)

≤M + Tx(t),

where T = λ(1− δ)L. Then,

(I − T )x(t) ≤M.

By Lemma 2.5, we get r(T ) = 1− δ. Then, the inverse operator of I−T exists, and

‖x‖ ≤M‖(I − T )−1‖.

Therefore, Ω is bounded.
Let r3 = M‖(I − T )−1‖+ r2, and by Lemma 2.6,

i(A,Pr3 ∩ P, P ) = 1. (3.9)

By (3.8) and (3.9), we obtain

i(A, (Pr3 \ Pr1) ∩ P, P ) = 1.

Then, A has a fixed point on (Pr3 \ Pr1) ∩ P . That is to say, FBVP (1.1) has at
least one positive solution. This completes the proof.

Theorem 3.2. If (A1), (A2) and the following inequality hold

lim sup
x→0+

max
0≤t≤1

f(t, x)

x
< 0, (3.10)

then FBV P (1.1) has at least one positive solution.

Proof. By (3.10), there exists R1 > 0 such that

f(t, x) ≤ 0, ∀(t, x) ∈ [0, 1]× [0, R1]. (3.11)

Suppose that A has no fixed point on ∂PR1
∩ P . We testify that

Ax 6= µx, ∀µ > 1, x ∈ ∂PR1
∩ P. (3.12)
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Otherwise, there exists µ0 > 1 and x1 ∈ ∂PR1
∩ P such that

Ax1 = µ0x1.

By (3.11), we get

Ax1 =

∫ 1

0

K(t, s)[f(s, x1(s)) + λx1(s)]ds ≤
∫ 1

0

K(t, s)λx1(s)ds = T1x1,

where T1 = λL, we obtain r(T1) = 1. Then,

Ax1 = µ0x1 ≤ T1x1.

By induction, we obtain

µn0x1 ≤ Tn1 x1 ≤ ‖Tn1 ‖‖x1‖, n = 1, 2, · · · .

Therefore,

r(T1) = lim
n→+∞

n

√
‖Tn1 ‖ ≥ µ0 > 1.

It contradicts with r(T1) = 1. Hence, (3.12) holds, and by Lemma 2.6

i(A,PR1 ∩ P, P ) = 1. (3.13)

Then, A has a fixed point on PR1
∩ P . That is to say, FBVP (1.1) has at least one

positive solution. This completes the proof.

4. Examples

Example 4.1. Consider the following FBVP{
D

3
2 ,

1
3

0+ x(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = 4x( 1
8 ),

(4.1)

where α = 3
2 , β = 1

3 , γ = 5
3 , η = 4, ξ = 1

8 , and ηξγ−1 = 1.
Then, (4.1) with f(t, x) = x

2 − x
2 cos t satisfies the following inequalities

lim inf
x→0+

min
0≤t≤1

f(t, x)

x
=

1

2
> 0,

lim sup
x→+∞

max
0≤t≤1

f(t, x)

x
= −∞ < 0.

By Theorem 3.1, FBVP (4.1) has at least one positive solution.

Example 4.2. Consider the following FBVP{
D

5
2 ,

1
2

0+ x(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = 128x( 1
16 ),

(4.2)

where α = 5
2 , β = 1

2 , γ = 11
4 , η = 128, ξ = 1

16 , and ηξγ−1 = 1.
Then, (4.2) with f(t, x) = x2 cos t− x

2 satisfies the following inequality

lim sup
x→0+

max
0≤t≤1

f(t, x)

x
= −1

2
< 0.

By Theorem 3.2, FBVP (4.2) has at least one positive solution.
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5. Conclusions

In this paper, by using fixed point index theorem and spectral theory of linear
operators, we obtain the existence of positive solutions for Hilfer FBVP.

We consider the case 1 < α < 2. However, when 0 < α < 1, it is not difficult to
find that some constraints should be given to α and β to avoid singularity and to
ensure the existence of positive solutions. In addition, we need to study what other
conditions are worthy of further exploration and research.
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