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Abstract By the definition of the higher-order fractional derivative, we ex-
plore the central properties of the higher-order Caputo-Fabrizio fractional
derivative and integral with a weighted term. Furthermore, by dint of Schae-
fer’s fixed point theorem, α-ψ-Contraction theorem, etc., we establish the ex-
istence of solutions for nonlinear equations. We also give three examples to
make our main conclusion clear.
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1. Introduction

During the past decades, the Caputo fractional derivative (CFD) has been investi-
gated by many scholars (see [13,18]). In the last few years, a large number of essays
about a novel fractional derivative, Caputo-Fabrizio fractional derivative (CFFD),
have emerged, and this kind of derivative has a better nature than the usual frac-
tional derivative (see [1–3,5,7,9,12,15,16,19]). For instance, in 2020, Eiman et al.,
dealt with the nether class of fractional differential equations involving the CFFD
and obtained the existence theory{

CF
0 D

θ
xu(x) = f(x, u(x),CF0 D

θ
xu(x)), x ∈ [0, T ] = J,

u(0) = u0, u0 ∈ R,

where θ ∈ (0, 1], f : J×R×R→ R (see [9]). In 2021, Abbas et al., investigated the
existence of solutions for the following Cauchy problem of Caputo-Fabrzio impulsive
fractional differential equations

(CFDr
tk
u)(t) = f(t, u(t)); t ∈ Ik, k = 0, · · · ,m,

u(t+k ) = u(t−k ) + Lk(u(t−k )); k = 1, · · · ,m,
u(0) = u0,
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where I0 = [0, t1], Ik = (tk, tk+1], k = 1, · · · ,m; 0 = t0 < t1 < · · · < tm < tm+1 =
T , u0 ∈ R, and f : Ik × R→ R, k = 0, · · · ,m, Lk : R→ R; k = 1, · · · ,m are given
continuous functions, CFDr

tk
is the Caputo-Fabrizio fractional derivative of order

r ∈ (0, 1) (see [2]). In 2022, Abbas et al., investigated the existence of solutions
for the Cauchy problem of Caputo-Fabrzio fractional differential equations without
instantaneous impulses

(CFDr
sk
u)(t) = f(t, u(t)); t ∈ Ik, k = 0, · · · ,m,

u(t) = gk(t, u(t−k )); if t ∈ Jk, k = 1, · · · ,m,
u(0) = u0 ∈ R,

where I0 := [0, t1], Jk := (tk, sk], Ik := (sk, tk+1]; k = 1, · · · ,m, and f : Ik×R→ R,
gk : Jk ×R→ R are given continuous functions, 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · · ≤
sm−1 < tm ≤ sm < tm+1 = T (see [3]).

Abreast of the times, in 2022, Fernandez et al., conducted a formal study of
weighted fractional calculus, and emphasized the importance of the conjugation
relationships with the classical Riemann-Liouville fractional calculus (see [11]). For
the study of Caputo-Fabrizio fractional derivative (CFFD) in the weighted field, in
2019, Al-Refai and Jarrah first proposed the weighted Caputo-Fabrizio fractional
derivative (WCFFD) of order 0 to 1, and demonstrated the existence and uniqueness
of the nonlinear fractional initial value problem{

(Dα
a,[z,w]f)(t) = g(t, f), t > a, 0 < α < 1,

f(a) = f0 ∈ R,

where Dα
a,[z,w] is the WCFFD (see [4]). In 2020, Wu, Chen and Deng studied the

existence and stability of solutions for the WCFFD type differential equations of
order 0 to 1 (see [20]). However, fewer papers are on the higher-order WCFFD.

In this paper, we are concerned with the existence of solutions for the following
nonlinear equations 

(Dr
a,[z,w]y)(t) = ξ(t, y(t)),

y(k)(a) = 0, k = 0, 1, 2, · · · , n− 1,

y(n)(a) = 1,

(1.1)

where 1 ≤ n < r < n+1, Dr
a,[z,w] is the higher order WCFFD, and y ∈ ACn([a, T ],R),

ξ are binary continuous functions
Dr
a,[z,w](y(t)−$(t, y(t)) = ξ(t, y(t)),

(y −$)(k)(a) = 0, k = 0, 1, 2, · · · , n− 1,

(y −$)(n)(T ) = 0,

(1.2)

where y −$ ∈ ACn([a, T ],R), and $ are binary continuous functions
Dr
a,[z,w]

y(t)
ϕ(t,y(t)) = ξ(t, y(t)),

y(k)(a) = 0, k = 0, 1, 2, · · · , n− 1,

y(n)(a) = 1,

(1.3)

where y
ϕ ∈ AC

n([a, T ],R), and ϕ are binary continuous functions. Here, AC([a, T ],R)

is Banach space, which contains all absolutely continuous functions from [a, T ] in-
to R, provided with the usual maximum norm. ACn([a, T ],R) = {x : [a, T ] →
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Higher-Order Weighted Caputo-Fabrizio Fractional Derivative 765

R, and x(n−1) ∈ AC([a, T ],R)}.
The main components of this article are as follows. First, the definitions and

properties of the higher-order WCFFD are introduced. Then, the existence results
of the nonlinear equations are obtained. Finally, we give three examples to make
our main conclusion clear.

2. Preliminary results

In this segment, we introduce preliminary results related to this dissertation.

Definition 2.1 ( [4]). Let 0 < r < 1, and y ∈ AC([a, T ],R). The weighted Caputo-
Fabrizio fractional derivative (WCFFD) of y of order r is defined by

(Dr
a,[z,w]y)(t) =

M(r)

1− r
1

w(t)

∫ t

a

e−µr(z(t)−z(s)) d

ds
(wy)(s)ds, a < t < T.

Here, µr = r
1−r , M(r) is a normalization function, which satisfiesM(0) = M(1) = 1,

w, z ∈ AC1[a, T ], and w,w′, z′ > 0 on [a, T ].

Definition 2.2 ( [4]). For 0 < r < 1, the weighted Caputo-Fabrizio fractional
integral (WCFFI) of y of order r is defined by

(Ira,[z,w]y)(t) =
1

M(r)

(
(1− r)y(t) +

r

w(t)

∫ t

a

z′(s)w(s)y(s)ds

)
.

Definition 2.3. Let n < r < n+ 1, and y ∈ ACn([a, T ],R), we define the WCFFD
of y of order r as follows:

(Dr
a,[z,w]y)(t)= (Dr−n

a,[z,w]y
(n))(t)

=
M(r − n)

1− r + n

1

w(t)

∫ t

a

e−µr−n(z(t)−z(s)) d

ds
(wy(n))(s)ds, (2.1)

where µr−n = r−n
1−r+n .

Definition 2.4. For n < r < n+ 1, the WCFFI of y of order r as follows:

(Ira,[z,w]y)(t) = (InIr−na,[z,w]y)(t)

=
1

Γ(n)

∫ t

a

(t− s)n−1 1

M(r − n)

(
(1− r + n)y(s) +

r − n
w(s)

∫ s

a

z′(u)w(u)y(u)du

)
ds

=
n+ 1− r

Γ(n)M(r − n)

∫ t

a

(t− s)n−1y(s)ds

+
r − n

Γ(n)M(r − n)

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)y(u)duds.

Definition 2.5 ( [6]). For n < r < n + 1, we call the usual Caputo-Fabrizio
fractional derivative (CFFD) as follows:

Dr
ay(t) =

M(r − n)

1− r + n

∫ t

a

e−µr−n(t−s)y(n+1)ds. (2.2)
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Let us consider the difference between the WCFFD and the usual CFFD in the
interval [−25, 25].

(i) As y(t) = sin t, we choose z(t) = w(t) = t, a = −25, and M = 1. We observe
the following simulations of the WCFFD and the usual CFFD with r = 0.8 (see
Figures 1-2):

(Dr
a,[z,w]y)(t) =

1

0.2

1

t

∫ t

−25

e4(s−t)(sin s+ s · cos s)ds, (2.3)

(Dr
ay)(t) =

1

0.2

∫ t

−25

e4(s−t) cos sds. (2.4)

Figure 1. Simulation of WCFFD (2.3)

Figure 2. Simulation of the usual CFFD (2.4)

(ii) As y(t) = sin t, we choose z(t) = w(t) = t, a = −25, M = 1. We observe
the following simulations of the WCFFD and the usual CFFD with r = 1.8 (see
Figures 3-4):

(Dr
a,[z,w]y)(t) =

1

0.2

1

t

∫ t

−25

e4(s−t)(cos s− s · sin s)ds, (2.5)
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(Dr
ay)(t) =

1

0.2

∫ t

−25

e4(s−t)(− sin s)ds. (2.6)

Figure 3. Simulation of WCFFD( 2.5)

Figure 4. Simulation of the usual CFFD (2.6)

From the above simulations we can observe different actions between the WCFFD
and the usual CFFD. There is a difference between Figure 1 and Figure 2. Other-
wise, it appears less different in the other two images (see Figures 3-4).

Now, we consider the relations between the differential and integral operators.

Theorem 2.1. Letting n < r < n+ 1, and y ∈ ACn([a, T ],R), then

(i) (Dr
a,[z,w]I

r
a,[z,w]y)(t) = y(t)− eµr−n(z(a)−z(t))w(a)y(a)

w(t) .

(ii) (Ira,[z,w]D
r
a,[z,w]y)(t) = y(t)−

n−1∑
k=0

y(k)(a)
k! (t− a)k− w(a)y(n)(a)

Γ(n)

∫ t
a
(t− s)n−1 1

w(s)ds.

Proof. Letting β = r − n, then β ∈ (0, 1).
(i) Since

(Ira,[z,w]y)(n)(t)

=

[
In
(

1

M(β)

(
(1− β)y(t) +

β

w(t)

∫ t

a

z′(s)w(s)y(s)ds
))](n)
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=
1

M(β)

(
(1− β)y(t) +

β

w(t)

∫ t

a

z′(s)w(s)y(s)ds

)
,

we have

d

dt
(wIra,[z,w]y

(n))(t) =
1

M(β)

(
(1− β)

d

dt
(wy)(t) + β(z′wy)(t)

)
.

Thus,

(Dr
a,[z,w]I

r
a,[z,w]y)(t)

=
1

1− β
e−µβz(t)

w(t)

∫ t

a

eµβz(s)
(

(1− β)
d

ds
(wy)(s) + β(z′wy)(s)

)
ds

=
1

1− β
e−µβz(t)

w(t)

(
(1− β)

∫ t

a

eµβz(s)
d

ds
(wy)(s)ds

+β

∫ t

a

eµβz(s)(z′wy)(s)ds
)
. (2.7)

Integrating by parts, we have

(1− β)

∫ t

a

eµβz(s)
d

ds
(wy)(s)ds

= (1− β)

(
eµβz(t)(wy)(t)− eµβz(a)(wy)(a)− µβ

∫ t

a

eµβz(s)(z′wy)(s)ds

)
= (1− β)eµβz(t)w(t)y(t)− (1− β)eµβz(a)w(a)y(a)

−β
∫ t

a

eµβz(s)(z′wy)(s)ds. (2.8)

Substituting the result of (2.8) into (2.7),

(Dr
a,[z,w]I

r
a,[z,w]y)(t)

=
1

1− β
e−µβz(t)

w(t)

(
(1− β)eµβz(t)(wy)(t)− (1− β)eµβz(a)(wy)(a)

)
= y(t)− eµβ(z(a)−z(t))w(a)y(a)

w(t)
.

If we consider y(a) = 0, we get (Dr
a,[z,w]I

r
a,[z,w]y)(t) = y(t).

(ii)

(Ira,[z,w]D
r
a,[z,w]y)(t) =

1− β
Γ(n)M(β)

∫ t

a

(t− s)n−1(Dr
a,[z,w]y)(s)ds

+
β

Γ(n)M(β)

∫ t

a

(t−s)n−1 1

w(s)

∫ s

a

z′(u)w(u)(Dr
a,[z,w]y)(u)duds.

(2.9)

Let ky(t) =
∫ t
a
eµβz(s)(wy(n)(s))′ds. Then

k′y(t) = eµβz(t)
(
wy(n)(t)

)′
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and

(Dr
a,[z,w]y)(t) =

M(β)

1− β
e−µβz(t)

w(t)
ky(t).

Hence,

(z′wDr
a,[z,w]y)(t) =

M(β)

1− β
z′e−µβz(t)ky(t).

Integrating by parts, we have∫ t

a

(z′wDr
a,[z,w]y)(s)ds

=
M(β)

1− β

∫ t

a

z′(s)e−µβz(s)ky(s)ds

=
M(β)

1− β

∫ t

a

ky(s)d(− 1

µβ
e−µβz(s))

=
M(β)

1− β

[
− 1

µβ
e−µβz(s)ky(s) |ta +

∫ t

a

1

µβ
e−µβz(s)

d

ds
ky(s)

]
=
M(β)

1− β

[
− 1

µβ
e−µβz(t)ky(t) +

1

µβ
e−µβz(a)ky(a)

+

∫ t

a

1

µβ
e−µβz(s)eµβz(s)

d

ds
(wy(n))ds

]
=
M(β)

1− β

[
− 1

µβ
e−µβz(t)ky(t) +

1

µβ

∫ t

a

d

ds
(wy(n))(s)ds

]
= − M(β)

µβ(1− β)

[
e−µβz(t)ky(t)− (wy(n))(t) + (wy(n))(a)

]
= −M(β)

β

[
e−µβz(t)ky(t)− (wy(n))(t) + (wy(n))(a)

]
.

Substituting the result into (2.9), we have

(Ira,[z,w]D
r
a,[z,w]y)(t)

=
1− β

Γ(n)M(β)

∫ t

a

(t− s)n−1M(β)

1− β
e−µβz(s)

w(s)
ky(s)ds

− β

Γ(n)M(β)

∫ t

a

(t− s)n−1

w(s)

M(β)

β

[
e−µβz(s)ky(s)− (wy(n))(s) + (wy(n))(a)

]
ds

=
1

Γ(n)

∫ t

a

(t− s)n−1 e
−µβz(s)

w(s)
ky(s)ds

− 1

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)

[
e−µβz(s)ky(s)− (wy(n))(s) + (wy(n))(a)

]
ds

=
1

Γ(n)

∫ t

a

(t− s)n−1y(n)(s)ds− w(a)y(n)(a)

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds

= y(t)−
n−1∑
k=0

y(k)(a)

k!
(t− a)k − w(a)y(n)(a)

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds.
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If we consider y(n)(a) = 0, we get (Ira,[z,w]D
r
a,[z,w]y)(t) = y(t) −

n−1∑
k=0

y(k)(a)
k! (t − a)k.

3. Existence results for the nonlinear equation

In the following segment, we will investigate the existence results for nonlinear
equations in Section 1. Several lemmas related are given first.

Definition 3.1 ( [14, 17]). Let Ψ be the family of nondecreasing function ψ :

[0,∞) → [0,∞) satisfying
∞∑
n=1

ψn(t) < ∞ for t > 0. Let (X, d) be a metric space,

and α : X ×X → [0,∞) be a map and ψ ∈ Ψ. A mapping T : X → X is called an
α-ψ-contraction, if α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X.

Definition 3.2 ( [14, 17]). T : X → X is said to be α-admissible, if α(x, y) ≥ 1⇒
α(Tx, Ty) ≥ 1, for x, y ∈ X, where α : X ×X → [0,∞).

Lemma 3.1 ( [10]). Let M be a Banach space, and P : M → M be completely
continuous, if A(P ) = {y ∈M : y = λPy, for some λ ∈ [0, 1]} is bounded. Then, P
has a fixed point.

Lemma 3.2 ( [14,17]). (α-ψ-Contraction theorem)
Let (M,d) be a complete metric space and T : M → M be an α-ψ contraction

mapping. Further,
(i) T is α-admissible;
(ii) there exists x0 ∈M such that α(x0, Tx0) ≥ 1;
(iii) if xn is a sequence in M such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈M
as n→∞, then α(xn, x) ≥ 1 for all n.

Then, there exists y ∈M such that Ty=y.

Lemma 3.3 ( [8]). Let S be a non-empty, bounded and closed convex subset of
Banach algebra Ω. F1 : Ω→ Ω and F2 : S → Ω satisfy
(i) F1 is Lipschitzian, and the lipschitz constant is written as α;
(ii) F2 is completely continuous;
(iii) y1 = F1y1F2y2 ⇒ y1 ∈ S for all y2 ∈ S;
(iv) αM < 1, where M = sup{‖F2(y1)‖ : y1 ∈ S},

then F1y1F2y1 = y1 has a solution in S.

By means of Theorem 2.1, the following conclusion can be reached.

Lemma 3.4. Let y ∈ ACn[a, T ], ξ be a binary continuous function, and y be a
solution to the nonlinear fractional equation (1.1), if it satisfies the integral equation

y(t)− w(a)

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds

= ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds,

where ar = 1−r+n
Γ(n)M(r−n) , br = r−n

Γ(n)M(r−n) .

Theorem 3.1. Let 1 ≤ n < r < n + 1 and a ≤ t ≤ T . ξ is a binary continuous
function which satisfies |ξ(t, y(t))| ≤ L1(1+|y(t)|), and here L1 > 0. If (θ1+θ2)L1 <
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1, then boundary value problem (1.1) has at least one solution, where θ1 = ar(T−a)n

n ,

and θ2 = br(T−a)nw(T )(z(T )−z(a))
nw(a) .

Proof. Define P : ACn([a, T ],R)→ ACn([a, T ],R) as follows.

(Py)(t)=
w(a)

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds+ ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds

+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds.

Letting yn → y in [a, T ], for all t ∈ [a, T ],

|(Pyn)(t)− (Py)(t)|

≤ ar

∫ t

a

(t− s)n−1
∣∣ξ (s, yn(s))− ξ (s, y(s))

∣∣ds
+br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)
∣∣ξ (u, yn(u))− ξ (u, y(u))

∣∣duds
≤ ar ‖ ξ(·, yn(·))− ξ(·, y(·)) ‖

∫ t

a

(t− s)n−1ds

+br ‖ ξ(·, yn(·))− ξ(·, y(·)) ‖
∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)duds.

From z′, w′ > 0 and the mean value theorem for integrals, for some a < σ < T , we
have ∫ s

a

z′(u)w(u)du = w(σ)(z(s)− z(a)) ≤ w(T )(z(T )− z(a)).

Thus,

|(Pyn)(t)− (Py)(t)|

≤ ar(T − a)n

n
‖ ξ(·, yn(·))− ξ(·, y(·)) ‖

+
brw(T )(z(T )− z(a))(T − a)n

nw(a)
‖ ξ(·, yn(·))− ξ(·, y(·)) ‖ .

Since ξ is continuous, we can derive that P is continuous.
In the following, we will testify that P is a bounded operator. For

y ∈ Bρ = {y ∈ ACn([a, T ],R) : sup
t∈[a,T ]

|y(t)| ≤ ρ},

we get

|Py(t)|

=
∣∣∣w(a)

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds+ ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds

+br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds
∣∣∣

≤ w(a)

Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds+ ar

∫ t

a

(t− s)n−1L1(1 + |y(s)|)ds
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+br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)L1(1 + |y(u)|)duds

≤ (T − a)n

nΓ(n)
+
ar(T − a)nL1(1 + ρ)

n
+
br(T − a)nw(T )(z(T )− z(a))L1(1 + ρ)

nw(a)

=
(T − a)n

Γ(n+ 1)
+ θ1L1(1 + ρ) + θ2L1(1 + ρ)

=
(T − a)n

Γ(n+ 1)
+ L1(1 + ρ)(θ1 + θ2) := l.

Thus,
sup
t∈[a,T ]

|Py(t)| ≤ l.

Afterwards, the equicontinuity will be demonstrated. Let t1, t2 ∈ [a, T ] be with
a ≤ t1 ≤ t2 ≤ T , y ∈ Bρ. We have

|Py(t1)− Py(t2)|

=

∣∣∣∣∣w(a)

Γ(n)

[ ∫ t2

a

(t2 − s)n−1 1

w(s)
ds−

∫ t1

a

(t1 − s)n−1 1

w(s)
ds

]
+ar

[ ∫ t2

a

(t2 − s)n−1ξ(s, y(s))ds−
∫ t1

a

(t1 − s)n−1ξ(s, y(s))ds

]
+br

[ ∫ t2

a

(t2 − s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds

−
∫ t1

a

(t1 − s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds

]∣∣∣∣∣
≤ (t2 − a)n − (t1 − a)n

nΓ(n)
+
arL1(1 + ρ)

[
(t2 − a)n − (t1 − a)n

]
n

+
brL1(1 + ρ)w(T )(z(T )− z(a))

[
(t2 − a)n − (t1 − a)n

]
nw(a)

≤
[

1

nΓ(n)
+
arL1(1 + ρ)

n
+
brL1(1 + ρ)w(T )(z(T )−z(a))

nw(a)

] [
(t2 − a)n − (t1 − a)n

]
.

Applying the Lagrange mean value theorem, there exists ζ ∈ [t1, t2] such that

(t2 − a)k − (t1 − a)k = k(ζ − a)k−1(t2 − t1).

Thus,

|Py(t1)− Py(t2)|

≤
[

1

Γ(n)
+ arL1(1 + ρ) +

brL1(1 + ρ)w(T )(z(T )− z(a))

w(a)

]
(ζ − a)n−1(t2 − t1).

Then, P is equicontinuous.
Combining the above steps with the Arzela-Ascoli theorem, we can conclude

that P is completely continuous.
Eventually, we consider the boundedness of the set A(P ) = {y ∈ ACn([a, T ],R) :
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y = λPy, for some λ ∈ [0, 1]}. Letting y ∈ A(P ), for every t ∈ [a, T ], we are able to
derive that

|y(t)| = |λPy(t)|

≤ (T − a)n

Γ(n+ 1)
+ L1(1 + ‖y‖)(θ1 + θ2)

≤ (T − a)n

Γ(n+ 1)
+ L1(θ1 + θ2) + L1‖y‖(θ1 + θ2).

Using the condition (θ1 + θ2)L1 < 1, we obtain

‖y‖ ≤
(T−a)n

Γ(n+1) + L1(θ1 + θ2)

1− L1(θ1 + θ2)
,

which means the set A(P ) is bounded.
By dint of Lemma 3.1, we derive that P has a fixed point, which is a solution

to (1.1). The proof is completed.
Now, we consider the nonlinear boundary value problem (1.2).

Lemma 3.5. Let y ∈ ACn([a, T ],R). ξ and $ are binary continuous functions,
y − $ ∈ ACn([a, T ],R) and y is a solution to the nonlinear fractional boundary
value problem (1.2), if it satisfies the equation

y(t)−$(t, y(t)) + arw(T )ξ(T, y(T ))

∫ t

a

(t− s)n−1 1

w(s)
ds

+br

∫ T

a

z′(u)w(u)ξ(u, y(u))du

∫ t

a

(t− s)n−1 1

w(s)
ds

= ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds.

Proof. By means of Theorem 2.1, we have

y(t)−$(t, y(t)) =

n−1∑
k=0

ck(t− a)k +
w(a)cn
Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds

+ ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds

+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds.

According to (y −$)(k)(a) = 0, we know that ck = 0. That is,

y(t)−$(t, y(t))− w(a)cn
Γ(n)

∫ t

a

(t− s)n−1 1

w(s)
ds

= ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds+ br

∫ t

a

(t− s)n−1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds.

Then,

(y −$)(n)(t) =
w(a)cn
w(t)

+ arΓ(n)ξ(t, y(t)) + brΓ(n)
1

w(t)

∫ t

a

z′(s)w(s)ξ(s, y(s))ds,
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(y−$)(n)(T ) =
w(a)cn
w(T )

+arΓ(n)ξ(T, y(T ))+brΓ(n)
1

w(T )

∫ T

a

z′(s)w(s)ξ(s, y(s))ds.

For (y −$)(n)(T ) = 0, we get

w(a)cn = −arw(T )Γ(n)ξ(T, y(T ))− brΓ(n)

∫ T

a

z′(s)w(s)ξ(s, y(s))ds.

Thus,

y(t)−$(t, y(t)) + arw(T )ξ(T, y(T ))

∫ t

a

(t− s)n−1 1

w(s)
ds

+br

∫ T

a

z′(u)w(u)ξ(u, y(u))du

∫ t

a

(t− s)n−1 1

w(s)
ds

= ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds,

which completes the proof.
Denote V = {y : y ∈ ACn([a, T ],R)}, and d(y1, y2) = ‖y1 − y2‖. Obviously,

(V, d) is a complete metric space.
Define operator T : V → V ,

(Ty)(t)

= −arw(T )ξ(T, y(T ))

∫ t

a

(t− s)n−1

w(s)
ds

−br
∫ T

a

z′(u)w(u)ξ(u, y(u))du

∫ t

a

(t−s)n−1 1

w(s)
ds+ ar

∫ t

a

(t−s)n−1ξ(s, y(s))ds

+br

∫ t

a

(t−s)n−1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds+$(t, y(t)).

By dint of Lemma 3.5, we derive that the boundary value problem (1.2) has
solutions, if T has fixed points.

We define function ς : R2 → R, and make the following conditions hold.
(H1) There exists a map ψ ∈ Ψ and a constant m > 0 satisfying

|ξ(t, y1)− ξ(t, y2)| ≤ ψ(|y1 − y2|), |$(t, y1)−$(t, y2)| ≤ mψ(|y1 − y2|).

(H2) There exists x̃0 ∈ V such that ς(x̃0, T x̃0(t)) ≥ 0 for a ≤ t ≤ T .
(H3) For ∀t ∈ [a, T ], ς(x(t), y(t)) ≥ 0 implies ς(Tx(t), T y(t)) ≥ 0 .
(H4) For {xn} ⊂ V , xn → x ∈ V , for each t ∈ [a, T ] and every n, ς(xn(t), xn+1(t)) ≥
0, we have ς(xn(t), x(t)) ≥ 0.

Theorem 3.2. Assume that(H1)-(H4) are satisfied. If

ar(T − a)n(w(T ) + w(a)) + 2brw(T )(z(T )− z(a))(T − a)n

nw(a)
+m < 1,

then equation (1.2) has a solution.

Proof. Let α : V × V → [0,∞) by

α(x, y) =

{
1, ς(x(t), y(t)) ≥ 0,

0, else.
(3.1)
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We explain that T is α-admissible. Choosing x, y ∈ V , for ∀t ∈ [a, T ], α(x, y) ≥ 1
implies ς(x(t), y(t)) ≥ 0, then ς(Tx(t), Ty(t)) ≥ 0. We have α(Tx, Ty) ≥ 1. Hence,
T is α-admissible.

Next, according to hypothesis (H2), there exists x̃0 ∈ V such that ς(x̃0, T x̃0(t)) ≥
0. That is, α(x̃0, T x̃0) ≥ 1.

The following shows that T is an α-ψ-contraction.
Letting y1, y2 ∈ V , for each t ∈ [a, T ], we have

|(Ty1)(t)− (Ty2)(t)|

=
∣∣∣arw(T )

(
ξ(T, y1(T ))− ξ(T, y2(T ))

) ∫ t

a

(t− s)n−1 1

w(s)
ds

+br

∫ T

a

z′(u)w(u)
(
ξ(u, y1(u))− ξ(u, y2(u))

)
du

∫ t

a

(t− s)n−1 1

w(s)
ds

+ar

∫ t

a

(t− s)n−1
(
ξ(s, y1(s))− ξ(s, y2(s))

)
ds

+br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)
(
ξ(u, y1(u))− ξ(u, y2(u))

)
duds

+$(t, y1(t))−$(t, y2(t))
∣∣∣

≤ arw(T )
∣∣∣ξ(T, y1(T ))− ξ(T, y2(T )

)∣∣∣ ∫ t

a

(t− s)n−1 1

w(s)
ds

+br

∫ T

a

z′(u)w(u)
∣∣∣ξ(u, y1(u))− ξ(u, y2(u))

∣∣∣du∫ t

a

(t− s)n−1 1

w(s)
ds

+ar

∫ t

a

(t− s)n−1
∣∣∣ξ(s, y1(s)

)
− ξ
(
s, y2(s)

)∣∣∣ds
+br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)
∣∣∣ξ(u, y1(u))− ξ(u, y2(u)

)∣∣∣duds
+|$(t, y1(t))−$(t, y2(t))|.

Applying the mean value theorem for integrals,

‖Ty1 − Ty2‖

≤ arw(T )(T − a)nψ(‖y1 − y2‖)
nw(a)

+
brw(T )(z(T )− z(a))(T − a)nψ(‖y1 − y2‖)

nw(a)

+
ar(T − a)nψ(‖y1 − y2‖)

n
+
brw(T )(z(T )− z(a))(T − a)nψ(‖y1 − y2‖)

nw(a)

+mψ(‖y1 − y2‖)
≤ ψ(‖y1 − y2‖).

Thus, we get
d(Ty1, T y2) ≤ ψ(d(y1, y2)),

which implies
α(y1, y2)d(Ty1, Ty2) ≤ ψ(d(y1, y2)).

Then, We obtain that T is α-ψ-contraction.
Lastly, from hypothesis (H4), letting {xn} be a sequence in V with ς(xn(t), x(t))
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≥ 0, we are able to derive α(xn, x) ≥ 1.
Based on Lemma 3.2, there exists u such that u = Tu, which completes the

proof.
In the following, we consider the nonlinear boundary value problem (1.3). Sim-

ilar to the proof of Lemma 3.5, we have the conclusion as below.

Lemma 3.6. Assume that y ∈ ACn([a, T ],R), ξ and ϕ are binary continuous
functions, ϕ ∈ C([a, T ] × R,R \ {0}), and y

ϕ ∈ ACn([a, T ],R). y is a solution

to the nonlinear equation (1.3), if it satisfies

y(t)

ϕ(t, y(t))
− w(a)

Γ(n)

( 1

ϕ(a, 0)
− (1− r + n)ξ(a, 0)

M(r − n)

)∫ t

a

(t− s)n−1 1

w(s)
ds

= ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds.

We suppose that neither of the assumptions holds.
(H5) For ϕ ∈ C([a, T ]×R,R \ {0}), the inequality |ϕ(t, y1)−ϕ(t, y2)| ≤ L2|y1− y2|
holds, where L2 > 0.
(H6) There exists η ∈ ACn([a, T ],R+) satisfying |ξ(t, y(t))| ≤ η(t).

Theorem 3.3. Assume that hypotheses (H5)-(H6) are satisfied. If

L2

(∣∣∣ (T − a)n

Γ(n+ 1)ϕ(a, 0)
− (1− r + n)ξ(a, 0)(T − a)n

Γ(n+ 1)M(r − n)

∣∣∣+ (θ1 + θ2)‖η‖
)
< 1, (3.2)

then the boundary value problem (1.3) has a solution, where θ1 = ar(T−a)n

n , and

θ2 = br(T−a)nw(T )(z(T )−z(a))
nw(a) .

Proof. Let Λ = (ACn([a, T ],R), ‖ · ‖), where ‖y‖ = sup
t∈[a,T ]

|y(t)|. Then, Λ is a

Banach algebra with multiplication defined by (y1y2)(t) = y1(t)y2(t), y1, y2 ∈ Λ,
t ∈ [a, T ]. Define

Q =
Mϕ

(∣∣ (T−a)n

Γ(n+1)ϕ(a,0) −
(1−r+n)ξ(a,0)(T−a)n

Γ(n+1)M(r−n)

∣∣+ (θ1 + θ2)‖η‖
)

1− L2

(∣∣ (T−a)n

Γ(n+1)ϕ(a,0) −
(1−r+n)ξ(a,0)(T−a)n

Γ(n+1)M(r−n)

∣∣+ (θ1 + θ2)‖η‖
) ,

where Mϕ = sup
t∈[a,T ]

|ϕ(t, 0)|. From condition (3.2), we can derive Q > 0.

Considering the set U = {y ∈ Λ : ‖y‖ ≤ Q}, we can easily obtain that U is a
bounded subset of Λ, which is closed and convex.

Considering the operators F1 : Λ→ Λ and F2 : U → Λ:

(F1y)(t) = ϕ(t, y(t)),

(F2y)(t) =
w(a)

Γ(n)

(
1

ϕ(a, 0)
− (1− r + n)ξ(a, 0)

M(r − n)

)∫ t

a

(t− s)n−1 1

w(s)
ds

+ ar

∫ t

a

(t− s)n−1ξ(s, y(s))ds

+ br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds,
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we can write the fractional integral equation of Lemma 3.6 as an equivalent
operator equation y = F1yF2y, y ∈ Λ.

Now, we verify the conditions of Lemma 3.3.
(i) F1 is Lipschitz.

For any y1, y2 ∈ Λ, t ∈ [a, T ],

|(F1y)(t)− (F2y)(t)| = |ϕ(t, y1)− ϕ(t, y2)| ≤ L2|y1 − y2|.

We obtain
‖F1y − F2y‖ ≤ L2‖y1 − y2‖.

(ii) F2 is completely continuous.
Letting yn → y in [a, T ], for all t ∈ [a, T ], we get

|(F2yn)(t)− (F2y)(t)|

=
∣∣∣ar ∫ t

a

(t− s)n−1
(
ξ(s, yn(s))− ξ(s, y(s))

)
ds

+br

∫ t

a

(t− s)n−1 1

w(s)

∫ s

a

z′(u)w(u)
(
ξ(u, yn(u))− ξ(u, y(u))

)
duds

∣∣∣.
Similar to the first step of Theorem 3.1, we can derive that F2 is continuous.

|(F2y)(t)|

≤
∣∣∣∣w(a)

Γ(n)

( 1

ϕ(a, 0)
− (1− r + n)ξ(a, 0)

M(r − n)

)∫ t

a

(t− s)n−1 1

w(s)
ds

∣∣∣∣
+ar

∫ t

a

(t− s)n−1
∣∣ξ(s, y(s))

∣∣ds+ br

∫ t

a

(t− s)n−1

w(s)

∫ s

a

z′(u)w(u)
∣∣ξ(u, y(u))

∣∣duds
≤
∣∣∣ (T − a)n

nΓ(n)ϕ(a, 0)
− (1− r + n)ξ(a, 0)(T − a)n

nΓ(n)M(r − n)

∣∣∣+
ar(T − a)n‖η‖

n

+
br(T − a)nw(T )(z(T )− z(a))‖η‖

nw(a)

≤
∣∣∣ (T − a)n

Γ(n+ 1)ϕ(a, 0)
− (1− r + n)ξ(a, 0)(T − a)n

Γ(n+ 1)M(r − n)

∣∣∣+ (θ1 + θ2)‖η‖,

which shows that F2 is uniformly bounded.
Choosing t1, t2 ∈ [a, T ] with a ≤ t1 ≤ t2 ≤ T , we get

|(F2y)(t2)− (F2y)(t1)|

≤ w(a)

Γ(n)

∣∣∣ 1

ϕ(a, 0)
− (1− r + n)ξ(a, 0)

M(r − n)

∣∣∣[ ∫ t1

a

(
(t2 − s)n−1 − (t1 − s)n−1

) 1

w(s)
ds

+

∫ t2

t1

(t2 − s)n−1 1

w(s)
ds
]

+ar

[ ∫ t1

a

(
(t2 − s)n−1 − (t1 − s)n−1

)
ξ(s, y(s))ds+

∫ t2

t1

(t2 − s)n−1ξ(s, y(s))ds
]

+br

[ ∫ t1

a

(
(t2 − s)n−1 − (t1 − s)n−1

) 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds

+

∫ t2

t1

(t2 − s)n−1 1

w(s)

∫ s

a

z′(u)w(u)ξ(u, y(u))duds
]
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≤
[ 1

nΓ(n)

∣∣∣ 1

ϕ(a, 0)
− (1− r + n)ξ(a, 0)

M(r − n)

∣∣∣+
ar‖η‖
n

+
br‖η‖w(T )(z(T )− z(a))

nw(a)

]
[(t2 − a)n − (t1 − a)n].

As t1 approaches t2, we have |(F2y)(t2)− (F2y)(t1)| ≤ 0, then F2 is equicontin-
uous. Combining the above steps with the Arzela-Ascoli theorem, we can conclude
that F2 is completely continuous.
(iii) Let any y2 ∈ U . For y1 ∈ Λ, we consider that the operator equation y1 =
F1y1F2y2.

Our aim is to prove that y1 ∈ U ,

|y1(t)|
≤ |(F1y1)(t)||(F2y2)(t)|
≤ |ϕ(t, y1(t))− ϕ(t, 0) + ϕ(t, 0)||(F2y2)(t)|

≤ (L2|y1(t)|+Mϕ)

(∣∣∣ (T − a)n

Γ(n+ 1)ϕ(a, 0)
− (1− r + n)ξ(a, 0)(T − a)n

Γ(n+ 1)M(r − n)

∣∣∣
+ (θ1 + θ2)‖η‖

)
.

This gives

|y1(t)| ≤
Mϕ

(∣∣ (T−a)n

Γ(n+1)ϕ(a,0) −
(1−r+n)ξ(a,0)(T−a)n

Γ(n+1)M(r−n)

∣∣+ (θ1 + θ2)‖η‖
)

1− L2

(∣∣ (T−a)n

Γ(n+1)ϕ(a,0) −
(1−r+n)ξ(a,0)(T−a)n

Γ(n+1)M(r−n)

∣∣+ (θ1 + θ2)‖η‖
) .

Therefore,
|y1(t)| ≤ Q,

which proves y1 ∈ U .
(iv) Let

α = L2, M =
∣∣∣ (T − a)n

Γ(n+ 1)ϕ(a, 0)
− (1− r + n)ξ(a, 0)(T − a)n

Γ(n+ 1)M(r − n)

∣∣∣+ (θ1 + θ2)‖η‖,

Thus, by condition (3.2),
αM = L2M < 1.

According to the above steps (i)-(iv), we are able to derive that all the conditions
of Lemma 3.3 are satisfied. Consequently, the operator equation y = F1yF2y has a
fixed point in U , which is just a solution to boundary value problem (1.3).

4. Examples

The results that we have obtained will be tested in this section.
For the sake of convenience, we suppose the normalization function M(r) = 1,

w(t) = et, and z(t) = t2.

Example 4.1. Consider
(D

3
2

0,[t2,et]z)(t) = e−2t

1+et |z(t)|, t ∈ [0, 1
4 ],

z(0) = 0,

z′(0) = 1.

(4.1)
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Setting r = 3
2 , a = 0, T = 1

4 , and ξ(t, z(t)) = e−2t

1+et |z(t)|, then

ar =
1− r + n

Γ(n)M(r − n)
=

1

2
, br =

r − n
Γ(n)M(r − n)

=
1

2
,

and

θ1 =
ar(T − a)n

n
=

1

8
, θ2 =

br(T − a)nw(T )(z(T )− z(a))

nw(a)
=

1

128
e

1
4 .

We obtain

ξ(t, z(t)) =
e−2t

1 + et
|z(t)| ≤ e−2t

2
|z| ≤ 1

2
|z| ≤ 1

2
(1 + |z|).

Letting L1 = 1
2 , then

(θ1 + θ2)L1 =
1

16
+

1

256
e

1
4 ≈ 0.07253144857 < 1.

On the basis of Theorem 3.1, there exists a solution to (4.1).

Example 4.2. Consider
D

3
2

0,[t2,et](z(t)−
e−t

9+et |z(t)|) = e−2t

1+et |z(t)|+ 1, t ∈ [0, 1
4 ],

(z − e−t

9+et |z|)(0) = 0,

(z − e−t

9+et |z|)
′( 1

4 ) = 0.

(4.2)

Setting r = 3
2 , a = 0, T = 1

4 , $(t, z(t)) = e−t

9+et |z(t)|, and ξ(t, z(t)) = e−2t

1+et |z(t)|+
1, then ar = 1

2 , and br = 1
2 .

For every t ∈ [0, 1
4 ],

|ξ(t, z1)− ξ(t, z2)| ≤
∣∣∣∣ e−2t

1 + et

∣∣∣∣ |z1 − z2| ≤
∣∣∣∣e−2t

2

∣∣∣∣ |z1 − z2| ≤
1

2
|z1 − z2|,

|$(t, z1)−$(t, z2)| ≤
∣∣∣∣ e−t9 + et

∣∣∣∣ |z1 − z2| ≤
∣∣∣∣e−t10

∣∣∣∣ |z1 − z2| ≤
1

10
|z1 − z2|.

Letting ψ(t) = 1
2 t, m = 1

5 , and for x, y ∈ V , putting ς(x, y) = 1, then (H1)−(H4)
are satisfied. Further, we are able to get

ar(T − a)n(w(T ) + w(a)) + 2brw(T )(z(T )− z(a))(T − a)n

nw(a)
+m

=
13

40
+

9

64
e

1
4 ≈ 0.5055660743 < 1.

On the basis of Theorem 3.2, there exists a solution of (4.2).

Example 4.3. Consider
D

3
2

0,[t2,et]
y(t)

e−t
1+e2t

|y(t)|+1
= e−2t

1+et | sin y(t)|, t ∈ [0, 1
4 ],

y(0) = 0,

y′(0) = 1.

(4.3)
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Setting r = 3
2 , a = 0, T = 1

4 , ϕ(t, y) = e−t

1+e2t |y| + 1, and ξ(t, y) = e−2t

1+et | sin y|,
then ar = 1

2 , br = 1
2 , θ1 = 1

8 , and θ2 = 1
128e

1
4 .

For every t ∈ [0, 1
4 ],

|ϕ(t, y1)− ϕ(t, y2)| ≤
∣∣∣∣ e−t

1 + e2t

∣∣∣∣|y1 − y2| ≤
1

2
|y1 − y2|.

Thus, L2 = 1
2 .

Letting η(t) = 1
2 (t+ 1), then

|ξ(t, y)| = e−2t

1 + et
| sin y| ≤ e−2t

2
| sin y| ≤ 1

2
| sin y| ≤ 1

2
≤ η(t).

The condition (H6) is satisfied, and ‖η‖ = sup
t∈[0, 14 ]

|η(t)| = 5
8 .

We can also easily get ξ(0, 0) = 0, ϕ(0, 0) = 1. Therefore,

L2

(∣∣∣ (T − a)n

Γ(n+ 1)ϕ(a, 0)
− (1− r + n)ξ(a, 0)(T − a)n

Γ(n+ 1)M(r − n)

∣∣∣+ (θ1 + θ2)‖η‖
)

=
13

128
+

5

2048
e

1
4

≈ 0.1046973277 < 1.

On the basis of Theorem 3.3, there exists a solution of (4.3).
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