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Abstract. The implicit numerical methods have the advantages on preserving the
physical properties of the quantum system when solving the time-dependent Kohn-

Sham equation. However, the efficiency issue prevents the practical applications of

those implicit methods. In this paper, an implicit solver based on a class of Runge-
Kutta methods and the finite element method is proposed for the time-dependent

Kohn-Sham equation. The efficiency issue is partially resolved by three approaches,
i.e., an h-adaptive mesh method is proposed to effectively restrain the size of the

discretized problem, a complex-valued algebraic multigrid solver is developed for

efficiently solving the derived linear system from the implicit discretization, as well
as the OpenMP based parallelization of the algorithm. The numerical convergence,

the ability on preserving the physical properties, and the efficiency of the proposed

numerical method are demonstrated by a number of numerical experiments.
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1. Introduction

Suppose that there is an electronic structure system consisting of M nuclei and

N electrons. The evolution of this many-body system in the nonrelativistic sense is

fundamentally controlled by the time-dependent Schrödinger equation (TDSE)

i
B

Bt
Ψ “ HΨ in R

3, (1.1)
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262 L. Yang et al.

where i denotes the imaginary unit, H consists of the kinetic energy operator for each

particle as well as the classical Coulomb interactions between each pair of particles,

and Ψ :“ Ψp ~X1, . . . , ~XM , ~x1, . . . , ~xN , tq is the high dimensional wavefunction depend-

ing on the position of each particle and a time variable. It is this high dimensionality of

the wavefunction Ψ which makes the analysis and computation on the TDSE very chal-

lenging. The time-dependent Kohn-Sham (TDKS) density functional theory is one of

the most successful approximation models towards partially overcoming this challenge,

which can be written as

i
B

Bt
ψj “

˜

´
1

2
∇2 ´

ÿ

l

zl

|~x´ ~Rl|
`

ż

ρp~x1, tq

|~x´ ~x1|
d~x1 ` vALDApρq

¸

ψj

“:

ˆ

´
1

2
∇2 ` VKS

˙

ψj , j “ 1, . . . , N, (1.2)

where ρp~x, tq “
ř

j |ψjp~x, tq|2 is the time-dependent electron density, zl and ~Rl for

l “ 1, . . . ,M denote the nuclear charge and position of the l-th nucleus, and VKS de-

notes the Kohn-Sham potential consisting of the external potential, the Hartree poten-

tial, as well as the exchange-correlation potential, respectively. Here, an adiabatic ap-

proximation for the exchange-correlation potential, denoted by vALDA, is considered.

Guaranteed by the Runge-Gross theorem [22], the time-dependent electron density

ρp~x, tq is used as a fundamental variable to represent an evolved many-body system.

It is noted that the electron density ρ is a four dimensional variable in a three dimen-

sional space. This huge reduction of the dimension brings the possibility on quality

analysis and simulation for the many-body system. So far, the TDKS equation has been

widely used in a variety of applications such as material science, nano-optics, and at-

tosecond science, etc. Please refer to [21] and references therein for more details on

the application of the TDKS equation.

There have been lots of numerical methods in the market to solve the TDKS equa-

tion in the time domain, people may refer to [3,7,14] and references therein for detail.

People may also refer to [11, 16, 28] for numerical methods of Schrödinger equation.

Among those grid-based numerical methods, the finite difference methods [1], the fi-

nite element methods [3,8,9,17,18,27], the discontinuous Galerkin methods [20], the

wavelet methods [12] etc. are popular for the spatial discretization, while there are

Runge-Kutta methods, commutator-free Magnus expansion methods, etc. for the tem-

poral discretization. It is worth mentioning that the comparison of the performance of

those time propagators, including the linear multistep methods, can be found from a re-

cent paper [14]. However, it should be pointed out that the memory issue of the solver

is missed there, and that many factors would affect the performance of those solvers,

for example, the performance of the linear solver for the implicit methods. Due to their

advantage on the memory requirement, the single step methods such as the Runge-

Kutta methods have attracted much attention in solving the time-dependent problems.

Furthermore, some implicit one-step solvers have the property on well preserving the

physical structure of the TDKS equation. These advantages make the solvers such as
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the implicit midpoint scheme very popular in the practical simulations. It is noted

that some solvers using the explicit pseudospectral-splitting approach are also compet-

itive [4,24], since the Laplace operator in these solvers can be treated in Fourier space

very efficient. However, when the practical problem with nonperiodic boundary condi-

tions or the all-electron model is needed in the simulation, the finite element method

with nonuniform mesh grids would be more attractive.

In this paper, we propose a numerical solver for the TDKS equation, with the implicit

midpoint scheme for the temporal discretization and the finite element method for the

spatial discretization. Towards improving the efficiency of the simulations, the follow-

ing three approaches are studied in detail. First of all, an h-adaptive mesh method is

employed in the algorithm to dynamically control the total amount of the grid points

of the mesh. This is an attractive strategy for numerically solving the TDKS equation,

especially when the all-electron model is considered in the simulation. An adaptive

process is designed in this paper following [26], in which the distribution of the nu-

merical error is generated by a heuristic a posteriori error estimation, while the efficient

operations on the local refinement of the mesh grids as well as the solution update be-

tween two finite element spaces are guaranteed with the help of Hierarchy Geometry

Tree (HGT) from [19]. Secondly, a complex-valued algebraic multigrid (AMG) solver is

designed for efficiently solving the derived linear system. It is mainly the efficiency of

the solver for the linear system which determines the efficiency of the implicit solver,

since the linear system needs to be solved for over hundreds of thousands of times in

a classic simulation for high harmonic generation. With the finite element discretiza-

tion, it is known that the condition number of the matrix in the linear system is in-

versely proportional to h2, where h means the size of the mesh grids. This implies

that in the case of numerical discretization of an all-electron model, a quality precondi-

tioner is required to effectively reduce the condition number, so that the linear system

in the implicit method can be solved efficiently. In this paper, we follow [10] to use

the so-called K formulation to express the complex-valued system by a blocked real-

valued form. Then a complex-valued AMG is developed for solving the linear system,

in which the restriction and prolongation operators are designed following [6], and a

block Gauss-Seidel iterative method is used to damp out the high frequency part of the

numerical error in each level of the AMG. The numerical experiments show successfully

that the convergence behavior of the solver is not sensitive to the condition number of

the matrix in the linear system. Finally, the algorithm will be parallelized by OpenMP

technique, to further accelerate the simulation by fully utilizing the hardware resource,

i.e., a Dell Precision 7920 Tower workstation, with dual Intel(R) Xeon(R) Gold 6136

CPU @ 3.00GHz (total 24 cores), and 250 Gigabytes memory. The greedy coloring al-

gorithm is used in our work to help resolving the race condition issues in, for example,

the formation of the total stiffness matrix.

In the following parts of this paper, a full description of the numerical discretiza-

tion of the TDKS equation, including the implicit midpoint rule for the temporal dis-

cretization as well as the finite element method for the spatial discretization, is given in

next section. In Section 3, three issues on the efficient implementation of the implicit
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method, i.e., an h-adaptive mesh method, a complex-valued AMG solver, as well as the

OpenMP parallelization of the algorithm, are discussed in detail. In Section 4, the nu-

merical convergence of the proposed method, as well as the performance of the method

in solving the TDKS equation, are checked by a variety of numerical experiments. The

conclusion and the future work are given in Section 5 finally.

2. Numerical discretization of the TDKS equation

The temporal discretization of the TDKS equation is introduced firstly, including

the motivation on applying the Runge-Kutta methods with Gauss-Legendre collocation

points, and a description of the midpoint scheme of the TDKS equation.

2.1. Structures of the TDKS equation and the implicit midpoint scheme

It is known that the following three properties are hold for the TDSE:

• It is a Hamiltonian system;

• Conservation of the probability, i.e.,
BNptq

Bt “ 0, where Nptq “
ş

ρp~x, tqd~x repre-

sents the total number of the electrons;

• The propagation of the system is time-reversal symmetry.

The Hamiltonian structure of the equation can be seen clearly by defining the

Hamiltonian function

H
`

Ψ
r,Ψi

˘

“
1

2

〈

Ψ
r|HΨ

r
〉

`
1

2

〈

Ψ
i|HΨ

i
〉

, (2.1)

where Ψ “ Ψr ` iΨi with Ψr and Ψi representing the real and imaginary parts of

the wavefunction Ψ, respectively, and ă ¨|¨ ą is the standard bra-ket notation in the

quantum mechanics. Then the system (1.1) can be reformulated as

$

’

&

’

%

B

Bt
Ψr “

BH

BΨi

B

Bt
Ψi “ ´

BH

BΨr

in R
3, (2.2)

which formally is a Hamiltonian system.

The conservation of the probability is a natural requirement in the evolution of

the quantum system, i.e., the total number of the electrons should be kept unchanged

during the whole process. In other words, if the electron number is given by Npt0q at

the initial time t0, then Nptq “ Npt0q should be always correct for any later time instant

t ą t0. This is equivalent to impose the condition
BNptq

Bt “ 0 on Nptq. This property is

preserved well by the Schrödinger equation by the observation that

BNptq

Bt
“

ż

R3

Bρp~x, tq

Bt
d~x “ i

ˆ
ż

R3

pHΨq‹
Ψd~x´

ż

R3

Ψ
‹pHΨqd~x

˙

. (2.3)
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It can be seen that Hermitian property of the Hamiltonian H from the Schrödinger

equation guarantees
BNptq

Bt “ 0, i.e., the conservation of the probability.

It can be easily checked that for a given Hamiltonian which is not explicitly de-

pendent on time, if the wavefunction Ψptq is the solution of the Schrödinger equation

(1.1), then the function Ψ‹p´tq will satisfy the governing equation

i
B

Bt
Ψ

‹p´tq “ HΨ
‹p´tq. (2.4)

The above property for the time-dependent Schrödinger equation is called T-symmetry.

Since the time-dependent density functional theory is a substitution for the many-

body TDSE in the case that the time-dependent exchange-correlation potential is known

exactly, the TDKS equation shares the same properties mentioned above with the TDSE.

People may refer to a recent paper [14] for the related discussion. Consequently, in

the temporal discretization of the TDKS equation, the above properties need to be

preserved well by the numerical scheme, to make the numerical results physical.

Since their advantages on resolving the stiff problems and on the storage, the single

step methods have been popular in the practical simulations, for examples, the implicit

trapezoidal scheme (also known as Crank-Nicolson scheme) and the implicit midpoint

scheme. It can be checked easily that both schemes

i) are of Op∆t2q, where ∆t represents the step size in the temporal discretization,

ii) preserve the conservation of the probability,

iii) satisfy the time-reversal symmetry.

However, the implicit midpoint scheme is symplectic, while the implicit trapezoidal

scheme is not. Consequently, the implicit midpoint scheme is more desirable in the

simulations, in which the better performance for the long term simulations can be

expected. In the following, we will use the implicit midpoint scheme to describe the

temporal discretization of the TDKS equation.

Remark 2.1. The propagators from both implicit trapezoidal scheme and implicit mid-

point scheme are unitary, from which the conservation of the probability can be shown.

Suppose that ψn represents the wavefunction in the TDKS equation (1.2) at the

time instant tn, and that the next time instant is given by tn`1 :“ tn ` ∆t with ∆t the

step size. Then the implicit midpoint scheme of the TDKS equation is given by

ψn`1 “
2i ` ∆tHpρn` 1

2

q

2i ´ ∆tHpρn` 1

2

q
ψn “: Un`1

n ψn, (2.5)

where Hpρq stands for the Hamiltonian operator depending on the electron density ρ,

and ρn` 1

2

“ Σj|ψn` 1

2
,j|

2, in which ψn` 1

2
,j represents the evaluation of the j-th wave-

function at the time instant tn` 1

2

:“ tn ` ∆t
2

.
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One issue for the above discretization (2.5) is its nonlinearity since the unknown

quantity ρn` 1

2

. A classic approach for resolving the nonlinearity is to introduce a predic-

tion-correction process, as the follows:

Algorithm 2.1: Prediction-correction process on solving (2.5).

Data: ψn, an initial ψn`1p:“ ψnq, an auxiliary ψ̃, and tolerance

Result: ψn`1

1 Calculate an initial ρn` 1

2

;

2 do

3 Let ψ̃ “ ψn`1;

4 Solve the Eq. (2.5) to get an updated ψn`1;

5 Update ρn` 1

2

;

6 while ||ψn`1 ´ ψ̃|| ą tolerance;

In the while loop in the above algorithm, the quantity ρn` 1

2

is updated by 1

2
pρn`1`

ρnq with the updated ψn`1 in our implementation. It is noted that the numerical error

introduced in this approximation is consistent with the implicit midpoint rule. For the

initial ρn` 1

2

in Step 1, we may simply use ρn for the approximation. However, this

rough approximation may cause more correction steps to obtain an accurate ρn`1.

There are two approaches to improve the initial approximation of ρn` 1

2

, i.e., solving

the TDKS equation on the interval rtn, tn` 1

2

s with some scheme, and the extrapolation

methods. Basically, extrapolation methods would be faster since no linear system needs

to be solved. However, the extrapolation methods would need more storage since more

previous solutions are needed in the implementation. With better initial guess for ρn` 1

2

,

a more accurate ρn`1 and faster convergence of the prediction-correction process can

be expected. People may refer to [15] for more details about the prediction-correction

methods.

In our implementation, the implicit Euler scheme is used in the prediction step,

while a maximum number for the correction steps is also introduced to control the

efficiency of the simulation. In this case, the while loop would end either the condition

listed in Step 6 in the algorithm becomes false, or the number of the correction steps

exceeds the given maximum number.

2.2. The finite element discretization of TDKS equation

In the TDKS equation (1.2), the Hamiltonian consists of kinetic energy operator

´∇2

2
, the external potential ´

ř

l
zl

|~x´~Rl|
, the Hartree potential

VH “

ż

ρp~x1, tq

|~x1 ´ ~x|
d~x1,

and the exchange-correlation potential vALDA.
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For the convenience of the description, we rewrite (2.5) as follows,
$

&

%

2ψr
n`1 ´ ∆tH

`

ρn` 1

2

˘

ψi
n`1 “ 2ψr

n ` ∆tH
`

ρn` 1

2

˘

ψi
n,

∆tH
`

ρn` 1

2

˘

ψr
n`1 ` 2ψi

n`1 “ ´∆tH
`

ρn` 1

2

˘

ψr
n ` 2ψi

n.
(2.6)

To derive the finite element discretization for the above system, we firstly introduce

the standard Sobolev space in a given domain Ω Ă R
3 by H1 :“ W 1

2
pΩq, and define

V :“ tφ P H1pΩq : φ “ 0 on BΩu. Then the variational form of (2.6) is given by: To

find ψn`1 P V such that

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

2

ż

Ω

ψr
n`1φd~x´ ∆t

ż

Ω

ˆ

1

2
∇ψi

n`1 ¨ ∇φ` VKSψ
i
n`1φ

˙

d~x

“ 2

ż

Ω

ψr
nφd~x` ∆t

ż

Ω

ˆ

1

2
∇ψi

n ¨ ∇φ ` VKSψ
i
nφ

˙

d~x, @φ P V,

∆t

ż

Ω

ˆ

1

2
∇ψr

n`1 ¨ ∇φ` VKSψ
r
n`1φ

˙

d~x ` 2

ż

Ω

ψi
n`1φd~x

“ ´∆t

ż

Ω

ˆ

1

2
∇ψr

n ¨ ∇φ` VKSψ
r
nφ

˙

d~x` 2

ż

Ω

ψi
nφd~x, @φ P V.

(2.7)

We introduce the following notation for the description of the finite element dis-

cretization. First of all, Ω Ă R
3 is used to denote the computational domain, and BΩ

is its boundary. For this domain Ω, we have a tetrahedron mesh T which completely

covers the domain Ω. The mesh T consists of a set of nonoverlapped tetrahedron ele-

ments, i.e., T “ tTkuNtet

k“1
, where Ntet is the total number of the tetrahedron elements

in the mesh T . Then following the definition introduced by Ciarlet, on tetrahedron

elements Tk, k “ 1, . . . , Ntet, we define the finite element pTk,P1,N q, where P1 is the

set of all first order polynomials in three variables, and N is the set of nodal variables.

With the above notations, we can define the C0 finite dimensional subspace VT of V .

Then the discretized variational form of (2.7) is given by: To find ψn`1,T P VT such

that
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

2
ÿ

k

ż

Tk

ψr
n`1,T φd~x ´ ∆t

ÿ

k

ż

Tk

ˆ

1

2
∇ψi

n`1,T ¨ ∇φ` VKSψ
i
n`1,T φ

˙

d~x

“ 2
ÿ

k

ż

Tk

ψr
n,T φd~x ` ∆t

ÿ

k

ż

Tk

ˆ

1

2
∇ψi

n,T ¨ ∇φ`VKSψ
i
n,T φ

˙

d~x, @φ P VT ,

∆t
ÿ

k

ż

Tk

ˆ

1

2
∇ψr

n`1,T ¨ ∇φ` VKSψ
r
n`1,T φ

˙

d~x` 2
ÿ

k

ż

Tk

ψi
n`1,T φd~x

“ ´∆t
ÿ

k

ż

Tk

ˆ

1

2
∇ψr

n,T ¨ ∇φ` VKSψ
r
n,T φ

˙

d~x` 2
ÿ

k

ż

Tk

ψi
n,T φd~x, @φ P VT .

(2.8)

Following the K formulation proposed in [10], the unknowns are organized as

´

ψ
r,1
n`1,T , ψ

i,1
n`1,T , ψ

r,2
n`1,T , ψ

i,2
n`1,T , . . . , ψ

r,Ngp

n`1,T , ψ
i,Ngp

n`1,T

¯J
(2.9)
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Figure 1: The sparsity pattern of the matrix.

with Ngp the total number of the grid points, and the pattern of the coefficient matrix

has the form shown in Fig. 1.

In the K formulation form used in this paper, each black square ‚ in Fig. 1 repre-

sents a 2 ˆ 2 submatrix of the form

„

a ´b
b a



(2.10)

“

»

—

—

–

2

ż

φjφkd~x ´∆t

ż
ˆ

1

2
∇φj ¨ ∇φk ` VKSφjφk

˙

d~x

∆t

ż
ˆ

1

2
∇φj ¨ ∇φk ` VKSφjφk

˙

d~x 2

ż

φjφkd~x

fi

ffi

ffi

fl

,

according to the discretized weak form (2.8). It is noted that the determinant of the

above matrix is a2 ` b2, hence that each submatrix (2.10) is always invertible.

3. Three approaches for accelerating the simulations

The efficiency is a main issue preventing the widely application of the implicit

solvers in the practical simulations. In the following, focusing on the proposed method

in last section, we introduce three approaches for improving the efficiency of the im-

plementation.
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3.1. The h-adaptive mesh method

A classic process of using the adaptive mesh methods consists of the following steps,

i.e.,

¨ ¨ ¨ solve ¨ ¨ ¨ estimate ¨ ¨ ¨ mark ¨ ¨ ¨ refine ¨ ¨ ¨

In this work, the above process means that the TDKS equation (1.2) is solved firstly

on the current finite element space, then the distribution of the numerical error is es-

timated, then the tetrahedron elements in the mesh are marked according to the error

estimation. Finally, a new finite element space is built on the new mesh by locally refin-

ing or coarsening the elements in the old mesh, and the new solutions are obtained by

the interpolation. In our implementation, we follow [19] to adopt the hierarchy geom-

etry tree to manage the local refinement/coarsening operations of the mesh grids. It is

noted that an efficient interpolation operation can be obtained based on this hierarchy

geometry tree. People may also refer to [2,3] for the detail.

In the following, we first propose a heuristic a posteriori error indicator for each

tetrahedron element in the mesh, then introduce how the h-adaptive module is embed-

ded in the numerical method proposed in the last section.

It is noted that in [26], a residual type a posteriori error estimator for each element

has been developed for the parabolic equations. Although they are neither parabolic

nor hyperbolic for the TDSE/TDKS, we still borrow the idea in [26] to generate the

error indicator, which consists of two components, i.e., temporal error and spatial error.

Suppose that for a given wavefunction ψ, ψn and ψn`1 represent the wavefunction at

the time instants tn and tn`1, respectively. Then the temporal error is denoted by

ηt “

˜

∆t
ÿ

TkPT

ż

Tk

`

∇ψn`1 ´ ∇ψn

˘2
d~x

¸
1

2

, (3.1)

while the spatial error is denoted by

ηh “

˜

ÿ

TkPT

∆t∆h2Tk

ż

Tk

ˆ

VKSψn` 1

2

´
1

∆t

`

ψn`1 ´ ψn

˘

˙2

d~x

`
ÿ

ePE

∆t∆he

ż

e

ˆ

1

2
Je

ˆ

1

2
∇ψn ¨ ~ne `

1

2
∇ψn`1 ¨ ~ne

˙˙2

ds

¸
1

2

. (3.2)

In the above formula, the Kohn-Sham potential VKS is evaluated by ρn` 1

2

since the

implicit midpoint scheme is used in our method. The E represents the set of all triangle

faces in the mesh T . The Jep∇ψ ¨ ~neq represents the jump of the gradient of the wave-

function ψ across the edge e along the normal direction of e with ~ne the unit normal

vector.
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Based on (3.1) and (3.2), the error indicator in each element Tk P T is given by

ηTk
“

˜

∆t

ż

Tk

`

∇ψn`1 ´ ∇ψn

˘2
d~x

` ∆t∆h2Tk

ż

Tk

ˆ

VKSψn` 1

2

´
1

∆t

`

ψn`1 ´ ψn

˘

˙2

d~x

`
1

2
∆t∆he

ż

ePBTk

ˆ

1

2
Je

ˆ

1

2
∇ψn ¨ ~ne `

1

2
∇ψn`1 ¨ ~ne

˙˙2

ds

¸
1

2

. (3.3)

It is noted that the factor 1

2
in front of the third term of the above formula means

equally distributing the error from the edge e P BTk to its two neighbor tetrahedron

elements.

Remark 3.1. In (3.2) and (3.3), the triangles locating on the domain boundary BΩ are

not considered. The error estimation on those triangles is not trivial since the Dirichlet

boundary condition is employed in the simulation. However, since the mask function

technique is used to handle the issue of the reflection of the wavefunction around the

domain boundary, it would be a reasonable assumption that there is no jump of the

gradient of the wavefunction across the domain boundary. Hence, it is also reasonable

to ignore the corresponding contribution on the error indicator.

The algorithm given below shows how the adaptive refinement of the mesh grids is

embedded in Algorithm 2.1.

Algorithm 3.1: Prediction-correction process with adaptive mesh method on

solving (2.5).

Data: ψn, an initial ψn`1p:“ ψnq, an auxiliary ψ̃, and tolerance

Result: ψn`1

1 Calculate an initial ρn` 1

2

;

2 do

3 Let ψ̃ “ ψn`1;

4 Solve the Eq. (2.5) to get an updated ψn`1;

5 if First correction step then

6 Implement the adaptive mesh method;

7 end

8 Update ρn` 1

2

;

9 while ||ψn`1 ´ ψ̃|| ą tolerance;

In the above algorithm, the adaptive mesh method is implemented in the first cor-

rection step, since with a small ∆t and a quality ρn` 1

2

, the wavefunction in this stage

is actually accurate enough. So the adaptive mesh method is only implemented once

here in the whole prediction-correction process.
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3.2. The algebraic multigrid solvers

Two AMG solvers are needed in our framework, one is a real-valued AMG for the

generation of the Hartree potential in the Hamiltonian, and the other one is a complex-

valued AMG for the linear system derived from the implicit scheme for the TDKS equa-

tion.

In the generation of the Hartree potential in the Hamiltonian, the following Poisson

equation needs to be solved with the given electron density, i.e.,

#

´∇2VH “ 4πρ in Ω,

VH “ V b
H on BΩ,

(3.4)

where V b
H represents the Hartree potential on the domain boundary, and the multi-

pole expansion is used here for the approximation. People may refer to [3, 25] and

references therein for more detail.

Suppose that the linear system derived from the above Poisson equation is given by

Ahuh “ fh, (3.5)

where the subscript h denotes the size of the mesh for obtaining the stiffness matrix Ah.

In an abstract description, the iteration method tries to generate a sequence pu
pnq
h q8

n“0

such that uh “ limnÑ8pu
pnq
h q.

By introducing the error e
pnq
h “ uh ´ u

pnq
h , the residual r

pnq
h “ fh ´ Ahu

pnq
h from the

n-th approximation u
pnq
h , and by approximating the defect equation Ahe

pnq
h “ r

pnq
h with

Âhê
pnq
h “ r

pnq
h , (3.6)

the next approximation u
pn`1q
h is obtained by

u
pn`1q
h “

´

Ih ´ Â´1

h Ah

¯

u
pnq
h ` Â´1

h fh. (3.7)

Two properties are expected from Âh, i.e., Âh should be simple so that the system

Âhê
pnq
h “ r

pnq
h can be solved efficiently, and the spectral radius of the iteration matrix

Ih ´ Â´1

h Ah is less than 1 so that the iteration is convergent.

In the multigrid framework, the Eq. (3.6) is designed by discretizing (3.4) on

a coarse mesh through the restriction operator RH
h and the prolongation operator P h

H ,

i.e.,

AHR
H
h e

pnq
h “: AHe

pnq
H “ rH :“ RH

h r
pnq
h . (3.8)

Then the new approximation u
pn`1q
h can be expressed by

u
pn`1q
h “

´

Ih ´ P h
HA

´1

H RH
h Ah

¯

u
pnq
h ` P h

HA
´1

H RH
h fh. (3.9)
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Based on the above description, the two-grid iteration method is given in Algo-

rithm 3.2 below.

Algorithm 3.2: A two-grid iteration.

Data: Ah, fh, initial guess u
p0q
h , tol, ns, nm, and Nm.

Result: uh.

1 while ||r
pnq
h ||2 ą tol or nm ă Nm do

2 Implement certain classic iteration on the Eq. (3.5) for ns times;

3 Build the Eq. (3.8) by using RH
h ;

4 Solve the Eq. (3.8);

5 Update the solution with (3.9) by using P h
H ;

6 Implement certain classic iteration on the Eq. (3.5) for ns times;

7 Let nm “ nm ` 1;

8 end

If we use Sh to denote certain classic iterative operator, the iteration matrix for

Algorithm 3.2 becomes

Mtg “ Sh

´

Ih ´ P h
HA

´1

H RH
h Ah

¯

Sh. (3.10)

It is noted that the convergence of the above two-grid algorithm for the linear system

derived from the model problem (3.4) has been studied in detail, please refer to [5]

and references therein. It is also noted that the two-grid method can be recursively

used, which delivers a multigrid algorithm.

It is noted that in our implementation, the generation of the restriction and pro-

longation operators in this paper follows [6], the Gauss-Seidel iteration is used for the

smoother, and the implementation of the real-valued AMG follows [19].

Besides solving the Poisson equation (3.4), the AMG method is also employed in

solving the complex-valued linear system derived in our implicit numerical method.

We follow [10] to use K formulation for representing the complex-valued matrix, with

the sparsity pattern shown in Fig. 1.

It can be observed that the sparsity pattern of the complex-valued matrix is same

to the real-valued one for the Poisson equation (3.4). Consequently, the AMG solver

described above for the real-valued linear system can be reused, with the modification

introduced by the K formulation. Briefly, the generation of both the restriction and

prolongation operators, and the implementation of the iteration scheme in AMG will be

in “block” style, since each ‚ in Fig. 1 represents a 2ˆ 2 matrix. In our implementation,

a block Gauss-Seidel iteration scheme is used in the complex-valued AMG.

3.3. OpenMP parallelization of the algorithm

OpenMP is a mature technique for enhancing the implementation efficiency of the

algorithm, by fully utilizing the hardware resource in a workstation. The research on

improving the finite element codes by OpenMP keeps active [23].
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In our work, we mainly use OpenMP in the two operations to improve the simula-

tion. The first one is in the assembly of the stiffness matrix, and the second one is in

the implementation of AMG solvers.

The utilization of the OpenMP in the assembly of the stiffness matrix is not straight-

forward since the possible data racing in writing the global matrix. An effective ap-

proach on resolving the data racing is to group those nonadjacent elements, then

OpenMP can be used directly in each group for the assembly operation. In our method,

a greedy algorithm is used to generate several groups in each of which every element

is not adjacent to any other elements. It is worth mentioning that the computational

complexity of the greedy algorithm is OpNtetq, and the implementation of the algo-

rithm is efficient with the help of the HGT data structure for the mesh. For the OpenMP

in AMG solver, it can be trivially used in the matrix-vector product. In addition, if the

Jacobi iteration is used as the smoother, the parallelization of the iteration can also be

realized trivially.

In the next section, the performance of the proposed acceleration methods, as well

as the performance of the implicit solver for the TDKS equation, will be checked by

a number of numerical experiments.

4. Numerical experiments

The performance of the proposed numerical method will be shown in this section by

a number of the numerical experiments. We focus on three aspects, i.e., the efficiency

of the proposed complex-valued AMG solver for the linear system from the implicit nu-

merical method, the effectiveness of the h-adaptive mesh method in solving the TDKS

equation, as well as the performance of the proposed implicit numerical solver in the

long term simulations.

The hardware for the simulations is a Dell Precision T7920 Tower, with two In-

tel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz (total 24 cores), and with 256 gigabytes

memory. The software for the simulation is a C++ library AFEABIC [2, 3] developed

and maintained by the authors. It is noted that we also use AFEABIC to calculate the

ground state of the given electronic structure, which is used in this paper as the initial

condition for the simulations of the TDKS equation.

In all simulations, the computational domain is a ball with the radius 50 au, and

the initial tetrahedral mesh is generated by Gmsh [13]. The ground state of the given

electronic structure is obtained by using an h-adaptive finite element method proposed

in [2] for the Kohn-Sham density functional theory, which has been realized in AFE-

ABIC.

4.1. The performance of the AMG solver for the complex-valued system

To show the effectiveness of the proposed AMG solver, several atoms and molecules

are tested, and the results are shown in Table 1. The simulation process for each case

in the table can be described as follows. First of all, the ground state of the given atom
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Table 1: Comparison on the CPU time (millisecond) on solving the linear system by block Gauss-Seidel
iteration and by multigrid iteration, respectively. The number in (¨) is the iteration numbers used.

Stru. DOFs Block GS MG

Helium 153,761 310,630 ms (6,900) 117,300 ms (42)

Lithium 357,142 1,705,477 ms (14,900) 206,213 ms (49)

Beryllium 590,998 5,272,625 ms (25,000) 297,384 ms (46)

Boron 769,228 8,363,926 ms (32,100) 341,742 ms (50)

LiH 104,469 301,458 ms (9,100) 121,277 ms (50)

Li2 159,206 452,573 ms (9,200) 132,246 ms (47)

BeH2 155,548 548,938 ms (11,400) 168,883 ms (61)

Li9 (BCC) 344,430 723,390 ms (6300) 176,541 ms (45)

CH4 398,155 5,806,147 ms (41,200) 649,829 ms (144)

H2O 508,908 10,600,067 ms (58,200) 916,032 ms (175)

C6H6 1,950,290 29,832,561 ms (40,900) 1,354,015 ms (90)

or molecule is obtained by an h-adaptive finite element method [2]. Then with this

ground state as the initial state, the electronic structure system is propagated forward

by using the proposed numerical method in this paper. We record the CPU time (in

millisecond, ms) and the iteration steps needed for solving a complex-valued linear

system by using the proposed complex-valued AMG solver. As a comparison, the cor-

responding results from the block Gauss-Seidel iteration are also listed. It is noted that

the number shown in the parenthesis is the total number of the iteration steps. In all

cases, the L2 norm of the residual of the system is used to design the stop criterion,

and the tolerance is 1.0 ˆ 10´12. In addition, the parameter ns in Algorithm 3.2 is 3 in

all simulations.

Before introducing the results in Table 1, it is noted that the ground state for

each given atom or molecule is calculated accurately with our h-adaptive finite ele-

ment method in [2], which consists of a self-consistent field (SCF) iteration for the lin-

earization of the Kohn-Sham equation, and the locally optimal blocked preconditioned

conjugate gradient (LOBPCG) method for solving the generalized eigenvalue problem.

In all cases, the residual for each eigenpair is used to design the stop criterion for

LOBPCG method with the tolerance 1.0ˆ 10´8, and the L2 norm of the difference from

two adjacent iterations is used to design the stop criterion for SCF iteration with the

tolerance 1.0 ˆ 10´4. Finally, in the process of the h-adaptive refinement of the mesh,

the simulation is stopped when the total energy of the electronic structure changes

within 0.1% compared with the total energy obtained from last mesh. As an exam-

ple, Fig. 2 shows the results from the ground state simulation for benzene molecule,

including the isosurfaces of the electron density and the mesh slice on the x-y plane

around the molecule (in Fig. 2, left two subfigures), and the convergence history of

the total energy of the benzene molecule with the h-adaptive refinement of the mesh

(in Fig. 2, right figure). It is noted that the reference value for the total energy of the
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Figure 2: Calculation of the ground state for benzene molecule. Upper left: isosurface of the electron
density. Bottom left: the mesh profile on the x-y plane around the molecule. Right: the convergence of the
total energy of the benzene with the h-adaptive refinement of the mesh.

benzene molecule is ´230.85 au from CCCBDB, from which we can see the numerical

convergence of our simulation for benzene molecule.

Now we are ready to introduce the results in Table 1, and two main observations

can be made from the table. First of all, the proposed complex-valued AMG solver

in this paper significantly accelerates solving the linear system, compared with the

block Gauss-Seidel iteration, for all cases. In most cases, no more than 10% CPU time is

needed by AMG solver to solve the linear system, compared with the block Gauss-Seidel

iteration. It is worth mentioning that in benzene case, the percentage is only around

4.5%. The second observation is that with the same parameters such as the tolerance

for the stop criterion, the performance of the AMG solver is more stable than that of

the block Gauss-Seidel iteration, for different electronic structure and total amount of

the grid points in the mesh. This can be seen clearly from those numbers in the paren-

theses, i.e., the variance of the iteration numbers from block Gauss-Seidel iteration is

309898000, while it is 2066.1 for the proposed AMG solver in this paper.

It is known from the classical analysis for the multigrid method that the perfor-

mance of the method is not sensitive to the condition number of the matrix for the

convergent cases. We would like to mention that the complex-valued AMG solver pro-

posed in this paper also has such property, which can be shown clearly in Table 2. It is

noted that the parameter ns in Algorithm 3.2 is 6 in all simulations in the table.

It is noted that in Table 2, for each atom or molecule, the different number of the

grid points is from using different tolerance for h-adaptive refinement of the mesh in

each simulation, and the tolerance for each simulation is given in the parenthesis. The

nonsensitivity of the proposed AMG solver to the condition number of the matrix can

be observed clearly from the above table, i.e., the change of the total number of the

iteration needed for different simulations is small.

Before getting involved in the next subsection, we would also like to deliver the
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Table 2: The total iteration numbers needed by AMG for each electronic structure with different number of
the grid points.

Stru. Grid Points Iter. Stru. Grid Points Iter.

Li 70,963 (5.0 ˆ 10´3) 38 CH4 137,533 (2.0 ˆ 10´2) 68

118,311 (3.0 ˆ 10´3) 36 398,155 (1.0 ˆ 10´2) 89

357,142 (1.0 ˆ 10´3) 36 575,040 (8.0 ˆ 10´3) 86

469,682 (8.0 ˆ 10´4) 37 963,547 (5.0 ˆ 10´3) 78

LiH 104,469 (5.0 ˆ 10´3) 37 H2O 50,908 (2.0 ˆ 10´2) 102

172,878 (3.0 ˆ 10´3) 30 255,467 (1.0 ˆ 10´2) 89

544,501 (1.0 ˆ 10´3) 29 644,037 (8.0 ˆ 10´3) 82

692,392 (8.0 ˆ 10´4) 28 1,044,008 (5.0 ˆ 10´3) 84

results of a study on the role of the number ns in Algorithm 3.2 played in the complex-

valued AMG solver. It is known that the smoother Sh in Algorithm 3.2 is used to damp

out the high frequency part of the numerical error. Below in Table 3, the results of the

performance of the proposed AMG solver obtained from different ns in Algorithm 3.2

are listed for several atoms and molecules.

From Table 3, it can be observed from all cases that with the increment of the

parameter ns in Algorithm 3.2, the iteration steps needed for solving the linear system

decrease. For example, in the simulation of H2O molecule, when we use ns “ 3, the

number of the iteration steps is 175, and the corresponding CPU time is 916, 032 ms.

When we increase the parameter ns from 3 to 9, the number of the iteration steps

becomes 78, and the CPU time becomes 598, 884 ms. That means such change of the

parameter ns allows us to use around 45% iteration steps and around 65% CPU time

to solve the same linear system. However, it does not mean that the efficiency can

always be improved by increasing ns. For example, in the same case for H2O molecule,

ns “ 18 brings us smaller number of the iteration steps, but more CPU time. A similar

observation can be made for all cases in the above table. It should be pointed out that

the best choice of the parameter ns in Algorithm 3.2 should be problem dependent.

However, from the results shown in Table 3 and based on our numerical experience,

ns “ 9 is fairly a good choice. Hence, in the following simulations, we will keep using

this value.

So far, we have discussed the performance of the proposed AMG solver in solving

the linear system derived from the implicit temporal discretization. In the following,

the effectiveness of the proposed h-adaptive mesh method will be demonstrated by two

examples.

4.2. The effectiveness of the h-adaptive mesh method

We use two artificial examples to show the effectiveness of the proposed h-adaptive

mesh method, as follows.

In the first example, the molecule is an H2, with the initial positions for two nuclei
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Table 3: The performance of the proposed AMG solver with different ns in Algorithm 3.2.

Stru. ns Iter. CPU time (ms)

Helium 3 42 117,300

6 31 91,027

9 25 85,237

12 22 81,692

15 20 80,420

18 19 85,462

21 18 86,785

Lithium 3 49 206,213

6 36 177,185

9 31 182,271

12 27 180,271

15 25 188,784

LiH 3 50 121,277

6 37 95,607

9 31 87,030

12 28 87,707

15 25 86,412

18 24 87,727

21 22 86,938

24 21 87,845

27 21 93,874

30 20 93,544

33 19 93,906

Stru. ns Iter. CPU time (ms)

H2O 3 175 916,032

6 102 670,123

9 78 598,884

12 66 618,059

15 59 607,581

18 54 622,983

21 50 641,419

CH4 3 144 649,829

6 89 493,016

9 71 460,736

12 62 467,982

15 56 470,987

H2O 3 175 916,032

6 102 670,123

9 78 598,884

12 66 618,059

15 59 607,581

18 54 622,983

Li9 3 45 176,541

BCC 6 35 166,746

9 29 160,826

12 26 177,077

15 24 180,401

p´0.7209, 0.0, 0.0q and p0.7209, 0.0, 0.0q, respectively. The simulation consists of two

processes. Firstly, the ground state of the H2 molecule is obtained by solving the Kohn-

Sham equation with an h-adaptive finite element method in AFEABIC [2]. In the second

process, the TDKS equation is solved with the proposed numerical method in this paper.

To make the dynamics of the system nontrivial, the positions of two nuclei change to

p0.0,´0.7209, 0.0q and p0.0, 0.7209, 0.0q, respectively, at the initial time.

The dynamics of the H2 molecule is shown in Fig. 3. In the top row, the iso-

surfaces of the electron density of the molecule are shown at the time instants t “
0, 0.05, 0.1, 0.2, respectively, while they are the corresponding mesh grids around the

molecule in the bottom row. Please note that the mesh on the x-y plane is shown here

for clearly demonstrating the dynamics change of the mesh grids. It can be observed

clearly that with a sudden change of the positions of two nuclei, the distribution of the

electron density changes with the time evolution, under the Coulomb interaction. With

the help of the proposed h-adaptive mesh method, this transition process is resolved

very well.

The second example is similar to the first one, in which the molecule becomes a bo-
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Figure 3: The isosurfaces of an H2 molecule (top), and the corresponding mesh around the molecule
(bottom), at t “ 0, 0.05, 0.1, 0.2 (from left to right), respectively. The results are restricted in the box
r´2.5au, 2.5aus ˆ r´2.5au, 2.5aus in the x-y plane.

rane molecule (BH3). The position of the nucleus of the boron atom is the

origin point (0, 0, 0), while the initial positions of the nuclei for three hydrogen atoms

are (0., 2.248773926, 0.), (1.947551604,´1.124386963, 0.), and (´1.947551604,

´1.124386963, 0.), respectively. After the ground state of the borane molecule is ob-

tained, the nuclei positions for three hydrogen atoms are changed to (0.,´2.248773926,

0.), (1.947551604, 1.124386963, 0.), and (´1.947551604, 1.124386963, 0.), i.e. their sym-

metric points w.r.t. the x-axis in the x-y plane. Then the dynamics of the electron den-

sity is obtained by solving the TDKS equation with the proposed numerical method.

The numerical results at the time instants t “ 0, 0.36, 0.6, and 1.0, are shown in Fig. 4.

Again, it can be observed that the transition process caused by the sudden change of

the positions of the nuclei is resolved very well, with our h-adaptive mesh method.

It is worth mentioning that the proposed complex-valued AMG solver works very

stable in both simulations, i.e., in the whole simulation process of the H2 molecule,

only around 5 steps of the multigrid iteration are needed to solve the complex-valued

linear system with the stop criterion 1.0ˆ10´10 for the residual, while it is 15 multigrid

iteration steps for the borane molecule.

4.3. The performance on long term simulations

In this subsection, we test the performance of the proposed numerical framework

on long-term simulation of the time dependent Kohn-Sham equation. To check the

ability of the numerical scheme on preserving the structures mentioned in Section 2.1,

two kinds of the numerical experiments are implemented below.

The first kind of numerical experiments is to show the property of the numerical

scheme on preserving the symplectic structure of the system. It is noted from (2.1) that
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Figure 4: The isosurfaces of a Borane (BH3) molecule (top), and the corresponding mesh around the
molecule (bottom), at t “ 0, 0.36, 0.6, 1.0 (from left to right), respectively. The results are restricted in the
box r´5au, 5aus ˆ r´5au, 5aus in the x-y plane.

the conservation of the Hamiltonian function is equivalent to the conservation of the

total energy of the system. Hence, the simulation process can be described as follows.

First of all, the ground state of the electronic system is calculated by using an h-adaptive

finite element framework. Then by using this ground state as an initial condition, the

electronic structure system is propagated freely. In this case, both the norm of the

wavefunction and the total energy of the system should be preserved. The ability of

the proposed numerical method in this paper on preserving the above properties is well

demonstrated by the results of the H2 molecule. The ground state of the H2 molecule

is obtained first. Then without the initial perturbation, the system is propagated by

solving the TDKS equation with the proposed numerical method for over 1200 au in

time, and the conservation of the total energy and the total number of the electrons is

preserved very well. Please see Fig. 5.

The second kind of the numerical experiments is devoted to the conservation of

the norm of the wavefunction under an initial perturbation on the system. Specifically,

the ground state of the electronic structure is calculated first. Then the phase of the

ground state wavefunction is shifted by ψ “ e´ikzψ, where k is the amplitude of the

perturbation, and z denotes the polarization direction. After that, we let the system

evolve freely, and record the time-dependent dipole moment, and the norm of the

wavefunction.

In Fig. 6, it obviously is seen that the number of the electrons for a helium atom,

which should be 2, is preserved very well even for the long term simulations. The

history of the time dependent dipole is also recorded in the simulation, and is shown

in Fig. 6 (bottom one). Similar results can be found for the simulations of the LiH

molecule (Fig. 7), and the methane molecule (Fig. 8).
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Figure 5: The results for H2 molecule. Top: Number of the electrons in the system with the time evolution,
which should be 2 for the H2 molecule. Bottom: the history of the total energy with the time evolution.
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Figure 6: Top: Number of the electrons in the system with the time evolution, which should be 2 for the
helium atom. Bottom: the history of the time dependent dipole in the simulation.
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Figure 7: Top: Number of the electrons in the system with the time evolution, which should be 4 for the
LiH molecule. Bottom: the history of the time dependent dipole in the simulation.
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Figure 8: Top: Number of the electrons in the system with the time evolution, which should be 10 for the
CH4 molecule. Bottom: the history of the time dependent dipole in the simulation.
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5. Conclusion

In this paper, an implicit solver is proposed for the TDKS equation. The solver con-

sists of an implicit midpoint scheme for the temporal discretization, and a linear finite

element scheme for the spatial discretization. To resolve the efficiency issue of the pro-

posed implicit solver, a complex-valued AMG solver is designed for efficiently solving

the linear system from the implicit scheme, an h-adaptive mesh method is developed

based on a hierarchy geometry tree and a residual type a posteriori error estimation

technique, and the algorithm is parallelized by OpenMP. A number of numerical exper-

iments successfully show the effectiveness of the proposed method.

Quality long term simulation for a given electronic structure is necessary in a variety

of applications such as the photonabsorption spectra calculation, simulations on the

high harmonic generation, and molecular dynamics. A study towards these applications

will be reported in our forthcoming paper.
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