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Abstract. We present an algebraic version of an iterative multigrid method for obstacle
problems, called projected algebraic multigrid (PAMG) here. We show that classical
algebraic multigrid algorithms can easily be extended to deal with this kind of problem.
This paves the way for efficient multigrid solution of obstacle problems with partial
differential equations arising, for example, in financial engineering.
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1. Introduction

In this paper we show that the algebraic multigrid (AMG) method, as it is commonly
used to solve partial differential equations on unstructured grids in a robust and efficient
way, can relatively easily be extended to dealing with obstacle problems. These problems
are often encountered in engineering practice, ranging from classical engineering applica-
tions like elasto-plastic torsion applications to relatively recent applications occurring, for
example, in computational finance.

One of the motivations to develop the AMG method for obstacle problems here is to
transfer efficient iterative solution methods of black-box type to application fields like fi-
nancial engineering. Multigrid has been used in that field, but mainly by academic re-
searchers from universities.
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AMG was popularised by the overview article of Ruge and Stüben from 1987 [25],
with the basic principles of AMG for so-called M-matrices. Moreover, the software related
to the AMG solver described in that article was initially provided as open source software.
AMG solvers from the eighties were particularly efficient for matrix problems originating
from two-dimensional discrete partial differential equations. At that time, with limited
computer resources, this was sufficient. In the early nineties of the previous century,
however, computer capacity had increased and partial differential equation software for
three-dimensional applications had been developed and a need to solve three-dimensional
problems efficiently by black-box methods arose. The AMG solver from the eighties had to
be upgraded in terms of reducing its coarse grid operator complexity for three-dimensional
problems. A revival of AMG started at that time, for example, by [20,26], as well as in [6].
The resulting AMG solvers with reduced operator complexities due to so-called aggressive
coarsening [26], or by other means [8] were parallelized as well for enhanced efficiency,
for example in [10, 21], amongst several others. The development of AMG has been de-
scribed in textbooks such as [4] or [27].

Independent of this development, geometric multigrid, which is explicitly based on
grids and structures, has been applied to obstacle problems with partial differential equa-
tions (PDEs), also in the eighties of last century. Obstacle problems can be formulated
as linear complementarity problems (LCPs), which have a long tradition regarding their
efficient numerical solution, see, for example, [7,9]. The LCP formulation is beneficial for
iterative solution, since the unknown boundary (as obstacle problems are governed by un-
known free boundaries) does not appear explicitly and can be obtained in a post-processing
step.

In the pioneering paper [3] from 1983, regarding the use of multigrid to this type of
problem, Brandt and Cryer introduced the projected full approximation scheme (PFAS)
multigrid method for LCPs. Unlike in the basic geometric multigrid correction scheme,
which is based on transferring corrections to the numerical solution from coarse to fine
grids, each level of PFAS approximates the complete solution of the fine LCP. It is thus
based on the non-linear full approximation scheme (FAS) developed by Brandt in [2]. In
1987, Hoppe developed a solver for obstacle problems which employs a multigrid method
to solve reduced linear algebraic systems in [13]. A later multigrid approach for obstacle
problems was called the monotone multigrid method, developed by Kornhuber in [19].

Reisinger and Wittum proposed in [24] a projected multigrid method for LCPs. It
resembles the standard multigrid method more closely than PFAS. The coarse grid right-
hand side is the restriction of the defect (residual). In that strain of literature we here
present the so-called projected algebraic multigrid (PAMG) method. We will base our
algorithm on this latter idea, and use the original Ruge-Stüben AMG framework.

A wide range of financial engineering applications in which obstacle problems occur in
the form of LCPs is presented in [14,18]. The basic obstacle problem considered in compu-
tational finance is the calculation of the value of an American-style option in a stochastic
volatility setting. It leads to the solution of a two-dimensional (plus time) convection-
diffusion type PDE with a free boundary. In [28], it has been shown that for the American-
style options the theory of linear complementarity applies, so that it is possible to rewrite
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the problem as an LCP. Numerical discretization schemes of finite element type, amongst
others, are presented in [1].

A first application of multigrid to obstacle problems in computational finance is found
in [5], with the concept of line-wise smoothers to deal with stretched non-equidistant
computational grids. Semi-coarsening in multigrid as well as multigrid as a preconditioner
for Krylov methods, tailored to the LCPs in computational finance, can be found in [22].
With the AMG solver developed here, stretched grids are efficiently handled, as algebraic
coarsening based on matrix elements typically results in some form of semi-coarsening.

A detailed study of the performance of multigrid for linear complementarity problems
arising from the stochastic volatility Heston model [11] can be found in the work by Toiva-
nen and co-workers [15], [16], [17].

The outline of the paper is the following. The model linear complementarity problem
is presented in Section 2. The PAMG method and details of its components are described
in Section 3. Numerical experiments with elasto-plastic torsion problems and American
option pricing under a stochastic volatility model demonstrating the efficiency of the pro-
posed method are presented in Section 4. The conclusions are given at the end of the
paper.

2. Linear Complementarity Problem

We consider a linear complementarity problem (LCP)




Ax ≥ b,

x ≥ g,

(Ax− b)T (x− g) = 0

with the inequalities holding component-wise. We denote this problem by LCP(A,x,b,g).
Thus, for each i either

[Ax]i = bi or xi = gi

holds. The set of i-values for which the later equation holds is called the active set, which
is given by {i : xi = gi}. The complementary set {i : xi > gi} is called the inactive set.

We assume the matrix A to be an M-matrix or nearly so. For an M-matrix A the follow-
ing properties hold:

• positive diagonal entries: Aii > 0,

• non-positive off-diagonal entries: Ai j ≤ 0, i 6= j,

• diagonally dominant:
∑

j 6=i |Ai j| ≤ Aii.

Often low-order finite difference or element discretizations of partial differential operators
like the convection-diffusion-reaction operator, −∆+ v · ∇+ c, lead to M-matrices.

The classical iterative solution method for LCPs is the projected successive overre-
laxation (PSOR) method proposed by Cryer in [7]. One iteration of this method for
LCP(A,x,b,g) is given by:
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Algorithm 2.1. Algorithm PSOR(A,x,b,g)

Do i = 1,dim A

ri = bi −
∑

j Ai jx j

xi = xi +ωri/Aii

xi =max
�
xi, gi

	

End Do

In the case ω = 1, the PSOR method reduces to the projected Gauss-Seidel (PGS) method.
A helpful observation here is that PSOR is based on the iterative solution process, by

means of SOR, of the matrix equation Ax= b, where matrix A originates from a discretiza-
tion of a PDE. The iterative solution of this matrix equation can be performed fully alge-
braically, for example, by AMG. This will form the basis of the PAMG algorithm proposed
here.

3. Projected Algebraic Multigrid

We present a PAMG method which follows the idea of the projected multigrid method
proposed by Reisinger and Wittum in [24]. The geometric components of this method are
replaced by the algebraic counterparts described by Ruge and Stüben in [25].

To show the similarity and differences of AMG methods for LCPs and systems of linear
equations, we describe the algorithms for one V-cycle of PAMG and AMG side-by-side in
the following:

Algorithm 3.1. Algorithm PAMG and Algorithm AMG

Algorithm PAMG(A,x,b,g) Algorithm AMG(A,x,b)

If coarsest level Then If coarsest level Then

solve LCP(A,x,b,g) x = A−1b

Else Else

PS(A,x,b,g) S(A,x,b)

xc = 0 xc = 0

rc = R̄(b−Ax) rc = R(b−Ax)

gc = bR(g− x)

PAMG(Ac,xc ,rc,gc) AMG(Ac,xc ,rc)

x= x+ P̄xc x = x+ Pxc

PS(A,x,b,g) S(A,x,b)

End If End If
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In the above algorithms, PS and S are smoothers for the LCPs and the systems of linear
equations, respectively. The matrices P and R are the standard algebraic prolongation and
restriction operators. The restriction operators for the solution of the LCP and its constraint
are denoted by R̄ and bR, respectively. The prolongation for the LCPs is denoted by P̄. The
coarse grid matrix is Ac. We describe the choice of these operators in the following sections.

3.1. PAMG components

In this section we will give details about the different components the PAMG solver is
based on.

Coarse grid selection. At a given multigrid level, we need to select a set of coarse
grid points which define the next coarser level. These points are denoted by C-points. The
rest of grid points, the fine grid points, are denoted by F-points. Thus, the intersection of
C-points and F-points is empty and their union gives all grid points at the current level.

In the selection of C-points, we use the coarsening proposed by Ruge and Stüben in
[25]. This is based on the graph defined by the non-zero entries of the matrix A. A graph
connection from i to j is called strong when

Ai j ≤ αmin
l 6=i

Ail and Ai j < 0.

Otherwise the connection is called weak. For the parameter α, we use the fairly standard
value α = 0.25. The coarse grid points (C-points) are chosen so that the following two
conditions hold:

• C-points are only weakly connected to other C-points, and

• each fine point (F-point) with any strong connections has at least one strong connec-
tion to a C-point.

We use the following algorithm to choose the C-points. During the algorithm the points
are divided into three sets: undecided points (U-points), a subset of C-points, and a subset
of F-points. We denote the number of strong connections to the ith U-point from the other
U-points by ni.

Mark all points as U-points
Calculate nis
Do while maxi ni > 0

Find smallest k such that nk =maxi ni

Mark k to be C-point
Mark all U-points having a strong connection to k to be F-points
Update nis

End Do
Mark all remaining U-points to be F-points
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Prolongations. The interpolated value of a fine grid point k is given by the formula
∑

i∈Ck

wikxi ,

where Ck is the set of coarse grid points strongly connected to the fine grid point k, wik

are the interpolation weights, and xi is the value at the ith coarse grid point. Following a
proposal by Ruge and Stüben in [25], we choose the weights to be

wik =
1

Aii


|Aik|+
∑

j∈Di

|A jk|∑
l∈Ci
|A jl |
|Ai j|


 ,

where Di is the set of coarse grid points weakly connected to i. As long as the diagonal
entries of A are positive, the interpolation weights wik are non-negative. We denote the
matrix defining the above interpolation from C-points to all points by P. We use this
standard interpolation to form the coarse grid matrix.

The interpolation matrix for the correction from the coarse grid is denoted by P̄. This
can be the standard interpolation matrix P. Alternatively, Brandt and Cryer suggested
in [3] the following one-sided prolongation

[P̄xc]i =

(
[Pxc]i if xi > gi ,

0 if xi = gi .
(3.1)

With this prolongation the coarse grid correction cannot change an active grid point to be
inactive. This has to be done by the smoother. We will mainly use the standard prolonga-
tion in PAMG, that is, P̄= P.

Restrictions. The standard restriction matrix R is given by the transpose of the prolon-
gation matrix P, that is,

R= PT .

For the defect (residual), we use however the one-sided restriction operator proposed by
Hoppe and Kornhuber in [12]. It is defined by

[R̄r]i =

¨
[RrA ]i if xi = gi ,
[RrI ]i if xi > gi ,

where R is the standard restriction and

[rA ]i =

¨
ri if xi = gi ,
0 else,

and [rI ]i =

¨
ri if xi > gi ,
0 else.

With the one-sided restriction the active set residual does not contribute to the coarse
inactive set residual. Notice that we only need to have explicit information about the
vector g, next to the matrix elements Ai j to define this restriction operator algebraically.
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Reisinger and Wittum also use in [24] this one-sided restriction R̄ in their projected
multigrid method. They further state for the restriction operators the minimum require-
ments





R̄(Ax− b)≥ 0,
bR(x− g)≥ 0,�
R̄(Ax− b)
�T bR(x− g) = 0,

which guarantee the solution x to be also a fixed point of projected multigrid iterations. In
general, using the standard restriction R as R̄ does not satisfy these conditions. In practice,
one can observe that geometric and algebraic multigrid methods often fail to converge
with the standard restriction, so that we adopt the one-sided restriction operator for R̄.

In order to satisfy the constraint x ≥ g at each coarse grid point, the restriction bR for
the constraint has to be the injection operator. This restriction operator copies the C-point
values to the coarse grid and does not add any contribution from F-point values. We also
choose for bR the injection operator.

Coarse grid matrix. We use the Galerkin coarsening, that is, the coarse grid matrix Ac

is chosen to be

Ac = RAP= PT AP.

We use the standard prolongation and restriction operators, P and R, in the definition of
the Galerkin coarse grid matrices. The modified restriction operators, R̄ and bR, are solely
used for the restriction of the residuals and the constraints for the LCP, respectively.

Smoother for LCPs. Our smoother for LCPs is based on the PGS method which is a
point-wise smoothing method. In the case of grid anisotropies, or any other anisotropies
in the engineering problems, the AMG coarsening strategy should automatically, based on
the rules regarding the strong connections, detect strong coupling and some form of semi-
coarsening should automatically take place within AMG. This is one of the strong points
we aim for here, as this will give rise to efficient algebraic coarsening strategies on non-
uniform stretched grids that are often encountered in (financial) engineering applications.

4. Numerical experiments

In this section we give a couple of motivating examples to show the quality of PAMG
for problems on regular finite difference and finite element grids. The third example is
from computational finance and deals with a stretched grid. The performance of PAMG on
these examples gives some insight in our choice of the PAMG components.
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4.1. Elasto-plastic torsion problem

For an elastic rod with a crosscut Ω under a twist, a stress function u satisfies the LCP:




−∆u≥ −2C in Ω,

u≥ −d(x,∂Ω) in Ω,

(∆u− 2C)(u+ d(x,∂Ω)) = 0 in Ω,

u= 0 on ∂Ω,

(4.1)

where d(x,∂Ω) is the distance from the boundary ∂Ω at x. In the region where −∆u =

−2C is satisfied, the rod is elastic while in the region where −u= d(x,∂Ω) the rod behaves
plastically. In the following, we consider this problem with the coefficient C = 10. For the
iterations, we use the stopping criterion

‖r̄(k)‖∞ ≤ 10−5‖b‖∞,

where r̄(k) is the reduced residual defined by:

r̄=

(
[Ax− b]i if xi > gi ,

0 if xi = gi .
(4.2)

We report the convergence rates for the iterations defined by

exp

�
1

k
log
‖r(k)‖∞
‖r(0)‖∞

�
.

Two tests have been performed for this equation, in a square with finite differences and in
an ellipse with finite elements.

Square. Following [22], we have chosen the first example the crosscut Ω to be the
square [0,1]2. For the discretization of the Laplace operator, we use the standard five-
point finite difference stencil. The stress function u and the plastic region are shown in
Fig. 1. We study the convergence of the iteration with multigrid V- and F-cycles. Fur-
thermore, we compare the use of one and two pre-smoothing and post-smoothing sweeps.
Mainly, we performed the smoothing by the PGS relaxation method, but we also stud-
ied the convergence with an overrelaxation parameter in one test. In the latter case, the
smoother is the PSOR method.

Convergence results for the standard prolongation and for the one-sided prolongation
in (3.1), as suggested by Brandt and Cryer, are reported in Tables 1 and 2, respectively.
With the V(1,1)-cycle the PAMG method failed to converge in a few hundreds of iterations
on the finest grid 513× 513 with the standard prolongation. The number of iterations
grows with the V-cycle whereas with the F-cycle PAMG scales well, with both choices for
the
prolongation operator. We therefore choose the standard prolongation in the experiments
to follow.
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Figure 1: The solution u in the square (left) and the orresponding plasti region, that is, the ative set(red, right).Table 1: The number of iterations and the onvergene rate with the standard prolongation for theelasto-plasti torsion problem in the square.
V(1,1) V(2,2) F(1,1) F(2,2)

grid iter rate iter rate iter rate iter rate
129× 129 164 0.93 15 0.46 7 0.19 6 0.10
257× 257 76 0.86 20 0.55 15 0.45 9 0.26
513× 513 1.00 29 0.67 11 0.32 7 0.16Table 2: The number of iterations and the onvergene rate with the one-sided prolongation by Brandtand Cryer for the elasto-plasti torsion problem in the square.

V(1,1) V(2,2) F(1,1) F(2,2)
grid iter rate iter rate iter rate iter rate

129× 129 35 0.72 13 0.40 7 0.17 5 0.08
257× 257 37 0.73 17 0.51 11 0.35 8 0.22
513× 513 146 0.92 24 0.61 8 0.24 6 0.13Table 3: The number of iterations and the onvergene rate with the one-sided prolongation by Brandtand Cryer and overrelaxation for the elasto-plasti torsion problem in the square.

V(1,1) V(2,2) F(1,1) F(2,2)
ω= 1.2 ω = 1.3 ω = 1.2 ω = 1.3

grid iter rate iter rate iter rate iter rate
129× 129 18 0.52 9 0.26 10 0.29 7 0.14
257× 257 25 0.62 12 0.37 10 0.30 7 0.18
513× 513 42 0.76 14 0.43 10 0.28 6 0.14

Table 3 gives the results for the V- and F-cycles with PSOR used as smoother. The
overrelaxation parameter ω is chosen in an optimal way from the set {1,1.1,1.2, · · · , 2}.
Overrelaxation is especially beneficial for the V-cycle results, as expected. V-cycles may
have an unsatisfactory low-frequency error treatment for LCPs and PSOR may help because
overrelaxation can reduce low-frequency error components. The maximum number of
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94 J. Toivanen and C. W. OosterleeTable 4: The number of iterations and the onvergene rate with the standard prolongation for theelasto-plasti torsion problem in the ellipse.
PGS V(1,1) V(2,2) F(1,1) F(2,2)

mesh iter iter rate iter rate iter rate iter rate
861 430 15 0.46 9 0.24 8 0.21 6 0.14

3277 1751 16 0.48 9 0.25 10 0.30 6 0.14
12803 6990 17 0.50 10 0.28 8 0.23 6 0.12
50576 28070 31 0.68 12 0.38 10 0.30 8 0.19

200979 32 0.70 14 0.41 10 0.31 7 0.19

iterations reduces only by one for both F(1,1)- and F(2,2)-cycles.
Based on these convergence results, we prefer to stay with F-cycles and PGS (ω = 1)

in the experiments to follow. The improved performance of F-cycles compared to V-cycles
can be understood because the injection operator bR forms a basic ingredient of PAMG. The
coarse grid correction should therefore be made more robust, for example by using F-cycles.

Ellipse. As a second example, we consider the elasto-plastic torsion problem in an
ellipse

Ω =

�
x ∈ R2 :

1

4
x2

1 + x2
2 < 1

�
.

For discretization, we use linear finite elements on quasi-uniform triangulations. We show
here that PAMG also performs well on triangular meshes. These discretizations also lead to
M-matrices. The stress function u and the plastic region are shown in Fig. 2. Fig. 3 shows
an example of coarser grids constructed by the AMG coarsening. Convergence results for
the standard prolongation and PGS smoother are reported in Table 4. Also, the number of
iterations with the PGS method is given in that table.

4.2. Pricing American options

We consider pricing American put options under Heston’s stochastic volatility model
[11]. The values of options are given by the point values of the solution u of the time-
dependent LCP 




L u ≥ 0 in Ω

u ≥ g in Ω

(L u)(u− g) = 0 in Ω,

where Ω = (0, xmax
1 )× (0, xmax

2 )× (0, T]. The parabolic partial differential operator L is
defined by

L u = uτ +
1

2
x2 x2

1ux1 x1
+ργx2 x1ux1 x2

+
1

2
γ2 x2ux2 x2

+ r x1ux1
+α(β − x2)ux2

− ru,
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Figure 2: The solution u in the ellipse on the mesh with 3277 nodes (left) and the orresponding plastiregion, that is, the ative set (red, right).

level 1 level 2 level 3 level 4 level 5 level 6Figure 3: The di�erent levels onstruted by the AMG oarsening on a mesh with 231 nodes. The kth�nest grid inludes the levels from k to 6.

level 1 level 2 level 3 level 4 level 5 level 6Figure 4: The di�erent levels onstruted by the AMG oarsening on a 17×9 grid. The kth �nest gridinludes the levels from k to 6.
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96 J. Toivanen and C. W. OosterleeTable 5: The average number of iterations, the errors at the 10 referene points, the ratios of onseutiveerrors, and the CPU times in seonds.
method space time grid iter. error ratio CPU
PAMG 64× 32× 34 1.2 0.002361 0.06

128× 64× 66 1.6 0.000747 3.16 0.55
256× 128× 130 2.0 0.000428 1.74 5.65
512× 256× 258 2.0 0.000112 3.83 45.59

PMG 64× 32× 34 1.9 0.002443 0.06
128× 64× 66 2.0 0.000900 2.71 0.56

256× 128× 130 2.5 0.000426 2.11 5.78
512× 256× 258 3.0 0.000108 3.96 58.06

where x1 is the value of the underlying asset, x2 is the variance, and τ is the time to expiry
T . The volatility of the variance process is γ and the variance will drift back to a mean
value β > 0 at a rate α > 0. The correlation between the value and variance processes is
ρ. The risk-free interest rate is r. For a put option with a strike price K , the payoff function
reads

g =max{K − x1, 0}.

We price options under the parameter values

K = 10, T = 0.25, r = 0.1, α= 5, β = 0.16, γ= 0.9, and ρ = 0.1

which have been used also in [5,15–17,22,29].
The boundary conditions are given by

u(0, x2) = K , 0< x2 < xmax
2 ,

ux1
(xmax

1 , x2) = 0, 0< x2 < xmax
2 ,

ux2
(x1, xmax

2 ) = 0, 0< x1 < xmax
1 .

With the parameter values chosen, it is not necessary to pose a boundary condition on
the (0, xmax

1 )×{0} boundary as L reduced to a first-order operator with the characteristic
curve pointing outward.

Similarly to [15] and [22], we truncate domain so that xmax
1 = 20 and xmax

2 = 1. We
use the finite difference discretizations with non-uniform space steps described in [15] and
the Rannacher time-stepping [23]. The time steps are uniform except the first four time
steps taken, using the implicit Euler method with the time step being half of that of the
other steps.

Table 5 reports results for the PAMG method and also for the geometric projected
multigrid (PMG) method, described in [15]. The triplet (m, n, l) represents the number of
steps in the x1, x2, and τ directions, respectively. The reported error is the l2-norm of the
error at the reference points {8,9,10,11,12}×{0.0625,0.25}. The ratio in the table is the
ratio of consecutive errors.
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Here we use the PAMG method with the multigrid V-cycle. When moving downwards
and upwards the smoother is one PGS iteration over all points, followed by one PGS itera-
tion over F-points only. The stopping criterion for multigrid methods is

‖r̄(k)‖2 ≤
0.02

m n
‖b‖2, (4.3)

where b is the right-hand side vector and r̄ is the reduced residual vector, defined in (4.2).
The number of iterations presented is the average number of iterations per time step. The
main reason for the increase in the number of iterations when the grid is refined is stopping
criterion (4.3) which becomes more strict then. The runs have been performed on a PC
with 3.8 GHz Xeon processor, using Fortran implementations. Fig. 4 shows coarser grids
constructed by the AMG coarsening.

5. Conclusions

We presented a PAMG method for solving iteratively linear complementarity problems
based on the AMG coarsening technique described by Ruge and Stüben in [25]. This is
an easy-to-use robust and efficient black-box solver which only requires the matrix and
vectors defining the problem. An underlying assumption is that the matrix is an M-matrix
or nearly so.

Numerical experiments demonstrated the PAMG method to be robust and efficient for
partial differential operators discretized using structured and unstructured grids/meshes.
In experiments with the elasto-plastic torsion problems the method with F-cycle appears
to be scalable, that is, the number of iterations seem to be bounded when discretizations
became finer. Experiments pricing American options under a stochastic volatility model
showed the PAMG method to be faster than a geometric multigrid tailored for the problems.
This demonstrates that PAMG is easy-to-use and efficient for pricing American-style options
under multi-factor financial models.
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