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Abstract. Deep Ritz method is a deep learning paradigm to solve partial differential
equations. In this article we study the generalization error of the Deep Ritz method.
We focus on the quintessential problem which is the Poisson’s equation. We show that

generalization error of the Deep Ritz method converges to zero with rate C√
n

, and we

discuss about the constant C. Results are obtained for shallow and residual neural
networks with smooth activation functions.
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1 Introduction

We are studying the Deep Ritz method [1], in particular the problem of approximating
the solution of the Poisson’s equation in a ball with deep neural networks [2, 3]; the re-
sults given in this article can easily be generalized for more complex domains, what is
important is that the domain is bounded. Let us give a few definitions and remarks to
frame what we are talking about here.

1.1 Deep Ritz Method

Let Ω⊂R
d be a bounded domain with a smooth boundary, where d∈N is the dimension.

Let’s consider the Poisson’s equation

−∆u= f ,
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where f is some function, possibly f ∈L2(Ω), sometimes referred as the source term. We
can consider this equation with Dirichlet boundary condition as

{
−∆u= f in Ω,

u=0 on ∂Ω.
(1.1)

The Poisson’s equation can also be stated in a variational form as

min
u∈H1

0(R
d)

∫

Ω

1

2
|∇u|2− f u, (1.2)

meaning that a minimizer of the integral in (1.2), among a set of admissible functions
H1

0(R
d), is the solution of the Poisson’s equation. Here a natural choice for the set of

admissible functions is the Sobolev space H1
0(Ω). This variational form is what was pro-

posed for a loss function in [1], known as the Deep Ritz method (DRM). However, in
DRM we cannot minimize the integral over some Sobolev space – the set of admissible
functions will be some set of neural networks.

When the set of admissible functions is some set of neural networks, then the zero
boundary condition might not be met, and one must add a penalty term in order to force
the solution to meet the boundary condition. Therefore the loss function for the Deep
Ritz method will be

min
u∈H

∫

Ω

(1

2
|∇u|2− f u

)
+λ

∫

∂Ω

u2, (1.3)

where the penalty term λ>0 is a constant. The minimal solution for (1.3) must take into
account the boundary values as well, and so this is the actual theoretical loss function for
the DRM. The latter variational form is related to another boundary value problem for
the Poisson’s equation, namely the Robin boundary value problem

{
−∆u= f in Ω,

u+ 1
2λ ∂νu=0 on ∂Ω,

(1.4)

where ∂νu is the derivative of u into direction of the normal of the boundary ∂Ω. These
two boundary value problems are connected with the parameter λ, and it is a known
result that if we let λ→∞ then the solution of the Robin problem converges to the solution
of the Dirichlet problem [4].

The theoretical loss function (1.3) can be represented as

Lλ(u)= |Ω|EX∼U(Ω)

[
‖∇u(X)‖2

2

2
−u(X) f (X)

]

+
λ

2
|∂Ω|EY∼U(∂Ω)[T(u(Y)2)], (1.5)
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where U(Ω) and U(∂Ω) are uniform distributions on the respective sets, |·| denotes the
Hausdorff measure of the respective sets, and T is the trace operator defined on the
boundary of Ω. An actual loss function, which can be computed, is a discretized ver-
sion of it

L̂λ(u,n,m)=
|Ω|
n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(Xi) f (Xi)

]

+
λ

2

|∂Ω|
m

m

∑
j=1

[T(u(Yj)
2)], (1.6)

where Xi ∼U(Ω) for all i∈{1,··· ,n}, and Yj ∼U(∂Ω) for all j∈{1,··· ,m}. Therefore one
can use the loss function (1.6) to optimize a neural network to approximate the solution
of the Poisson’s equation. In the error analysis, we simplify the setting by assuming that
the source function f is constant 1.

1.2 Error analysis

Let the solution of the Poisson’s equation be u and let û be a neural network approxi-

mation for the Poisson’s equation as the loss function L̂λ(u,n,m), see equation (1.6), is
minimized by some stochastic gradient decent (SGD) algorithm; the question becomes,
how the following difference behaves

‖u−û‖, (1.7)

with some suitable norm; the norm is of course another problem, the Sobolev norms [5]
and the Barron norm [6] are among possible options. Heuristically speaking, we can split
this error into four different terms: penalization error, approximation error, statistical
error, and optimization error. The statistical error and the optimization error forming
together the generalization error [7], which does not stand out from the four error terms.

Anyway, here is a short idea behind the four error terms: the penalization error is
due to the fact that we are aiming for the solution of (1.2) with H= H1

0(R), but instead
we are using penalized version (1.3) of the loss function [4]. Convergence estimate for
the boundary penalty is well known, see for example [8, 9], or [10] where it is shown in
Theorem 4 that with respect to the Sobolev norm H1 the error converges in O(λ−1) as
λ→∞.

The approximation error is due to the fact that the set of admissible functions, which
is some set of neural nets, might not contain the solution to the loss function, and this
causes an error between the target function and the approximation we get by using some
neural network architecture. There is a long tradition on studies in this field [11]. We
show in the Appendix D that in our problem the solution belongs to the Barron space.
This space is suitable to approximate with shallow and residual neural networks as it is
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shown that Barron functions can be approximated with error estimate

Ex[( f ∗(x)− f (x;θ))2]≤ 3γ2
2( f ∗)
m

,

‖θ‖P ≤2γ2( f ∗),

where f ∗(x) is the target function and f (x,θ) is a shallow neural network and m is the
width of the shallow network. For more information see for example [12].

The statistical error measures the difference between solutions of (1.5) and (1.6), and
so it is a measure of the difference between the solutions of the mean of the loss function
and its sample mean with limited amount of observations. Sometimes the statistical er-
ror is also referred to as the generalization error, it is correct in a sense that it measures
the ability to model data which the algorithm has not seen while training, i.e. how well
it learns the underlying distribution, but it is not the same as the observed generaliza-
tion error of the optimized neural network as the optimization algorithm also affects the
generalization error.

In this article we give an estimate for the statistical error

|Lλ(u)−L̂λ(u,n,m)|,

where u is either a shallow or a residual neural network, see Theorems 2.4, and 2.4. The
main theorem implies that the statistical error converges to zero in O( 1√

n
), where n is the

number of points used in the Monte Carlo integration. All the constants in the estimate
can be calculated. It gives information about the ability of shallow and residual networks
to generalize in this PDE problem. We give these results for networks with smoothed
rectified linear unit (Relu) activation functions which can be used in practice to minimize
the loss function.

For example [10, 13–15] have studied the generalization error for Deep Ritz method,
but failed to show the optimal C√

n
bound. In article [6] the optimal convergence rate is

found for two-layer networks, with Relu and softplus activation functions, in the context
of Barron space. Our result is different in that in applies also to residual neural networks
and for wide range of activation functions.

In [16] the optimal convergence rate is found for PINNs [17] (or residual minimiza-
tion). For PINNs, there are more related studies in for example [18–21].

Also [22], and [23] has studied generalization error within the context of PDEs. In [23]
the authors study a cumulative loss function and enable take SGD into account to the
generalization error, they obtain the optimal convergence rate.

We present the theory and our results in Section 2, Results. More about related results
of the statistical error in Section 3, Literature and Discussion.
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2 Results

In this article a letter† F has in some sense double meaning (which in the end is the
same meaning), it refers to the architecture of a neural net, and by fixing the weights
and the biases of the neural net architecture we define a function, mapping possibly from
some vector space to another, and so as we have just defined the architecture and not the
weights, we have in fact a collection of functions; there are the two meanings. Therefore
we may refer to F as an architecture, but also as a family of neural nets (functions). Then
again, if we are talking about minimizing a loss function, then F might be referred to a set
of admissible functions. The architectures which are in our primary interest are residual
neural networks (resnet) [24, 25], and two-layer neural networks, also known as shallow
neural networks.

Outline of the proof of the main theorem is as follows. We bound the difference be-
tween the two loss functions with the help of the Rademacher complexity, and then use
some of the latest results on bounding the Rademacher complexity of neural networks,
to arrive to the result we have. Many results have been shown in the same fashion in
machine learning‡ and deep learning, two excellent books to mention here are [26, 27].

Notation used in this article: Ω := B(0,1) is the unit ball. |Ω| is the Lebesgue mea-
sure of the domain, and |∂Ω| is the Hausdorff measure of the boundary. σ denotes an
activation function. γ(σ) is defined in Definition 2.1. Curly letter F , H denote a set of
functions and/or a neural network architecture, and with subindex Q as FQ we denote
a set of neural networks with architecture F with path norm bounded by Q. Curly P is
used to denote the path norms as ‖·‖P . With R̂(FQ) and R̂S(FQ,n) we denote empirical
Rademacher complexity. With symbol x∈Ω we denote the space variable, and θ denotes
the weights of a neural network. A neural network is usually denoted by letter u, u(x,θ).
With ∨ we denote the maximum: x∨y :=max(x,y).

2.1 Activation functions

In the case of the loss function (1.6), a trial function should have differentiability at least
for 2nd order, as the loss function consumes one derivative and the optimization algo-
rithm second. The Relu activation function does not have even the first order derivative
in the classical sense, as it is not differentiable at the origin. This lack of differentiability
has not blocked the use of the Relu in applications and it has become a popular choice in
many neural net architectures. We assume that one reason behind this is the fact that in
those applications a loss function does not use the gradient of the neural net, or higher
order derivatives, but just the training algorithm takes one order of differentiability and
therefore the problems of the lack of differentiability do not cause too much problems.

†Some times some curly version of H might be used maybe because it refers to hypothesis class, or letter N
because it refers to a term neural network.
‡Also referred to as statistical learning theory or neural network learning, with its own special meanings of
course.
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Also Relu might have some other positive benefits, for example the fact that in the posi-
tive side Relu gives always constant amount of derivative, which does not flatten like in
the tanh activation function.

This is possibly the reason for the fact that in our numerical experiments we were not
able to train successfully a neural network with the Relu activation function for the loss
function (1.6). But when using residual neural networks, it is better to use an activation
function which is close to Relu. So, an activation function should be smooth and similar
to ReLu. With smooth activation functions we were able to minimize the loss function
and approximate the target function. We have moved the discussion of activation func-
tions into the Appendix C.

For these reasons, we are aiming for theoretical bounds for neural network architec-
tures with smoothed Relu activation functions. There is some theoretical tools existing
for neural networks with Relu activation function, and sometimes these results can be
proved to work also with the architectures with smoothed Relus. In [28] the authors state
that under certain conditions, an activation function can be approximated by shallow
networks with the Relu activation functions with bounded path norm. Let’s group the
conditions under one definition.

Definition 2.1. Let σ :R→R be an activation function. Let’s define γ0, g, and γ:

γ0(σ)=
∫

R

|σ′′(x)|(|x|+1)dx, (2.1)

g(x)= |σ(x)|+(|x|+2)|σ′ (x)|, (2.2)

γ(σ)=γ0(σ)+ inf
x∈R

g(x). (2.3)

Let the function σ satisfy the following conditions.
1. σ is continuous.
2. σ is twice weakly differentiable on R.
3. The second derivative σ′′ is locally Riemann integrable on R.
4. γ(σ)<∞.

If such conditions are met, we call the activation function approachable.

Next theorem justifies what was previously said about the approximation ability by
the neural networks with the Relu activation function [28].

Theorem 2.1. If an activation function σ is approachable, meaning it satisfies the conditions
of the Definition 2.1, then for any δ> 0, there exists a two-layer neural network with the Relu
activation function um(·,θ) of width m<∞ such that

sup
x∈R

|σ(x)−um(x,θ)|≤δ, (2.4)

‖θ‖P ≤γ(σ)+δ. (2.5)

Proof. See the proof in [28].
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The Theorem above means that an activation function which satisfies the conditions
of the Definition 2.1 can be approximated by a two-layer neural network with Relu activa-
tion function with any precision, in such a way that the path-norm of the approximating
neural network is bounded, and the bound is connected to the activation function itself
by the value of γ(σ). For the proof of the theorem see the source [28].

2.2 Architectures and path norms

Shallow, or two-layer, neural networks are the following functions.

Definition 2.2. Let σ :R→R be a nonlinear activation function. Let m∈N. Let x∈R
d be

the input layer, ωi∈R
d, and ai∈R, i=1,··· ,m are the weights. A shallow neural network

is the function

f (x;θ)=
m

∑
i=1

aiσ(〈ωi,x〉),

where θ denotes the collection of parameters, the weights, θ={ai,ωi : i=1,··· ,m}.

Remark 2.1. If the activation function is specified, then we can add this information into
the name of the architecture: for example, if the activation function is the Relu, the archi-
tecture is called a shallow neural network with the Relu activation function.

In the Definition above at first glance it seems that it does not include the bias terms,
but they are included in this Definition if we let the input layer contain one ’additional’
dimension, and the value of the input vector’s last coordinate is always 1.

For shallow networks with the Relu activation function we have a path norm [12,29].
It measures how much different paths of the information flow can affect the output of a
shallow neural network.

Definition 2.3 (Path norm). Let u(x,θ) be a shallow neural net with width m and the
parameters θ={ai ,ωi : i=1,··· ,m}, and with the Relu activation function. A path norm of
the shallow neural network is

‖θ‖P =
m

∑
i=1

|ai|‖ωi‖1.

For smoothed versions of the Relu activation function we need a little bit different
version of the path norm [28].

Definition 2.4. [Another path norm] Let σ be an approachable activation function, and
let u(x,θ) be a shallow neural network with the activation function σ. Then the path norm
‖·‖P̃ is

‖θ‖P̃ :=
m

∑
k=1

|ak|
(
‖bk‖1+|ck|+1

)
, (2.6)

where ck is the bias term, and ak, bk are the weights of the neural network u(x,θ). The
norm ‖·‖1 is the l1-norm on the vector space R

d.
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The latter path norm bounds the former path norm.
Let the structure of the residual neural net (resnet) be the following.

Definition 2.5 (Resnet). Let the hidden layers hl and gl , and the output layer u(x;θ) have
the following relation with a skip connection:





h0 =Vx,

gl =σ(Wlhl−1),

hl =hl−1+Ulgl ,

f (x;θ)= aThL,

(2.7)

where l=1,··· ,L, σ is an activation function, V∈R
D×d, Wl∈R

m×D and Ul∈R
D×m, a∈R

D.
θ denotes the set of parameters, θ = {u,V,Wl ,Ul : l = 1,··· ,L}. u(x,θ)∈ R is the output
(layer) of the neural network.

We have a path norm also for residual neural networks with the Relu activation func-
tion [29].

Definition 2.6 (Weighted path norm). Given a residual neural network of u(x;θ), define
the weighted path norm of u as

‖θ‖P =
∥∥|a|T(I+2|UL||WL|)···(I+2|U1||W1|)2|V|)

∥∥
1
, (2.8)

where |A|, with A being a vector or a matrix, means taking the absolute values of all the
entries of the vector or the matrix.

In [28] authors came up with an alternative path norm for residual neural networks
with approachable activation functions.

Definition 2.7. For any residual neural network u(x,θ) with an approachable activation
function defined as in Definition 2.5, let its path norm be

‖θ‖P̃ =
L

∑
i=0

‖|a|T(I+cσ|UL||WL |)(I+cσ|UL−1||WL−1|)

···(I+cσ|Ui+1||Wi+1|)|Ui|‖1.

Here U0=V, and cσ >4γ(σ)+1 is a constant only related to the activation function σ.

Remark 2.2. We denote with FQ a collection of neural networks with a bounded path
norm, where the path norm is bounded by a constant Q>0.

Lemma 2.1. Let u(x,θ)∈FQ be a shallow, or residual neural net, let ‖θ‖P̃ <Q, where Q>0 is
some positive real number. Then we have ‖θ‖P <‖θ‖P̃ , and in particular ‖θ‖P <Q.

Proof. See the proof of Lemmas A.1, and A.2 in the appendix.
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2.3 Rademacher complexity

Now let’s leave path norms for a while and talk about the Rademacher complexity a little
bit. If H is a set of functions, and S is a set of points, such that functions in H map from
S to R, then let H◦S be the set of all possible evaluations a function h∈H can have on a
sample S, namely,

H◦S={h(z) : h∈H, z∈S}.

Rademacher complexity is defined as follows.

Definition 2.8. (Empirical Rademacher complexity) Let F be a collection of maps from a
domain Ω⊂R

d to R, F := { f | f : Ω→R}. Let S=(z1,··· ,zm) be a sample of points such
that zi ∈Ω for all i. Let ξi be an independent uniform random variable taking value in
{−1,1}. The empirical Rademacher complexity of the function class F is

R̂S(F ,m)=
1

m
Eξ

[
sup
f∈F

m

∑
i=1

ξi f (zi)
]
.

Remark 2.3. In the literature, Rademacher complexity might refer to the expectation of
the empirical Rademacher complexity, but in this article we are using only empirical
Rademacher complexity. For now on, if we say Rademacher complexity we mean the
empirical Rademacher complexity.

Remark 2.4. Instead of the notation R̂S(F ,m) we might denote the Rademacher complex-
ity just by R̂(F), omitting the letters that indicate the fact that Rademacher complexity
depends on the sample.

Next lemma is from [30], with this lemma we are going to bound the difference of the
two loss functions.

Lemma 2.2. Let H be a set of functions (hypothesis class). Let h∈H, and let z∈Ω⊂R
d. Let l

be a function depending on the function h and the variable z, let’s denote a collection of maps as

l◦H :={z 7→ l(h,z) : h∈H},

where the mappings map from Ω to R. Let f ∈ l◦H. The expectation of a function f with respect
to distribution D is

LD( f )= E
z∼D

[ f (z)],

and the empirical expectation is

LS( f )=
1

n

n

∑
j=1

f (zj).

Let C>0 and let’s assume that for all z∈Ω and all h∈H we have |l(h,z)|≤C. Let δ>0. Then
with probability at least 1−δ for all f ∈ l◦H

LD( f )−LS( f )≤2R̂S(l◦H,m)+3C

√
2ln(4/δ)

m
.
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Proof. See [30] theorem 26.5.

Next we present a lemma which claims that the Rademacher complexity of a compo-
sition function of a Lipschitz function and a set of functions is bounded by the Lipschitz
constant times the Rademacher complexity of the set of functions.

Lemma 2.3. (Talagrand’s contraction lemma) Let φ :R→R be a ρ-Lipschitz function. Let H :=
{h|h : Ω→R}. Let φ◦H={z 7→φ(h(z)) : h∈H} is a collection of maps from Ω to R. Then we
have

R̂(φ◦H)≤ρR̂(H). (2.9)

Proof. See [30].

In [31] the following bound for the Rademacher complexity of two layer neural net-
works with the Relu activation function was presented

R̂(FQ)≤2Q

√
2ln(2d+2)

n
.

Also [12,29] provides a good review on the theme. One limitation of this result is that it is
given for neural networks with the Relu activation function. [28] extended these results to
neural networks with approachable activation functions; a bound for Rademacher com-
plexity of two-layer neural networks and another similar result for residual neural net-
works.

Theorem 2.2. Assume that an activation function σ satisfies the conditions of the Definition 2.1.
Let FQ={ f (x,θ) :‖θ‖P̃ ≤Q,x∈Ω} be a two-layer neural net with the activation function σ and
weights bounded by ‖θ‖P̃ ≤Q. Then we have

R̂(FQ)≤2γ(σ)Q

√
2ln(2d+2)

n
, (2.10)

where γ(σ) depends only on σ and is defined in the Definition 2.1.

Proof. See article [28].

And a similar theorem for residual neural networks.

Theorem 2.3. Assume that an activation function σ satisfies the conditions of the Definition 2.1.
Let FQ={ f (x,θ) :‖θ‖P̃ ≤Q,x∈Ω} be a residual neural network with the activation function σ
and weights bounded by ‖θ‖P̃ ≤Q. Then we have

R̂(FQ)≤ cσQ

√
2ln(2d+2)

n
,

where cσ = 4γ(σ)+1 is a constant only related to the activation function σ, γ(σ) is defined in
Definition 2.1.

Proof. See article [28].
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2.4 Bound for the integrand with different architectures

In Lemma 2.2, we notice that in order to use the Lemma the function l should be bounded.
For this reason we present the following Lemma where we show that the integrand in
the DRM loss function is bounded when defining it with shallow or residual neural net-
works.

Lemma 2.4 (Bounds for shallow neural networks). Let u∈FQ :={ f (x,θ) :‖θ‖P≤Q, x∈Ω}
be a shallow network with bounded path norm ‖θ‖P < Q. Let the activation function of the
network be σ, and let’s assume σ is M-Lipschitz, and σ′ is K-Lipschitz function, with some M>0,
and K>0. Then with this architecture, all neural networks and their gradients are bounded in the
following way:

|u(x,θ)|<MQ,

|u(x,θ)|2 <M2Q2,

and

‖∇xu(x,θ)‖2
2<K2Q2.

If instead of K-Lip property of σ′ we have that σ′ is bounded, |σ′(z)|<Cσ for all z∈R for some
Cσ>0, then we have

‖∇xu(x,θ)‖2
2<C2

σQ2.

Proof. In the appendix, see the proof of Lemma A.3.

The same holds for the P̃ -path norm.

Corollary 2.1. Let u∈FQ :={u(x,θ) :‖θ‖P̃ ≤Q, x∈Ω} be a shallow neural network with the
bounded path norm ‖θ‖P̃ <Q. Let the activation function of the network be σ, and let’s assume
σ is M-Lipschitz, and σ′ is K-Lipschitz function, with some M> 0, and K > 0. Then with this
architecture, all neural networks and their gradients are bounded in the following way:

|u(x,θ)|<MQ,

|u(x,θ)|2 <M2Q2,

and

‖∇xu(x,θ)‖2
2<K2Q2.

If instead of K-Lip property of σ′ we have that σ′ is bounded, |σ′(z)|<Cσ for all z∈R for some
Cσ>0, then we have

‖∇xu(x,θ)‖2
2<C2

σQ2.

Proof. The proof follows immediately from Lemmas 2.1 and 2.4.
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Corollary 2.2. Let FQ be a shallow neural network with a bounded path norm ‖θ‖P̃ <Q. Let
the activation function σ of the neural network be M-Lipschitz, and let its first order derivative
σ′ be K-Lipschitz, with some M>0 and K>0. Then the integrand of the Deep Ritz method’s loss
function is bounded ∣∣∣1

2
|∇u(x,θ)|2−|u(x,θ)|

∣∣∣< 1

2
K2Q2+MQ, (2.11)

for all θ∈FQ and x∈B(0,1). Similar argument holds for the boundary term: |u(x,θ)|2<M2Q2

for all for all θ∈FQ and x∈∂B(0,1).
If instead of K-Lip property of σ′ we have that σ′ is bounded, i.e. there exists Cσ>0 such that

|σ′(z)|<Cσ for all z∈R, then we have

∣∣∣1
2
|∇u(x,θ)|2−|u(x,θ)|

∣∣∣< 1

2
C2

σQ2+MQ. (2.12)

Proof. The proof follows immediately from Lemma 2.4 and Corollary 2.1.

Lemma 2.5 (Bounds for residual neural networks). Let u∈FQ be a residual neural network
with a bounded path norm ‖θ‖P̃ <Q. Let the activation function of the network be σ, and let σ
be K-Lipschitz, and let σ′ be bounded by some Cσ>0, |σ′(z)|<Cσ for all z∈R. Let L∈N be the
number of residual blocks. Then with this architecture all neural networks and their gradients are
bounded in the following way:

|u(x,θ)|< (K∨1)LQ,

|u(x,θ)|2< (K∨1)2LQ2,

‖∇xu(x,θ)‖2
2 < (Cσ∨1)2LQ2.

Without any information about the magnitude of K and Cσ, we can say

|u(x,θ)|<Q(KL+···K+1),

|u(x,θ)|2<Q2(KL+···K+1)2,

‖∇xu(x,θ)‖2
2 <Q2(CL

σ+···+Cσ+1)2.

Proof. Proof is given in the appendix.

Corollary 2.3. Let u∈FQ be a residual neural network with a bounded path norm ‖θ‖P̃ <Q.
Let the activation function σ of the neural network be M-Lipschitz with some M>0, and let its
first order derivative σ′ be bounded |σ′(z)|<Cσ for all z∈R. Then the integrand of the Deep Ritz
method is bounded

∣∣∣1
2
|∇u(x,θ)|2−|u(x,θ)|

∣∣∣< 1

2
(Cσ∨1)2LQ2+(K∨1)LQ, (2.13)

for all θ∈FQ and x∈B(0,1). Similar argument holds for the boundary term:

|u(x,θ)|2 < (K∨1)2LQ2, (2.14)

for all θ∈FQ and x∈∂B(0,1).
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2.5 Statistical errors

With all the tools we have presented here, we can proceed to prove the main theorems of
this article. Here is the bound for the statistical error of the Deep Ritz method for shallow,
and residual neural networks with approachable activation functions.

Theorem 2.4 (Statistical error of DRM for shallow neural networks). Let u(x,θ)∈FQ, be
a shallow neural network with a bounded path norm ‖θ‖P̃ <Q, with an approachable activation
function σ. Let σ be M-Lipschitz. We have two cases, we assume either σ′ is K-Lipschitz or
|σ′|< Cσ, with some Cσ > 0. Let δ > 0 be a confidence parameter. With probability 1−δ, the
statistical error of the Deep Ritz method is bounded as

|L(u)−L̂(u,n,m)|≤C|Ω|
(

4γ(σ)Q

√
2ln(2d+2)

n
+3
(1

2
AQ2+Q

)√2ln(4/δ)

n

)

+Cλ|∂Ω|
(

γ(σ)Q

√
2ln(2d+2)

m
+

3

2
Q2

√
2ln(4/δ)

m

)
,

where n is the number of sample points in Ω, C> 0 is a maximum of Lipschitz constant for the
loss function inside the domain and on the boundary, and m is the number of sample points on the
boundary ∂Ω. The constant A is

{
A=K2 if σ′ is K-Lip,

A=C2
σ if |σ′ |<Cσ.

(2.15)

Proof. Proof given in the appendix. See Appendix A.1.

Theorem 2.5 (Statistical error of the DRM for residual neural networks). Let u(x,θ)∈FQ

be a residual neural network with L∈N skip connections, with bounded path norm ‖θ‖P̃ <Q,
Q > 0, and with an approachable activation function σ. Let σ be M-Lipschitz, and let σ′ be
bounded by |σ′(z)|<Cσ for all z∈R. Let δ>0 be a confidence parameter. With probability 1−δ,
the statistical error of the Deep Ritz method is bounded as

|L(u)−L̂(u,n,m)|≤C|Ω|
(

4cσQ

√
2ln(2d+2)

n
+3
(1

2
(Cσ∨1)2LQ2+(K∨1)LQ

)√2ln(4/δ)

n

)

+Cλ|∂Ω|
(

cσQ

√
2ln(2d+2)

m
+

3

2
(K∨1)2LQ2

√
2ln(4/δ)

m

)
,

where n is the number of sample points in the domain Ω, C>0 is a maximum of Lipschitz constant
for the loss function inside the domain and on the boundary, m is the number of sample points on
the boundary ∂Ω, and cσ =4γ(σ)+1.

Proof. Given in the appendix. See Appendix A.2.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2023-0253 | Generated on 2024-12-19 11:09:00



774 J. Siipola / Commun. Comput. Phys., 35 (2024), pp. 761-815

3 Literature and discussion

This work is one in the line of research about the complexity measures for different neural
network structures, [12, 28, 29, 31], showing that with path norms like the ones used here
we can have meaningful error bounds, also some other complexity measures have been
proposed [32, 33]. In this article we have extended the study of the complexity measures
to the study of Deep Ritz method. To achieve a path-norm bound in a realistic setting,
some form of regularization [34] is needed to force the weights not to blow up.

In recent years there has been a lot of research for Deep Ritz Method [5, 6, 10, 13–15,
35, 36], PINNs [17, 37], and other methods [38–41] to solve PDEs with neural networks.
Like said, some try to approximate the solutions in Sobolev spaces [10,13,35,36] some in
Barron space [6, 12].

The main results of this article are related to generalization error of Deep Ritz method.
Also other research groups have considered these issues. The main difference between
this study and other studies is that we consider residual neural networks, most of previ-
ous studies have consider only feed forward neural networks, also our results apply for
shallow networks. Feed forward neural networks work well with Deep Ritz method, and
as feed forward neural networks usually are rather small size they are fast to train. But
there is a problem that feed forward neural networks suffer of the vanishing/exploding
gradient problem and therefore they cannot be made as deep as one would like; residual
neural networks in contrast can be made as deep as one likes and they are still able to
train. Another related difference is the activation function, in the former studies authors
have considered architectures with activation functions like Relu2, or sigmoidal activa-
tion functions, but in this study we have decided to focus on general smooth activation
functions: our aim is to provide a theory that applies to activations which are smooth ver-
sions of the Relu activation function. The reason for this is the fact that residual neural
networks have stable initialization with Relu activation function, and also smooth ver-
sions also provide stable initialization. These smooth versions of Relu are included in the
definition of general activations so called approachable activation functions.

We think that residual networks have practical and theoretical use in the study of
Deep Ritz method and other deep learning methods to solve PDEs. One aspect is the
fact that in PDE problem which we consider the solution belongs to the Barron space and
residual neural networks can approximate these functions in a natural way, this kind of
a theory for feed forward neural networks still waits to be discovered.

One important difference to the previous studies is that we do not assume that the
weights of the network architecture are bounded, instead we consider neural networks
with bounded path-norm, to our knowledge other groups have not considered these kind
of network architectures in the Deep Ritz method studies.

The main theorems show that the statistical error of the Deep Ritz method is
O( 1√

n
, 1√

m
), meaning that it converges to zero polynomially with rate 1√

n
as n goes to

infinity. Property has been verified for neural networks also by other researchers [6], [16],
and [23]. This is what we should expect from the [42] monte carlo integration of a smooth
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function in a bounded domain. The main Theorems 2.4, and 2.5 also give an indication
how the network structure affects the generalization error: interestingly the width of
shallow neural networks does not really affect the generalization error, when we look
at the Theorem 2.4, whereas with residual neural networks the number of skip connec-
tions causes the error to grow; reason for this is in activation functions. It is not actually
the number of skip connections, but the number of the activation functions in the resid-
ual network that affects the term 1

2(Cσ∨1)2LQ2+(K∨1)LQ in the error estimation, and
similarly the only activation function affects shallow networks’ estimate.

For comparison, we collect here some generalization error estimations from other
publications. In [10] following bound was given

Esta≤Cd(D+3)(D+2)W
√
D+3)+log(d((D+2)W))

( log(n)

n

)1/2

+CdDW
√
D+log(W)

( log(n)

n

)1/2
λ.

Bound is given for a feed forward neural network with depth D, and width W . It is not
totally clear if they have considered the boundary term of the loss function here as well,
or if the boundary has same amount of data points (n) in the empirical risk calculation. d
is the dimension of the problem as they do not restrict the study in a plane as we do. λ is
the boundary penalty parameter.

In [13] a following error bound is given

E{Xi}N
i=1,{Yi}M

i=1
sup
u∈P

±
[
L(u)−L̂(u)

]
≤ CΩ,coe,α

β

d
√
Dη2D

D B2D
θ√

N

√
log(dDηDBθ N).

We cannot fully explain here all the terms in the bound, but let’s say something. D is
the depth of a feed forward neural network, and ηD is the number of parameters in the
neural network. β is the boundary penalty parameter. Bound is given so that the number
of data points on the boundary and inside the domain is equal N=M.

In [14] authors arrive in error bound

Esta≤C

[
d(D+3)(D+2)W

√
D+3+log(d(D+2)W)

n

]1−ν

.

Similarly to the previous bounds, D is the depth of the neural network architecture and
W is the width, d is the dimension of the input layer, and n is the number of data points
(probably the number of data points inside the domain and on the boundary is the same).
It’s a bit unclear to us how they get rid of the log(n) term, but this is how they present
the result.

Biggest differences to our study is that the previously mentioned studies [10, 13, 14]
focused on feed forward neural networks. At least in [14] the neural network weights are
bounded, whereas in our analysis the bound comes from the path-norm bound.
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In [6] authors studied the Deep Ritz method with shallow neural networks and ob-
tained.

For shallow we showed an error estimate

|L(u)−L̂(u,n,m)|≤C|Ω|
(

4γ(σ)Q

√
2ln(6)

n
+3
(1

2
AQ2+Q

)√2ln(4/δ)

n

)

+Cλ|∂Ω|
(

γ(σ)Q

√
2ln(6)

m
+

3

2
Q2

√
2ln(4/δ)

m

)
. (3.1)

For the shallow networks the bound works well in the way that there is not much in
addition to the pathnorm bound Q, we mean there is no terms from the width of the
shallow network architecture. We can have as wide network as want as long as the path
norm stays under the bound Q. For example in it is shown that Barron functions can be
approximated with error estimate

Ex( f ∗(x)− f (x;θ))≤ 3γ2
2( f ∗)
m

, (3.2)

‖θ‖P ≤2γ2( f ∗), (3.3)

where f ∗(x) is the target function and f (x,θ) is a shallow neural network. The above
error estimate means that one can go to any desired accuracy as long as the path norm
stays under the bound 2γ2( f ∗), where γ2( f ∗) is the so-called spectral norm [12]. We have
show that the solution to the Poisson’s equation belongs to the Barron space and so these
kinds of error estimations hold.

For residual neural network we presented a following error bound:

|L(u)−L̂(u,n,m)|≤C|Ω|
(

4cσQ

√
2ln(2d+2)

n

+3
(1

2
(Cσ∨1)2LQ2+(K∨1)LQ

)√2ln(4/δ)

n

)

+Cλ|∂Ω|
(

cσQ

√
2ln(2d+2)

m

+
3

2
(K∨1)2LQ2

√
2ln(4/δ)

m

)
. (3.4)

The error bound is similar to the one obtained for the shallow networks, except the (Cσ∨
1)2LQ2+(K∨1)LQ) and (K∨1)2L terms which grow exponentially with the number of
skip connections L.

Similarly to shallow network, there is a Barron space error estimate for the residual
neural networks. In article [29] (theorem 2.5) the authors showed that residual networks
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can approximate the Barron functions in a following way: Let f ∗ be the Barron function.
There exists a residual network f (·,θ) with depth L and width m such that

‖ f (x,θ)− f ∗‖≤ 3‖ f ∗‖2
B

Lm
, (3.5)

‖θ‖P ≤4‖ f ∗‖B , (3.6)

where ‖ f ∗‖B is a Barron norm.
Also [6] studied Deep Ritz method with focus on the Barron space estimation, they

studied it with shallow neural networks with softplus activation function. Their network
architecture is a bit different as they consider architecture with bounded weights and in
we consider bounded path norm.

The error bounds (3.1), and (3.4) are of course better the smaller path norm bound Q
is chosen. We cannot though push Q to zero as this would severely weaken the approxi-
mative capability of the neural network architecture: Q can be chosen with respect to the
Barron space estimates. For shallow networks following error estimate (3.2) Q could be
2γ2(u), where u is the solution for the Poisson’s equation and γ(u) is the spectral norm
of u. We cannot give exact number for this spectral norm, but it can be estimated from
above. Similarly for residual neural network Q could be chosen to be 4γ(u) with respect
to Barron space approximation capability (3.5).

In both of these architectures the bound converges to zero with rate O( 1√
n

, 1√
m
) with

respect to the number of data points inside the domain and on the boundary. Approach-
able activation functions which we have in the mind are closely 1-Lipschitz (for example
Gelu, and Swish), and then the constant K is nearly one in the error bounds. Quality of
an activation function plays a crucial role in this bound, and it affects many coefficients.
γ(σ) is a coefficient that is set solely based on the activation function. In [28] authors
have computed γ values for a group of activation functions: for the Gelu it is approxima-
tively 2,5 and for the Swish approximatively 1,8

α +1,4. In the appendix we have present

an activation function for which the γ value is 3
8 ǫ+ 3

2 , where ǫ>0 is a small number, and
so the value approaches 1,5. This gives an idea at what magnitude the γ(σ) is going to
be. For our purposes, an activation function should be similar to Relu, and this rules out
activation functions like tanh and sigmoid, also Relu itself is out of question due its poor
differentiability.

In our setting, a neural network with bounded path norm in a bounded domain, the
function defined by the network is bounded, but to have a bounded gradient, as we
show in Lemmas 2.4, and 2.5, the Relu activation function is out of question; and so it
is critically important to be able to use smooth version of the Relu activation function.
Another reason to have the Lemmas 2.4, and 2.5, is to get concrete bounds for the main
Theorems.

Some researchers have raised criticism for the existing tools to study generaliza-
tion [43]. They have a good point, generalization of neural network remains a challeng-
ing problem as the theoretical error estimates are significantly bigger than the experi-
mental findings of the generalization error. But the existing state-of-the-art theoretical
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error bounds should not be totally disregarded as they still give us information about the
problem, as discussed earlier in this article. One way to try to surpass this problem is of
course to look at the optimization algorithm, thing which we do not consider in this arti-
cle. The error estimates presented in this article are in a sense global, they give quarantee
for the whole space of neural networks, but stochastic gradient decent is a local pro-
cess, happening in some small region of the parameter space. Some research have been
done for example within implicit regularization [44], where they study the regularization
properties of optimization algorithms. And the SGD algorithms have been modeled as
stochastic differential equations [45].
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Appendices

A Missing proofs

Lemma A.1. Let u(x,θ)∈FQ be a shallow neural network of width m, and let ‖θ‖P̃ <Q, where
Q>0 is some positive real number. Then we have ‖θ‖P <‖θ‖P̃ , and in particular ‖θ‖P <Q.

Proof. Let x∈R
d. The path norm, according to Definition 2.4, of u is

‖θ‖P̃ =
m

∑
i=1

|ai|
(
‖bi‖1+|ci|+1

)
.

Let h(x,θ) be another neural net with x∈R
d+1, such that x=(xd,1), where xd ∈R

d, and
parameters θ such that

ωi=(bi,ci),

and weights ai are the same as in the neural network u(x,θ). If we now overload this
notation so that with x we mean (x,1) when talking about the neural network h, and x
when talking about the neural network u, then with this definition the neural networks
h(x,θ) and u(x,θ) output the same value for all x∈R

d. So, they are the same neural net,
only difference is how bias terms are defined; and after all, the bias terms are the same.
Also, the actual input of the neural net is the same, it is just that h contains an ”extra”
dimension, but on this dimension the input is always 1, in fact the neural network u
would have the same input as well, it is just that this input is hidden into the different
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way of expressing the bias term. Anyway, with all this we can say h(x,θ)=u(x,θ). Now
let’s compare the two norms

‖θ‖P̃ =
m

∑
i=1

|ai|
(
‖bi‖1+|ci|+1

)

=
m

∑
i=1

|ai|
( d

∑
j=1

|bi
j|+|ci|+1

)

=
m

∑
i=1

|ai|
(
|bi

1|+···+|bi
d|+|ci|+1

)

=
m

∑
i=1

|ai|
(d+1

∑
j=1

|ωi
j|+1

)

=
m

∑
i=1

|ai|
(
‖ωi‖1+1

)

>

m

∑
i=1

|ai|
(
‖ωi‖1

)

=‖θ‖P .

This completes the proof.

Lemma A.2. Let u(x,θ)∈FQ be a residual neural network, and let ‖θ‖P̃ <Q, where Q> 0 is
some positive real number. Then we have ‖θ‖P <‖θ‖P̃ , and in particular ‖θ‖P <Q.

Proof. In [28] in Lemma 3 in it is proven that ‖θ‖P̃ = ‖θ‖P+r, where r > 0 is a positive
number.

Lemma A.3 (Bounds for a shallow net). Let u∈FQ be a shallow neural network with a bounded
path norm ‖θ‖P <Q. Let the activation function of the network be σ, and let’s assume σ is M-
Lipschitz, and σ′ is K-Lipschitz function, with some K > 0. Let x ∈ Ω= B(0,1). Then neural
networks with this architecture are bounded, and their gradients are bounded in the following
way:

|u(x,θ)|<MQ,

|u(x,θ)|2 <M2Q2,

and

‖∇xu(x,θ)‖2
2<K2Q2.

Proof. As u∈FQ, we know that ‖θ‖P<Q. From |u(x,θ)|≤Q we obviously get |u(x,θ)2|≤
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Q2. Let’s prove that |u(x,θ)|≤Q

|u(x,θ)|=
∣∣∣

m

∑
k=1

akσ(〈ωk,x〉)
∣∣∣≤

m

∑
k=1

|ak||σ(〈ωk ,x〉)|

(∗)
≤ M

m

∑
k=1

|ak||〈ωk,x〉|

≤M
m

∑
k=1

|ak|‖ω‖1‖x‖∞

(∗∗)
≤ M

m

∑
k=1

|ak|‖ω‖1

=M‖θ‖P

≤MQ.

At (*) we use the M-Lip property of σ. At (**) we used the boundedness of Ω.
For the gradient, let’s calculate

‖∇xu(x,θ)‖2
2=‖

m

∑
k=1

akσ′(〈ωk,x〉)ωk‖2
l2

=
L

∑
j=1

∣∣∣
N

∑
k=1

ak

(
σ′(〈ωk,x〉)

)
)ω

j
k

∣∣∣
2

≤
L

∑
j=1

( N

∑
k=1

|ak|2
∣∣σ′(〈ωk,x〉)

∣∣2|ω j
k|2

+
N

∑
k,l=1
k 6=l

|akal |
∣∣σ′(〈ωk,x〉)

∣∣∣∣σ′(〈ωl,x〉)
∣∣|ω j

k||ω
j
l |
)

≤K2
L

∑
j=1

N

∑
k=1

|ak|2|ω j
k|2+K2

L

∑
j=1

N

∑
k,l=1
k 6=l

|akal ||ω j
k||ω

j
l |

≤K2
N

∑
k=1

|ak|2
L

∑
j=1

|ω j
k|2+K2

N

∑
k,l=1
k 6=l

|akal |
L

∑
j=1

|ω j
k||ω

j
l |

≤K2
N

∑
k=1

|ak|2‖ωk‖2
l2 +K2

N

∑
k,l=1
k 6=l

|akal |
L

∑
j=1

|ω j
k||ω

j
l |. (A.1)

Let’s pause here for a moment, and look at ‖θ‖2
P:

‖θ‖2
P =

( N

∑
k=1

|ak|‖ωk‖l1

)2
=

N

∑
k=1

|ak|2‖ωk‖2
l1 +

N

∑
k,l=1
k 6=l

|ak||al |‖ωk‖l1‖ωl‖l1 .
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Therefore if ‖θ‖P <Q, then we have

N

∑
k=1

|ak|2‖ωk‖2
l1 +

N

∑
k,l=1
k 6=l

|ak||al |‖ωk‖l1‖ωl‖l1 <Q2. (A.2)

We know that the l2-norm of any vector is bounded by its l1 norm, also by calculating

‖ωk‖1‖ωl‖1=(|ω1
k |+···+|ωL

k |)(|ω1
k |+···+|ωL

k |)
= |ω1

k ||ω1
l |+···+|ωL

k ||ωL
l |+R(ωk,ωl),

where R(ωk,ωl)>0 contains the remainder terms, we can deduce that

|ω1
k ||ω1

l |+···+|ωL
k ||ωL

l |≤‖ωk‖1‖ωl‖1. (A.3)

With these we can continue from (A.1) and conclude that

‖∇xu(x,θ)‖2
2≤K2Q2. (A.4)

This completes the proof.

Lemma A.4 (Bounds for residual neural networks). Let u∈FQ be a residual neural network
with a bounded path norm ‖θ‖P <Q. Let the activation function of the network be σ, and let’s
assume σ is K-Lipschitz, and σ′ is bounded function, with some Cσ>0, |σ′(x)|<Cσ for all x∈Ω.
Let x ∈Ω= B(0,1). Let L∈N be the depth of the neural net, meaning the number of residual
blocks. Then neural networks with this architecture are bounded, and their gradients are bounded
in the following way:

|u(x,θ)|< (K∨1)LQ,

|u(x,θ)|2 < (K∨1)2LQ2,

‖∇xu(x,θ)‖2
2 < (Cσ∨1)2LQ2.

Without any information about the magnitude of K and Cσ, we can say

|u(x,θ)|<Q(KL+···K+1),

|u(x,θ)|2 <Q2(KL+···K+1)2,

‖∇xu(x,θ)‖2
2<Q2(CL

σ+···+Cσ+1)2.

Proof. If L= 0 then the mapping is not a residual neural network, so L= 1 is the lowest
depth we can have. Let L=1. Then u(x,θ) is

u(x,θ)= aT
(

U1σ(W1Vx)+Vx
)

,
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or in another way

u(x,θ)=
n

∑
m,k=1

amumkσ
( n

∑
i=1

d

∑
j=1

wkivijxj

)
+

n

∑
m

d

∑
j=1

amvmjxj.

And so the absolute value is bounded by

|u(x,θ)|≤
n

∑
m,k=1

|am||umk|K
n

∑
i=1

d

∑
j=1

|wki||vij|+
n

∑
m

d

∑
j=1

|am||vmj|

≤K
n

∑
m,k=1

|am||umk|
n

∑
i=1

d

∑
j=1

|wki||vij|+
n

∑
m

d

∑
j=1

|am||vmj|.

Now there is three ways how we can proceed from here. One is the following, as

n

∑
m,k=1

|am||umk|
n

∑
i=1

d

∑
j=1

|wki||vij|≤‖θ‖P <Q

and
n

∑
m

d

∑
j=1

|am||vmj|≤‖θ‖P <Q,

we can say

|u(x,θ)|≤KQ+Q.

But on the other hand, if K<1 we can say

|u(x,θ)|≤K
n

∑
m,k=1

|am||umk|
n

∑
i=1

d

∑
j=1

|wki||vij |+
n

∑
m

d

∑
j=1

|am ||vmj|

≤
n

∑
m,k=1

|am ||umk|
n

∑
i=1

d

∑
j=1

|wki||vij|+
n

∑
m

d

∑
j=1

|am||vmj|

≤Q.

And if K≥1 then we have

|u(x,θ)|≤KQ.

Let L=2. Then the neural net is

u(x,θ)= aT
[
U2σ

(
W2

(
U1σ(W1Vx)+Vx

))
+U1σ(W1Vx)+Vx

]
,
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and the same by using the hidden layer notation

h′0 =h0,

h′1 =U1σ(W1h0),

h′2 =U2σ
(

W2

(
h0+U1σ(W1h0)

))
,

u(x,θ)= aT
(
h′2+h′1+h′0

)
,

|u(x,θ)|≤ |aT h′2|+|aTh′1|+|aTh′0|.

For h′1, and h′0 we have already calculated

|aTh′0|≤∑ |aj||vi,j|,

and

|aTh′1|≤K
n

∑
m,k=1

|am||umk|
n

∑
i=1

d

∑
j=1

|wki||vij |.

In the following the style of notation, w2
ij denotes the element of the ith row and jth

column of the matrix W2, and so the number two does not indicate a power of two but
refers the index of the matrix, which in this case is 2. Similarly we have for example u1

ij

for U1. In the following we do not have any powers, it’s all superscripts, except for the
constants K and Cσ.

aTh′2(x,θ)= aTU2σ

(
W2

(
U1σ

(
W1Vx

)
+Vx

))

= ∑
c,ξ,t,k

acu2
cξσ
(

w2
ξtu

1
tkσ(∑

i,j

w1
kivijxj)+∑

i,j

w2
ξivijxj

)
,

and so we have

|aTh′2(x,θ)|≤K2 ∑
c,ξ,t,k,i,j

|ac||u2
cξ ||w2

ξt||u1
tk||w1

ki||vij |+K ∑
c,ξ,i,j

|ac ||u2
cξ ||w2

ξi||vij |.

Again we have three possibilities: give a bound regardless of K, or depending if K<1 or
K≥1. We can bound both summation terms by ‖θ‖P and get

|h′2(x,θ)|≤ (K2+K)Q.

If K<1, we have

|aTh′2(x,θ)|≤ ∑
c,ξ,t,k,i,j

|ac||u2
cξ ||w2

ξt||u1
tk||w1

ki||vij|+ ∑
c,ξ,i,j

|ac||u2
cξ ||w2

ξi||vij |

≤Q.
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If K≥1, we have

|aTh′2(x,θ)|≤K2 ∑
c,ξ,t,k,i,j

|ac ||u2
cξ ||w2

ξt||u1
tk||w1

ki||vij|+K2 ∑
c,ξ,i,j

|ac ||u2
cξ ||w2

ξi||vij |

≤K2Q.

In this proof, with ∗hk
c we mean the vector which is the input for the kth hidden vector,

input which comes as output when multiplied with matrix Uk, it is the same vector as
gl , for some reason we have used two notations. In the following we use the Einstein
notation, ∑a wiavan =wiavan, so that we sum over the index that appears twice. Another

notation which we use here is P
x→∗h2

c
1 , it denotes a collection of the paths from x to ∗h2

c

h2 =U2σ(W2(
∗h1+

∗h0))

=u2
cξσ(w2

ξ j
∗h1

j +w2
ξ j
∗h0

j )

from which we get

|∗h2
c |≤K|u2

cξ ||w2
ξ j||∗h1

j |+K|u2
cξ ||w2

ξ j||∗h0
j |

=K|u2
cξ ||w2

ξ j||u1
j f σ(w1

f φvφaxa)|+K|u2
cξ ||w2

ξ j||vja xa|
≤K2|u2

cξ ||w2
ξ j||u1

j f ||w1
f φ||vφa|+K|u2

cξ ||w2
ξ j||vja|

=K2 ∑
θi∈P

x→∗h2
c

2

‖θi‖P+K ∑
θi∈P

x→∗h2
c

1

‖θi‖P .

The initial case of the induction is proved. Let’s move on.
Let’s make the induction assumption and assume that

|∗hL
c |≤KL ∑

θi∈P
x→∗hL

c
L

‖θi‖P+···+K ∑
θi∈P

x→∗hL
c

1

‖θi‖P . (A.5)

Now let’s take the induction step and prove that the same holds for L+1:

|∗hL+1
c |= |uL+1

cξ σ(wL+1
ξ j (∗hL

j +···+∗h0
j ))|

≤ |uL+1
cξ |K|wL+1

ξ j |(∗|hL
j |+···+|h0

j |)
≤K|uL+1

cξ ||wL+1
ξ j |KL ∑

θi∈P
x→∗hL

j
L

‖θi‖P+···

+K|uL+1
cξ ||wL+1

ξ j |K ∑

θi∈P
x→∗hL

j
1

‖θi‖P+K|uL+1
cξ ||wL+1

ξ j ||vj |

≤KL+1 ∑
θi∈P

x→∗hL+1
c

L+1

‖θi‖P+···+K ∑
θi∈P

x→∗hL+1
c

1

‖θi‖P .
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With this result we can say

|u(x,θ)|= |aT(∗hL+···+∗h0)|
≤∑

c

|ac|
(

KL ∑
θi∈P

x→∗hL
c

L

‖θi‖P+···+K ∑
θi∈P

x→∗hL
c

1

‖θi‖P
)
+···

+∑
c

|ac|
(

K2 ∑
θi∈P

x→∗h2
c

2

‖θi‖P+K ∑
θi∈P

x→∗h2
c

1

‖θi‖P
)

+∑
c

|ac|
(

K ∑
θi∈P

x→∗h1
c

1

‖θi‖P
)
+∑

c,a

|ac ||vca|.

If K≥1 then

|u(x,θ)|≤KL

[
∑

c

|ac |
(

∑
θi∈P

x→∗hL
c

L

‖θi‖P+···+ ∑
θi∈P

x→∗hL
c

1

‖θi‖P
)
+···

+∑
c

|ac |
(

K2 ∑
θi∈P

x→∗h2
c

2

‖θi‖P+ ∑
θi∈P

x→∗h2
c

1

‖θi‖P
)

+∑
c

|ac |
(

∑
θi∈P

x→∗h1
c

1

‖θi‖P
)
+∑

c,a

|ac ||vca|
]

≤KL‖θ‖P
≤KLQ.

If K<1 then similarly we get

|u(x,θ)|≤‖θ‖P ≤Q.

And if we do not have information about the K then

|u(x,θ)|≤KL ∑
θi∈Px→u

L

‖θi‖P+···+K ∑
θi∈Px→u

1

‖θi‖P+ ∑
θi∈Px→u

0

‖θi‖P

≤KLQ+···+KQ+Q

≤Q(KL+···K+1).

For the gradient, in the following the gradient is taken with respect to variable x, so
∇=∇x, we omit the subindex. Let’s prove first the initial case.

u(x,θ)= aT∗h2+aT∗h1+aT∗h0
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and therefore

∇u(x,θ)= aT∇∗h2+aT∇∗h1+aT∇∗h0,

∇∗h0 =∇Vx=V,

∇∗h1 =∇U1σ(W1Vx)

=U1diagσ′(W1Vx)W1V.

And

∇∗h2 =∇U2σ
(

W2

(
U1σ(W1Vx)+Vx

))

=U2diagσ′
(

W2

(
U1σ(W1Vx)+Vx

))[
W2U1diagσ′(W1Vx)W1V+W2V

]
.

Let’s now calculate the partial derivative ∂xi
for one element of ∗h2, let it be c’th element

∗h2
c .

∂xi

∗h2
c =u2

ctσ
′(w2

tφ ···)
[

w2
tφu1

φξσ′(w1
ξavabxb)w

1
ξavai+w2

tφvφi

]
,

which is essentially ic element of the matrix above. Observe that again we are using
Eistein notation, and summation is done over all other indeces except c and i. From this
we deduce

|∂xi

∗h2
c |≤ |u2

ct|Cσ

[
|w2

tφ||u1
φξ |Cσ|w1

ξa||vai|+|w2
tφ||vφi|

]
,

=C2
σ|u2

ct||w2
tφ||u1

φξ ||w1
ξa||vai|+Cσ|u2

ct||w2
tφ||vφi|

=(Cσ)
2 ∑

θk∈P
vi→∗h2

c
2

‖θk‖P+Cσ ∑
θk∈P

vi→∗h2
c

1

‖θk‖P .

The initial step is proved. As an induction assumption, let’s assume

|∂∗hL
c |≤ (Cσ)

L ∑
θk∈P

vi→∗hL
c

L

‖θk‖P+···+Cσ ∑
θk∈P

vi→∗hL
c

1

‖θk‖P .

Now let’s take the induction step and prove that the same holds for L+1:

|∂xi

∗hL+1
c |= |uL+1

cξ σ′(wL+1
ξ j (∂xi

∗hL
j +···+∂xi

∗h0
j ))|

≤ |uL+1
cξ |Cσ|wL+1

ξ j |(|∂xi

∗hL
j |+···+|∂xi

h0
j |)

≤Cσ|uL+1
cξ ||wL+1

ξ j |(Cσ)
L ∑

θi∈P
vi→∗hL

j
L

‖θk‖P+···

+Cσ|uL+1
cξ ||wL+1

ξ j |Cσ ∑

θk∈P
vi→∗hL

j
1

‖θk‖P+Cσ|uL+1
cξ ||wL+1

ξ j ||vj|

≤ (Cσ)
L+1 ∑

θk∈P
vi→∗hL+1

c
L+1

‖θk‖P+···+Cσ ∑
θk∈P

vi→∗hL+1
c

1

‖θk‖P .
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With this information, we can calculate the ℓ1-norm of ∇u. Remember that

‖∇u(x,θ)‖1 =∑
i

|∂xi
u(x,θ)|,

∂xi
u(x,θ)= aT(∂xi

∗hL+···+∂xi

∗h0).

From which we get

|∂xi
u(x,θ)|≤ |aT |(|∂xi

∗hL|+···+|∂xi

∗h0|)
≤∑

c

(
|ac ||∂xi

∗hL
c |
)
+···+∑

c

(
|ac ||∂xi

∗h0
c |
)

≤∑
c

|ac|
(
(Cσ)

L ∑
θk∈P

vi→∗hL
c

L

‖θk‖P+···+Cσ ∑
θk∈P

vi→∗hL
c

1

‖θk‖P
)
+···

+∑
c

|ac |Cσ ∑
θk∈P

vi→∗h1
c

1

‖θk‖P+∑
c

|ac ||vci|.

And so we have

‖∇u(x,θ)‖1 ≤∑
i

[
∑

c

|ac |
(
(Cσ)

L ∑
θk∈P

vi→∗hL
c

L

‖θk‖P+···

+Cσ ∑
θk∈P

vi→∗hL
c

1

‖θk‖P
)
+···

+∑
c

|ac|Cσ ∑
θk∈P

vi→∗h1
c

1

‖θk‖P+∑
c

|ac ||vci|
]
.

If Cσ≥1 then we have

‖∇u(x,θ)‖1 ≤ (Cσ)
L∑

i

[
∑

c

|ac |
(

∑
θk∈P

vi→∗hL
c

L

‖θk‖P+···

+ ∑
θk∈P

vi→∗hL
c

1

‖θk‖P
)
+···

+∑
c

|ac| ∑
θk∈P

vi→∗h1
c

1

‖θk‖P+∑
c

|ac||vci|
]

=(Cσ)
L‖θ‖P

< (Cσ)
LQ.

If Cσ<1 then with similar deduction we get

‖∇u(x,θ)‖1 <Q.
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Without the information of the magnitude of Cσ we can say

‖∇u(x,θ)‖1 <Q((Cσ)
L+···Cσ+1).

As we know ‖·‖2 ≤‖·‖1, the claim for the ℓ2-norm ‖∇u(x,θ)‖2
2 follows.

Theorem A.1 (Statistical error of DRM for shallow neural networks). Let u : Ω → R,
B(0,1)⊂R

d, be a shallow neural network u(x,θ)∈FQ with bounded path norm ‖θ‖P̃<Q, Q>0,
with an approachable activation function σ. Let σ be M-Lipschitz, and let σ′ be K-Lipschitz, with
some M>0, and K>0. Let δ>0 be a confidence parameter. With probability 1−δ, the statistical
error of the Deep Ritz method is bounded as

|L(u)−L̂(u,n,m)|

≤|Ω|
(

4γ(σ)Q

√
2ln(2d+2)

n
+3
(1

2
K2Q2+MQ

)√2ln(4/δ)

n

)

+
λ

2
|∂Ω|

(
4γ(σ)Q

√
2ln(2d+2)

m
+3M2Q2

√
2ln(4/δ)

m

)
.

where γ(σ) is a constant depending only in σ, defined in Definition 2.1, n is the number of
sample points in the domain denoted as Ω := B(0,1), m is the number of sample points on the
boundary ∂Ω, |Ω| is the Lebesgue measure of the domain, and |∂Ω| is the Hausdorff measure of
the boundary.

Proof. Let X be an uniform random variable in the domain Ω and let Y be an uniform
random variable on the boundary ∂Ω. Let Xi, i = 1,··· ,n; be a sample of the random
variable of X, and let Yi, i=1,··· ,n; be a sample of random variable Y.

The statistical error can be divided into two terms, due to integration over the domain
and over the boundary. According to (1.5) and (1.6) we get

|L(u)−L̂(u,n,m)|

≤
∣∣∣∣∣|Ω|EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− |Ω|

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(Xi)

]∣∣∣∣∣

+
∣∣∣λ

2
|∂Ω|EY [(u(Y)2)]− λ

2

|∂Ω|
M

m

∑
j=1

[(u(Yj)
2)]
∣∣∣.

We dropped the trace operator away as the function u is continuous on the boundary,
trace operator would be just an identity. From here we continue by bounding the two
terms.

In the spirit of Lemma 2.2, the function integrated in the Deep Ritz method’s loss
function is

ℓ(x,u)=
1

2
‖∇u(x,θ)‖2

2−u(x,θ). (A.6)
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And by Corollary 2.2, the function l(x,u) is bounded by

|ℓ(x,u)|=
∣∣∣1
2
‖∇u(x,θ)‖2

2−|u(x,θ)|
∣∣∣< 1

2
K2Q2+MQ. (A.7)

Therefore, we can use Lemma 2.2. The first term is bounded with probability 1−δ as

∣∣∣∣∣|Ω|EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− |Ω|

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

= |Ω|
∣∣∣∣∣EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− 1

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

≤|Ω|
(

2R̂(ℓ◦FQ)+3
(1

2
K2Q2+MQ

)√2ln(4/δ)

n

)
.

Similarly we can bound the boundary term, using Corollary 2.2 (or just Lemma A.3) we
can apply Lemma 2.2

∣∣∣λ
2
|∂Ω|EY [(u(Y)2)]− λ

2

|∂Ω|
m

m

∑
j=1

[(u(yj)
2)]
∣∣∣

=
λ

2
|∂Ω|

∣∣∣EY[(u(Y)2)]− 1

m

m

∑
j=1

[(u(yj)
2)]
∣∣∣

≤ λ

2
|∂Ω|

(
2R̂(ℓ◦FQ)+3M2Q2

√
2ln(4/δ)

m

)
,

where |∂Ω| is the Hausdorff measure of the boundary.
In Appendix C we show that the loss function is Lipschitz, Theorem C.2. We do

not specify the Lipschitz constant, but we can say that there exists some C > 0 which
works as a Lipschitz constant for the ℓ. From Theorem 2.2 we know that R̂(FQ) ≤
2γ(σ)Q

√
2ln(2d+2)

n for shallow neural networks and with an approachable activation with
path norm bounded by Q>0. Therefore with Lemma 2.3 and Theorem 2.2 we get

∣∣∣∣∣|Ω|EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− |Ω|

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

≤C|Ω|
(

4γ(σ)Q

√
2ln(2d+2)

n
+3
(1

2
K2Q2+MQ

)√2ln(4/δ)

n

)
.

On the boundary the loss function is just a polynomial, it is clearly Lipschitz as the values
of the neural network is bounded above. Therefore there exists a Lipschitz constant C>0
for the loss on the boundary. We do not specify the constant exactly, and we use the same
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letter as what was used for the case inside-the-domain (let C be the one which has greater
Lipshitz constant). Using the Lemma 2.3 and Theorem 2.2 we get we get a bound for the
boundary term

∣∣∣λ
2
|∂Ω|EY [(u(Y)2)]− λ

2

|∂Ω|
m

m

∑
j=1

[(u(yj)
2)]
∣∣∣

≤C
λ

2
|∂Ω|

(
4γ(σ)Q

√
2ln(2d+2)

m
+3M2Q2

√
2ln(4/δ)

m

)
,

where |∂Ω| is the Hausdorff measure of the boundary, γ(σ) is defined in the Defini-
tion 2.1, m is the number of sample points, and δ is a confidence parameter. Together
these two bounds give the statistical error of Deep Ritz method, namely, with probability
1−δ we have

|L(u)−L̂(u,n,m)|

≤C|Ω|
(

4γ(σ)Q

√
2ln(2d+2)

n
+3
(1

2
K2Q2+MQ

)√2ln(4/δ)

n

)

+C
λ

2
|∂Ω|

(
4γ(σ)Q

√
2ln(2d+2)

m
+3M2Q2

√
2ln(4/δ)

m

)
.

This completes the proof.

Theorem A.2 (Statistical error of the DRM for residual neural networks). Let uθ :Ω→R be
a residual neural network u(x,θ)∈FQ, with L∈N skip connections, with a bounded path norm
‖θ‖P̃ <Q, Q>0, and with an approachable activation function σ. Let σ be M-Lipschitz, M>0.
Let σ′ be bounded by |σ′(z)|<Cσ, Cσ>0, for all z∈R. Let δ>0 be a confidence parameter. With
probability 1−δ, the statistical error of the Deep Ritz method is bounded as

|L(u)−L̂(u,n,m)|

≤|Ω|
(

4cσQ

√
2ln(2d+2)

n
+3
(1

2
(Cσ∨1)2LQ2+(K∨1)LQ

)√2ln(4/δ)

n

)

+
λ

2
|∂Ω|

(
2cσQ

√
2ln(2d+2)

m
+3(K∨1)2LQ2

√
2ln(4/δ)

m

)
,

where n is the number of sample points in the domain Ω, m is the number of sample points on the
boundary ∂Ω, cσ is defined in Definition 2.7.

Proof. The proof will is similar to the proof of Theorem A.1. Let X be an uniform random
variable in the domain Ω, and let Y be an uniform random variable on the boundary ∂Ω.
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Let Xi, i = 1,··· ,n; be a sample of the random variable of X and let Yi, i = 1,··· ,n; be a
sample of the random variable Y.

The statistical error can be divided into two terms, due to integration over the domain
and over the boundary. According to (1.5) and (1.6) we get

|L(u)−L̂(u,n,m)|

≤
∣∣∣∣∣|Ω|EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− |Ω|

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

+
∣∣∣λ

2
|∂Ω|EY [(u(Y)2)]− λ

2

|∂Ω|
M

m

∑
j=1

[(u(Yj)
2)]
∣∣∣.

We dropped the trace operator away as the function is continuous on the boundary, trace
operator would be just an identity. From here we continue by bounding the two terms. In
the spirit of Lemma 2.2, the function integrated in the Deep Ritz method’s loss function
is

ℓ(x,u)=
1

2
‖∇u(x,θ)‖2

2−u(x,θ). (A.8)

And by Corollary 2.3, the function ℓ(x,u) is bounded by

|ℓ(x,u)|=
∣∣∣ 1
2
‖∇u(x,θ)‖2−u(x,θ)

∣∣∣< 1

2
(Cσ∨1)2LQ2+(K∨1)LQ. (A.9)

Therefore, we can use Lemma 2.2. With probability 1−δ, the first term is bounded by

∣∣∣∣∣|Ω|EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− |Ω|

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

=|Ω|
∣∣∣∣∣EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− 1

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

≤|Ω|
(

2R̂(ℓ◦FQ)+3
(1

2
(Cσ∨1)2LQ2+(K∨1)LQ

)√2ln(4/δ)

n

)
.

Similarly we can bound the boundary term, using Corollary 2.3 (or just Lemma A.4) we
know

|u(Y,θ)|2 < (K∨1)2LQ2,
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on the boundary ∂Ω. Therefore we can apply Lemma 2.2

∣∣∣λ
2
|∂Ω|EY[(u(Y)2)]− λ

2

|∂Ω|
m

m

∑
j=1

[(u(yj)
2)]
∣∣∣

=
λ

2
|∂Ω|

∣∣∣EY[(u(Y)2)]− 1

m

m

∑
j=1

[(u(yj)
2)]
∣∣∣

≤ λ

2
|∂Ω|

(
R̂(ℓ◦FQ)+3(K∨1)2LQ2

√
2ln(4/δ)

m

)
,

where |∂Ω| is the Hausdorff measure of the boundary.

In Appendix C we have shown in Theorem C.3 that the loss function is Lipshitz in
the case of residual neural networks with bounded path norm. We have not specified
the exact value of a Lipschitz constant, but we know that such a constant C > 0 exists.
Similarly on the boundary, as we know that the neural network is bounded, and therefore
we can say that the function u(xθ)2 on boundary is Lipschitz. Let the Lipschitz constant
C>0 be the one that is a maximum of the two Lipschitz constants. From Theorem 2.3 we

know that R̂(FQ)≤ cσQ

√
2ln(2d+2)

n for residual neural networks with an approachable
activation, and bounded path norm. Therefore with Lemma 2.3 and Theorem 2.3 we get

∣∣∣∣∣|Ω|EX

[
‖∇u(X)‖2

2

2
−u(X)

]
− |Ω|

n

n

∑
i=1

[
‖∇u(Xi)‖2

2

2
−u(xi)

]∣∣∣∣∣

≤C|Ω|
(

2cσQ

√
2ln(2d+2)

n
+3
(1

2
(Cσ∨1)2LQ2+(K∨1)LQ

)√2ln(4/δ)

n

)
.

Using the same deduction we get a bound for the boundary term

∣∣∣λ
2
|∂Ω|EY [(u(Y)2)]− λ

2

|∂Ω|
m

m

∑
j=1

[(u(yj)
2)]
∣∣∣

≤C
λ

2
|∂Ω|

(
cσQ

√
2ln(2d+2)

m
+3(K∨1)2LQ2

√
2ln(4/δ)

m

)
,

where |∂Ω| is the Hausdorff measure of the boundary, γ(σ) is defined in Definition 2.1,
m is the number of sample points, and δ is a confidence parameter. Together these two
bounds give the statistical error of Deep Ritz method, namely, with probability 1−δ we
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have

|L(u)−L̂(u,n,m)|

≤C|Ω|
(

2cσQ

√
2ln(2d+2)

n
+3
(1

2
(Cσ∨1)2LQ2+(K∨1)LQ

)√2ln(4/δ)

n

)

+C
λ

2
|∂Ω|

(
cσQ

√
2ln(2d+2)

m
+3(K∨1)2LQ2

√
2ln(4/δ)

m

)
.

This completes the proof.

B Activation functions

Instead with smooth activation functions like tanh, or some smooth version of the Relu,
we were able to minimize the loss function and approximate the target function. More
about activation functions in the appendix. With Relu2 we mean the activation function

σ(x)=max{x,0}2, (B.1)

for example in [1] the authors used a similar smoothed version of the Relu activation
function. The polynomially smoothed Relu is a following activation function: σ : R→R,
such that

σ(x)=





0 when x<−ǫ,

x( x
ǫ +1)3 when −ǫ≤ x≤0,

x when x>0,

more about this activation function in the appendix. Disadvantage of the activation func-
tion Relu2 is that it is difficult, if not possible, according to our experiments, to build a
deep residual neural net with Relu2 as the activation function. If one were to train a deep
residual neural net then it is better to use a Relu-a-like activation functions like the above
mentioned polynomially smoothed Relu, Gelu [46], or the Swish activation function [47].

We present an activation function of the following form: let ǫ>0 be a small number,
σ :R→R,

σ(x)=





0 when x<−ǫ,

x( x
ǫ +1)3 when −ǫ≤ x≤0,

x when x>0.

The idea of the activation function is that we would like to have an activation function
similar to the ReLu [48], [49], but without the problems at the origin x= 0. Namely, the
ReLu activation function does not have a derivative at x = 0. The activation function
presented here is exactly the same as the ReLu when x≥0, and x≤−ǫ, the difference is
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0 0.5−0.5
0

−0.5

0.5

Figure 1: The activation function with ǫ=0,2 and ǫ=0,5.

in −ǫ< x<0 where σ is polynomial. The derivative of the activation function is

σ′(x)=





0 when x<−ǫ,

( x
ǫ +1)3+ 3x

ǫ (
x
ǫ +1) when −ǫ≤ x≤0,

1 when x>0.

The derivative is well defined for all x∈R and the derivative is continuous.

Second order derivative of σ is the following function.

σ′′(x)=





0 when x<−ǫ,
6
ǫ (

x
ǫ +1)2+ 6x

ǫ (
x
3 +1) when −ǫ≤ x<0,

0 when x>0.

(B.2)

The ReLu function, ReLu : R →R, can be expressed as ReLu(x) =max{x,0}. Similarly
the here proposed activation function can be represented as σ(x)=min{p(x),ReLu(x)},
where p is the polynomial p(x)= x( x

ǫ +1)3.

In Fig. 1 we have plotted the activation function σ with two different values of ǫ,
namely, with ǫ=0,2 and ǫ=0,5. Similarly in Fig. 2 we have plotted the gradient of σ with
the same values of ǫ as in previous figure. From the figures we see that how σ approaches
the ReLu function as ǫ goes to zero. On the other hand, the derivatives do not converge
as ǫ decreases to zero. What is interesting though is that, the derivative does not explode
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−1.0
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1.0

Figure 2: Derivative of the activation function with ǫ=0,2 and ǫ=0,5.

0 0.5 1.0−0.5−1.0

5.0

10.0

Figure 3: Second order derivative of the activation function σ with ǫ=0,5.

or behave in extreme way with different values of ǫ, but the derivative is rather nicely
behaving function. For the sake of clarity, in Fig. 4 we have plotted the Relu function;
and in Fig. 5 we have plotted the gradient of the Relu function. What is important of
the gradient of Relu is that it is singular at the origin, the derivative is a dirac mass at
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1.0

Figure 4: The Relu function.

origin, and we have tried to indicate that in the figure with a vertical line starting from
the origin. From the Fig. 3 we see that the second order derivative of σ explodes near
origin, and is discontinuous at origin. This is still better than with Relu as the second
order derivative of Relu at origin is derivative of dirac mass.

So with the activation function σ we try to bypass the dirac mass on the derivative of
relu, but maintaining as much as possible of the good qualities of the Relu function.

Theorem B.1. The activation function σ satisfies the conditions in Definition 2.1 and is thus
approachable.

Proof. For continuity of σ, we see that it is piecewisely defined function. Constant func-
tion, identity function, and polynomial x(x/ǫ+1)3 are continuous, therefore only possi-
ble points where σ might be noncontinuous are x=−ǫ and x=0. At x=−ǫ polynomial
x(x/ǫ+1)3 gets a value 0, so σ is continuous at x=−ǫ. At x=0 polynomial x(x/ǫ+1)3

gets value 0, which is the same for identity function x, and so σ is continuous at the origin
as well.

The derivative of σ is continuous and we can formally differentiate the function σ′(x).
The function we get is a piecewise continuous function defined in (B.3). On intervals
x <−ǫ, −ǫ < x < 0, and x > 0 the function σ′′(x) is well defined. At x = 0 the second
order derivative is not well defined, but this single point has Lebesgue measure zero,
and therefore the σ′′(x) is well defined in the weak sense.
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Figure 5: Gradient of the Relu function.

Let’s recall that the function σ′′ is a following function.

σ′′(x)=





0 when x<−ǫ,
6
ǫ (

x
ǫ +1)2+ 6x

ǫ (
x
3 +1) when −ǫ≤ x<0,

0 when x>0.

(B.3)

Function is compactly supported and in its support, the function is polynomial, continu-
ous, and bounded. Therefore it is also locally Riemann integrable.

It is not difficult to see that γ(σ) will be bounded. The minimal value for σ and σ′

is 0, therefore infx∈R g(x) for σ is 0, and as σ′′(x) is compactly supported function, being
polynomial in its support, it is not hard to say that γ0(σ)<∞. But let’s not settle for such
an grude estimate, but let’s calculate the value γ(σ)

γ0(σ)=
∫

R

|σ′′(x)|(|x|+1)dx=

0∫

−ǫ

|σ′′(x)|(|x|+1)dx

=

0∫

−ǫ

∣∣∣∣∣
6

ǫ

( x

ǫ
+1
)2

+
6x

ǫ2

( x

ǫ
+1
)∣∣∣∣∣
(
|x|+1

)
dx
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=

0∫

−ǫ

6

ǫ

∣∣∣ 2

ǫ2
x2+

3

ǫ
x+1

∣∣∣
(
|x|+1

)
dx

=

−ǫ/2∫

−ǫ

−6

ǫ

( 2

ǫ2
x2+

3

ǫ
x+1

)(
−x+1

)
dx

+

0∫

−ǫ/2

6

ǫ

( 2

ǫ2
x2+

3

ǫ
x+1

)(
−x+1

)
dx.

The first integral is

−ǫ/2∫

−ǫ

−6

ǫ

( 2

ǫ2
x2+

3

ǫ
x+1

)(
−x+1

)
dx

=−6

ǫ

−ǫ/2∫

−ǫ

( 2

ǫ2
(−x3)+

3

ǫ
(−x2)−x+

2

ǫ2
x2+

3

ǫ
x+1

)
dx

=−6

ǫ

−ǫ/2∫

−ǫ

(
− 2

ǫ2
x3− 3

ǫ
x2−x+

2

ǫ2
x2+

3

ǫ
x+1

)
dx

=−6

ǫ

∣∣∣∣∣

−ǫ/2

−ǫ

(
− 2

ǫ2
· 1

4
x4− 3

ǫ
· 1

3
x3− 1

2
x2+

2

ǫ2
· 1

3
x3+

3

ǫ
· 1

2
x2+x

)

=−6

ǫ

(
− 2

ǫ2
· 1

4

(
− ǫ

2

)4
− 1

ǫ

(
− ǫ

2

)3
− 1

2

(
− ǫ

2

)2

+
2

ǫ2
· 1

3
·
(
− ǫ

2

)3
+

3

ǫ
· 1

2
·
(
− ǫ

2

)2
+
(
− ǫ

2

)

−
[
− 2

ǫ2
· 1

4
·(−ǫ)4− 1

3
·(−ǫ)3− 1

2
·(−ǫ)2

+
2

ǫ2
· 1

3
·(−ǫ)3+

3

ǫ
· 1

2
·(−ǫ)2+(−ǫ)

])

=−6

ǫ

(
− 1

32
ǫ2+

1

8
ǫ2− 1

8
ǫ2− 1

12
ǫ+

3

8
ǫ− ǫ

2

−
[
− 1

2
ǫ2+ǫ2− 1

2
ǫ2− 2

3
ǫ+

3

2
ǫ−ǫ

])

=−6

ǫ

(
− 1

32
ǫ2+

1

8
ǫ2− 1

8
ǫ2− 1

12
ǫ+

3

8
ǫ− ǫ

2
−
[
− 4

6
ǫ+

9

6
ǫ− 6

9
ǫ

])
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=−6

ǫ

(
− 1

32
ǫ2− 2

24
ǫ+

9

24
ǫ− 12

24
ǫ+

1

6
ǫ

)

=−6

ǫ

(
− 1

32
ǫ2− 1

24
ǫ
)

=
6

32
ǫ+

6

24

=
3

16
ǫ+

3

12
.

The second integral is

0∫

−ǫ/2

6

ǫ

( 2

ǫ2
x2+

3

ǫ
x+1

)(
−x+1

)
dx

=
6

ǫ

0∫

−ǫ/2

(
− 2

ǫ2
x3+

2

ǫ2
x2− 3

ǫ
x2+

3

ǫ
x−x+1

)
dx

=
6

ǫ

∣∣∣∣∣

0

−ǫ/2

(
− 2

ǫ2
· 1

4
x4+

2

ǫ2
· 1

3
x3− 3

ǫ
· 1

3
x3+

3

ǫ
· 1

2
x2− 1

2
x2+x

)

=
6

ǫ

(
0−
[
− 2

ǫ2
· 1

4
(−ǫ

2
)4+

2

ǫ2
· 1

3
(−ǫ

2
)3

− 3

ǫ
· 1

3
(−ǫ

2
)3+

3

ǫ
· 1

2
(−ǫ

2
)2− 1

2
(−ǫ

2
)2+(−ǫ

2
)
])

=
6

ǫ

(
−
[
− 1

32
ǫ2− 1

12
ǫ+

1

8
ǫ2+

3

8
ǫ− 1

8
ǫ2− ǫ

2

])

=
6

ǫ

(
−
[
− 1

32
ǫ2− 2

24
ǫ+

9

24
ǫ− 12

24
ǫ
])

=6
( 1

32
ǫ− 5

24

])

=
3

16
ǫ+

15

12
.

Therefore the integral as whole becomes

γ0(σ)=

0∫

−ǫ

|σ′′(x)|(|x|+1)dx

=
3

16
ǫ+

3

12
+

3

16
ǫ+

15

12

=
3

8
ǫ+

3

2
.
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For σ the function g is

g(x)= |σ(x)|+(|x|+2)|σ′ (x)|, (B.4)

and the infimum of the function g over R is

inf
x∈R

g(x)=0. (B.5)

Therefore the value of γ(σ) is

γ(σ)=γ0(σ)+ inf
x∈R

g(x)=
3

8
ǫ+

3

2
. (B.6)

Thus γ(σ)<∞.

Theorem B.2. The integrand of the Deep Ritz method is Lipschitz, the neural network function
is a shallow network (OBS! Give a reference to the shallow network definition!).

Let u be a shallow network, thus

u(x,θ)=
m

∑
i=1

aiσ(〈ωi,x〉).

Thus the gradient of u is with respect to spatial variable x∈R
2

∇u(x,θ)=
m

∑
i=1

aiσ
′(〈ωi,x〉)ωi.

And so it follows that the integrand is

ℓ(u)=
1

2

2

∑
j=1

( m

∑
i=1

aiσ
′(〈ωi,x〉)ωij

)2
−
( m

∑
i=1

aiσ(〈ωi,x〉)
)

.

To show that ℓ is Lipschitz function, we need to show that for two shallow networks u
and v is holds that

|ℓ(u)−ℓ(v)|≤K|u−v|,

for some K∈R.
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Let u and v be shallow networks. Let see how ℓ(u)−ℓ(v) looks like

ℓ(u)−ℓ(v)=
1

2

2

∑
j=1

( m

∑
i=1

aiσ
′(〈ωi,x〉)ωij

)2
−
( m

∑
i=1

aiσ(〈ωi,x〉)
)

−
(

1

2

2

∑
j=1

( m

∑
i=1

biσ
′(〈zi,x〉)zij

)2
−
( m

∑
i=1

biσ(〈zi,x〉)
))

=
1

2

2

∑
j=1

(( m

∑
i=1

aiσ
′(〈ωi,x〉)ωij

)2
−
( m

∑
i=1

biσ
′(〈zi,x〉)zij

)2
)

−
m

∑
i=1

(
aiσ(〈ωi,x〉)−biσ(〈zi,x〉)

)

=
1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′(〈ωi,x〉)σ′(〈ωk,x〉)ωijωkj−bibkσ′(〈zi,x〉)σ′(〈zk,x〉)zijzkj

)

−
m

∑
i=1

(
aiσ(〈ωi,x〉)−biσ(〈zi,x〉)

)
.

Let’s start by focusing on the first term. Let’s simplify the notation so that σ′(〈ωi,x〉)=σ′
ωi

1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′
ωi

σ′
ωk

ωijωkj−bibkσ′
zi

σ′
zk

zijzkj

)

=
1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′
ωi

σ′
ωk

ωijωkj−aiakσ′
ωi

σ′
ωk

zijzkj+aiakσ′
ωi

σ′
ωk

zijzkj−bibkσ′
zi

σ′
zk

zijzkj

)

=
1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′
ωi

σ′
ωk

(
ωijωkj−zijzkj

)
+
(

aiakσ′
ωi

σ′
ωk
−bibkσ′

zi
σ′

zk

)
zijzkj

)

=
1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′
ωi

σ′
ωk

(
ωij

(
ωkj−zkj

)
−(ωij−zij

)
zkj

)

+
(

ak(ai−bi)σ
′
ωi

σ′
ωk
+ak

(
σ′

ωi
σ′

ωk
−σ′

zi
σ′

zk

)
+
(
ak−bk

)
σ′

zi
σ′

zk

)
zijzkj

)

=
1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′
ωi

σ′
ωk

(
ωij

(
ωkj−zkj

)
−(ωij−zij

)
zkj

)

+
(

ak(ai−bi)σ
′
ωi

σ′
ωk
+ak

(
σ′

ωi
(σ′

ωk
−σ′

zk
)+(σ′

ωi
−σ′

zi
)σ′

zk

)
+
(
ak−bk

)
σ′

zi
σ′

zk

)
zijzkj

)
.
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Then we can bound the first summation term

∣∣∣∣∣
1

2

2

∑
j=1

(
m

∑
k,i=1

aiakσ′
ωi

σ′
ωk

ωijωkj−bibkσ′
zi

σ′
zk

zijzkj

)∣∣∣∣∣

≤ 1

2

2

∑
j=1

(
m

∑
k,i=1

|ai||ak ||σ′
ωi
||σ′

ωk
|
(
|ωij|

∣∣ωkj−zkj

∣∣−
∣∣ωij−zij

∣∣|zkj |
)

+
(
|ak|
∣∣ai−bi

∣∣|σ′
ωi
||σ′

ωk
|+|ak|

(
|σ′

ωi
|
∣∣σ′

ωk
−σ′

zk

∣∣+
∣∣σ′

ωi
−σ′

zi

∣∣|σ′
zk
|
)

+
∣∣ak−bk

∣∣|σ′
zi
||σ′

zk
|
)
|zij||zkj |

)
.

As we have chosen functions u and v all the weights must be bounded by some value Cω.
Also by our assumptions on the activation function, we can say that σ′ is bounded for all
values of weights (ω, z) and spatial variable x, let’s denote that by Cσ

≤ 1

2

2

∑
j=1

(
m

∑
k,i=1

CωCωCσ′Cσ′

(
Cω

∣∣ωkj−zkj

∣∣−
∣∣ωij−zij

∣∣Cω

)

+
(

Cω

∣∣ai−bi

∣∣Cσ′Cσ′+Cω

(
Cσ′
∣∣σ′

ωk
−σ′

zk

∣∣+
∣∣σ′

ωi
−σ′

zi

∣∣Cσ′
)
+
∣∣ak−bk

∣∣Cσ′Cσ′

)
CωCω

)
.

The second summation can be handled as follows:

m

∑
i=1

(
aiσ(〈ωi,x〉)−biσ(〈zi,x〉)

)

=
m

∑
i=1

(
aiσ(〈ωi,x〉)−biσ(〈ωi,x〉)+biσ(〈ωi,x〉)−biσ(〈zi,x〉)

)

=
m

∑
i=1

((
ai−bi

)
σ(〈ωi,x〉)+bi

(
σ(〈ωi,x〉)−σ(〈zi,x〉)

))
.

Due to Lipschitz property of σ we know

∣∣σ(〈ωi,x〉)+σ(〈zi,x〉)
∣∣

≤K|〈ωi,x〉−〈zi,x〉|
≤K‖ωi−zi‖1‖x‖∞

≤K‖ωi−zi‖1.
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So we have

∣∣∣
m

∑
i=1

(
aiσ(〈ωi,x〉)−biσ(〈zi,x〉)

)∣∣∣

≤
m

∑
i=1

(∣∣ai−bi

∣∣|σ(〈ωi,x〉)|+|bi|
∣∣σ(〈ωi,x〉)−σ(〈zi,x〉)

∣∣
)

≤
m

∑
i=1

(∣∣ai−bi

∣∣|σ(〈ωi,x〉)|+|bi|
∣∣σ(〈ωi,x〉)−σ(〈zi,x〉)

∣∣
)

≤
m

∑
i=1

(∣∣ai−bi

∣∣|〈ωi,x〉|+|bi|K
∣∣〈ωi,x〉−〈zi,x〉

∣∣
)

≤
m

∑
i=1

(∣∣ai−bi

∣∣|〈ωi,x〉|+|bi|K
∣∣〈ωi−zi,x〉

∣∣
)

≤
m

∑
i=1

(∣∣ai−bi

∣∣‖ωi‖1‖x‖∞+|bi|K‖ωi−zi‖1‖x‖∞

)

≤
m

∑
i=1

(∣∣ai−bi

∣∣‖ωi‖1+|bi|K‖ωi−zi‖1

)
.

So both upperbounds together we have,

|ℓ(u)−ℓ(u)|

≤ 1

2

2

∑
j=1

(
m

∑
k,i=1

|ai||ak ||σ′
ωi
||σ′

ωk
|
(
|ωij|

∣∣ωkj−zkj

∣∣−
∣∣ωij−zij

∣∣|zkj|
)

+
(
|ak|
∣∣ai−bi

∣∣|σ′
ωi
||σ′

ωk
|+|ak |

(
|σ′

ωi
|
∣∣σ′

ωk
−σ′

zk

∣∣+
∣∣σ′

ωi
−σ′

zi

∣∣|σ′
zk
|
)

+
∣∣ak−bk

∣∣|σ′
zi
||σ′

zk
|
)
|zij||zkj |

)
+

m

∑
i=1

(∣∣ai−bi

∣∣‖ωi‖1+|bi|K‖ωi−zi‖1

)
.

Then as we apply the bounds on the weights and the on the derivatives of the activation
function we get

|ℓ(u)−ℓ(u)|

≤1

2

2

∑
j=1

(
m

∑
k,i=1

CωCωCσ′Cσ′

(
Cω

∣∣ωkj−zkj

∣∣+
∣∣ωij−zij

∣∣Cω

)

+
(

Cω

∣∣ai−bi

∣∣Cσ′Cσ′+Cω

(
Cσ′
∣∣σ′

ωk
−σ′

zk

∣∣+
∣∣σ′

ωi
−σ′

zi

∣∣Cσ′
)

+
∣∣ak−bk

∣∣Cσ′Cσ′

)
CωCω

)
+

2

∑
j=1

m

∑
i=1

(∣∣ai−bi

∣∣|ωij|+|bi|K|ωij−zij|
)
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≤1

2

2

∑
j=1

(
m

∑
k,i=1

CωCωCσ′Cσ′

(
Cω

∣∣ωkj−zkj

∣∣+
∣∣ωij−zij

∣∣Cω

)

+
(

Cω

∣∣ai−bi

∣∣Cσ′Cσ′+Cω

(
Cσ′
∣∣σ′

ωk
−σ′

zk

∣∣+
∣∣σ′

ωi
−σ′

zi

∣∣Cσ′
)

+
∣∣ak−bk

∣∣Cσ′Cσ′

)
CωCω

)
+

2

∑
j=1

m

∑
i=1

(∣∣ai−bi

∣∣Cω+CωK|ωij−zij|
)

≤1

2

2

∑
j=1

[
m

∑
k,i

C3
ωC2

σ′

(
|ωkj−zkj|+|ωij−zij|+|ak−bk|

)

+C3
ωCσ′K2

(
|ωkj−zkj|+|ωij−zij|

)
+C2

ωC2
σ′ |ak−bk|

]

+
2

∑
j=1

m

∑
i=1

(
Cω|ai−bi|+CωK|ωij−zij|

)
.

C Lipschitz continuity of the loss function

In this section our main goal is to prove that the loss function is Lipshitz continuous. We
will not show what the Lipschitz constant is exactly, but we prove that such a constant
exists.

Theorem C.1. Continuously differentiable functions φ : B(0,1)→R
d, with bounded gradient,

are Lipschitz.

Proof. Let B(0,1)⊂R
d be a unit sphere in R

d. Let φ : B(0,1)→R be a continuously differ-
entiable mapping with bounded ‖∇φ‖<M, where M<∞. Let g(t)=φ(x1+t(x2−x1))

|φ(x1)−φ(x2)|= |g(0)−g(1)|=
∣∣∣
∫ 1

0
g′(t)dt

∣∣∣

=
∣∣∣
∫ 1

0
∇φ(x1+t(x2−x1))(x2−x1)dt

∣∣∣

=
∫ 1

0
|∇φ(x1+t(x2−x1))||x2−x1|dt

≤M|x2−x1|.

Therefore φ is Lipschitz.

Theorem C.2. Let u be a shallow neural network with bounded path norm and bounded weights.

Then the function ℓ(u)= ℓ(x,θ)= |∇u|
2 −u is a Lipschitz mapping.

Proof. See the end of the section.
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Lemma C.1. The gradient of the loss function ℓ with respect to the spatial variables (x∈B(0,1))
is

∇ℓ(u)=∇uH(u)−∇u, (C.1)

where H(u) is the Hessian matrix of the function u.

Proof. Let’s differentiate the loss function ℓ(u)= ∇u
2 −u. In the following all gradients are

taken with respect to the spatial variable x.

∇
( |∇u|2

2

)
=
(

∂1

( (∂1u)+(∂2u)

2

)
,∂2

( (∂1u)+(∂2u)

2

))

=
(

∂1u(∂2
1u)+∂2u(∂2∂1u), ∂1u(∂2∂1u)+∂2u(∂2

2u)
)

=
((

∂1u,∂2u
)[ ∂2

1u
∂2∂1u

]
,
(
∂1u,∂2u

)[∂2∂1u
∂2

2u

])

=
(
∂1u,∂2u

)[ ∂2
1u ∂2∂1u

∂2∂1u ∂2
2u

]

=∇uH(u).

And so the statement follows from this.

Lemma C.2. Derivative of shallow network u is

∇u=∑
i

aiσ
′(〈ωi,x〉)ωij.

Proof. Simple application of basic rules of differential calculus.

Lemma C.3. If u ∈ FQ is a shallow network with bounded path norm, then its gradient is
bounded.

Proof.

|∇u|1 =
2

∑
j=1

∣∣
m

∑
i=1

aiσ
′(〈ωi,x〉)ωij

∣∣

≤
2

∑
j=1

m

∑
i=1

|ai|
∣∣σ′(〈ωi,x〉)

∣∣|ωij|

≤Cσ′
2

∑
j=1

m

∑
i=1

|ai||ωij|

≤Cσ′Q.

This completes the proof.
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Lemma C.4. Let u∈FQ be a shallow network with a bounded path norm. Then its second order
derivative is bounded, i.e. |∂j∂ku|<∞, where j,k=1,2.

Proof. Second order derivative of u is

∂k∂ju=∂k

m

∑
i=1

aiσ
′(〈ωi,x〉)ωij

=
m

∑
i=1

aiσ
′′(〈ωi,x〉)ωijωik.

Then its bound is

|∂k∂ju|=Cσ′′
m

∑
i=1

|ai||ωij||ωik|.

If j= k then the bound becomes

|∂2
j u|=Cσ′′

m

∑
i=1

|ai||ωij|2≤Cσ′′
m

∑
i=1

|ai|‖ωi‖2
2≤Cσ′′

m

∑
i=1

|ai|‖ωi‖2
1<∞.

As we have assumed that ‖θ‖P <Q. Therefore we have

∑|ai||ωi1|+∑ |ai||ωi2|<Q.

Therefore if ai >0 then we may deduce that |ωi1|, |ωi2|<∞. And then

m

∑
i=1

|ai||ωi1||ωi2|<∞.

This completes the proof.

Corollary C.1. Let u be a shallow network with bounded path norm. The norm of Hessian H(u)
is bounded.

Corollary C.2. Let u be a shallow network with bounded path norm, then ∇ℓ(u) is bounded.

Proof. By Theorem C.1, Corollary C.1, Lemma C.3.

Now we can prove that ℓ is Lipschitz in the case of shallow networks with bounded
path norm.

Proof. (for Theorem C.2) Proof follows by Theorem C.1 and Corollary C.2.

We do not specify the Lipschitz constant. Next we prove the same thing for residual
neural networks.
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Lemma C.5. Derivative of residual neural network u is

∇u= aTV+aTU1

(
diagσ′)(W1Vx)W1V+aT

L

∑
k=2

Uk

2

∑
i=k

diagσ′(Wkhk−1)WiUi−1∇gi−1,

where

∇gk =
2

∑
i=k

diagσ′(Wkhk−1)WiUi−1∇gi−1,

and

∇g1=diagσ′(W1Vx)W1V.

Proof.

u(x,θ)= aThL

= aThL−1+aTULgL

= aTh0+aTU1g1+ ···+aTULgL.

Derivative of the first term is

∇aTh0= aTV.

Derivative of the second term is

∇aTU1g1= aTU1

(
diagσ′)(W1Vx)W1V.

Derivative of the rest of the layers g are

∇gk =
2

∑
i=k

diagσ′(Wkhk−1)WiUi−1∇gi−1,

where k=2,··· ,L.

The principal term of ∇u is

∇u
∣∣∣P= aTUL

(
diagσ′)(WLhL−1)WLUL−1

(
diagσ′)(WL−1hL−2)

×···×W2U1

(
diagσ′)(W1h0)W1V. (C.2)

One gets the rest of the (summation) terms in ∇u by dropping out some of the multipli-
cation factors in the principal term.

Lemma C.6. Let u be a residual neural network with bounded path norm. The principal term of
the gradient ∇u is bounded.
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Proof.

|∇u
∣∣∣P|≤ |aT ||UL|

∣∣diagσ′(WLhL−1)
∣∣|WL||UL−1|

∣∣diagσ′(WL−1hL−2)
∣∣

×···×|W2||U1|
∣∣diagσ′(W1h0)||W1||V|.

≤CL
σ′aT ||UL||WL ||UL−1|×···×|W2||U1||W1||V|

≤CL
σ′‖θ‖P.

This completes the proof.

Lemma C.7. Let u be a residual neural network with bounded path norm. The gradient ∇u is
bounded.

Proof. The principal term of the gradient is given in (C.2). The gradient is a sum of terms
which are alike the principal term, except that other terms lack some of the factorial
tensors. There is a finite number of these terms, let’s call this number #(P), the number
of paths within the gradient network. Then we have

|∇u|≤#(P)CL
σ′‖θ‖P.

This completes the proof.

Second order gradient of the residual neural network is

∇2u= aTU1

(
diagσ′′)(W1Vx)W1VW1V+aT

L

∑
k=2

Uk∇2gk,

∇2gk =
2

∑
i=k

[
(
diagσ′′)(Wkhk−1)×WiUi−1∇gi−1WiUi−1∇gi−1

+
(
diagσ′)(Wkhk−1)WiUi−1∇2gi−1

]
.

The main thing is that second order derivative of a residual neural network consists of
second order, and first order derivatives of the activation function and multiplications of
the weight tensors. As we deriviate with respect to the spatial variable x, all the weights
of the neural network stay in the multiplication, i.e. all the paths stay included; there will
be just some not but two times in the path.

The principal term of the second order gradient is

∇2u
∣∣∣
P
=aTUL

(
diagσ′′)(WLhL−1)

[
WLUL−1

(
diagσ′)(WL−1hL−2)···

W2U1

(
diagσ′)(W1h0)W1V

][
WLUL−1

(
diagσ′)(WL−1hL−2)···
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W2U1

(
diagσ′)(W1h0)W1V

]
.

The bound for the principal term is

|∇2u
∣∣∣
P
|≤Cσ′′C2L−2

σ′ |aT ||UL|
[
|WL||UL−1|··· |W2||U1||W1||V|

]

[
|WL||UL−1|··· |W2||U1||W1||V|

]

≤Cσ′′C2L−2
σ′ ‖θ‖2

P .

The bound on the principal term bounds also the other terms in the full second order
derivative. Therefore we have a bound for it.

Lemma C.8. Let u be a residual neural network with bounded path norm. Then its second order
derivative is bounded.

Proof. As all the bound for the principal term ∇2u
∣∣∣

P
is a bound also for the other terms

in the full gradient, and there is a finite number of terms making the full second order

derivative, then we can say that ∇2u
∣∣∣
P

is bounded.

Theorem C.3. Let u be a residual neural network with bounded path norm and bounded weights.

Then the function ℓ(u)= ℓ(x,θ)= |∇u|
2 −u is a Lipschitz mapping.

Proof. As ∇u and H(u) are bounded, this implies that ∇ℓ is bounded. Then by Theorem
C.1 we know that ℓ is a Lipschitz mapping.

D Barron space

In this section we prove that the solution u can be extended to R
2 as a Schwartz function.

Fourier transform of a Schwartz function is a Schwartz function, i.e. fourier transform is
a map from S (Rd)→S (Rd) (Theorem 1.3 in [50]). This will ensure that the solution is
in the space of Barron functions, as Schwartz functions are rapidly decreasing functions.

The solution to the Poisson equation is

u(x)=
1

4
(1−|x|2), x∈B(0,1). (D.1)

We can extend the function u to the whole plane R
2 as it is, for clarity let’s denote this

extension with another symbol

ũ(x)=
1

4
(1−|x|2), x∈R

2. (D.2)

Let’s define
f (x)=min{(4−|x|2),1}. (D.3)
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Idea of the function f is that, when we consider x∈B(0,1) and we multiply the functions
ũ and f pointwise, the result is u(x); this is simply because f is constant 1 inside the unit
ball B(0,1). Another nice property is that the multiplication decays rapidly to zero when
|x|→∞. This way we get an extension of u to the whole plane such that it decays rapidly
to zero.

We need still one more thing, and that is that we need to smooth the extension in
order to make it a Schwartz function. Let ηǫ be a standard mollifier [51]. Let’s define our
extension to be

F(x)=
(

f ∗ηǫ

)
(x)=

∫

B(0,ǫ)
ηǫ(y) f (x−y)dy. (D.4)

Properties of the mollifier ensure that the function F is C∞. Now the product ũ(x)F(x)
is the extension we are looking for. Properties of the function f ensure that the func-
tion F decays to zero faster than any polynomial, and that it is constant 1 inside B(0,1).
Therefore ũ(x)F(x) is an extension of the solution u to the whole plane, and ũ(x)F(x) is
a Schwartz function.

Theorem D.1. Let u,ũ, f ,F be defined as in (D.1), (D.2), (D.3), and (D.4). Then ũ(x)F(x) is
an extension of the solution u to the whole plane R

2. In addition, ũ(x)F(x) is C∞ and decays to
zero faster than any polynomial, i.e. is a Schwartz function.

In article [52] the authors proved the following theorem (p.29, theorem 6); see also [53]
where the theorem is presented in proposition 2.

Theorem D.2. Let f ∈C(X), the space of continuous functions on X, and assume that f satisfies:

γ( f ) := inf
f̂

∫

Rd
‖ω‖2

1| f̂ (ω)|dω<∞,

where f̂ is the Fourier transform of an extension of f to R
d. Then f belongs to the Barron space,

and its Barron norm is bounded by

‖ f‖B ≤2γ( f )+2‖∇ f (0)‖1+2| f (0)|.

Theorem D.3. Solution u belongs to the Barron space.

Proof. By Theorems D.1 and D.2 we can say that the solution u belongs to the Barron
space. The extension ũ(x)F(x) is probably not giving the spectral norm γ(u) for the
solution, but if we have one extension with bounded integral of the same form as in
spectral norm, then we know that the minimal extension also gives a bounded spectral
norm.

In article [12] authors mention (see also [54]) a result for Barron functions and shallow
neural networks: for any f ∈B2 there exists a shallow neural network f (·,θ) of width m
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such that

Ex[( f (x)− f (x,θ))2]≤ 3γ2
2( f )

m
,

‖θ‖P ≤2γ2( f ).

And in article [29] (theorem 2.5) the authors showed that residual networks can approxi-
mate the Barron functions in a following way: Let f ∗ be the Barron function. There exists
a residual network f (·,θ) with depth L and width m such that

‖ f (x,θ)− f ∗‖≤ 3‖ f ∗‖2
B

Lm

and

‖θ‖P ≤4‖ f ∗‖B .

With this information and with the fact that the solution to the Poisson’s equation belongs
to the Barron space, we know something about the approximation error in the situation.
At least we can say that by increasing the width and depth of the residual neural net-
work, we can push the approximation error to zero without blowing the pathnorm of the
network. And in this sense residual networks and shallow networks could be a natural
choice for the network architecture.
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