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1. Introduction

In fixed point theory with metric structure, the contractive inequalities on under-
lying mappings play a significant role in solving fixed point problems. The Banach
contraction mapping principle (see [6]) is one of the first well-known results in met-
ric fixed point theory. Meanwhile, various extensions and generalizations of Banach
contraction principle abound in the literature (e.g., see [2,15,17] and the references
therein). One of the well-celebrated results in this field is attributed to Presic [25],
who established an interesting generalization of the Banach contraction principle
with significant applications in the study of global asymptotic stability of equilibri-
ums of nonlinear difference equations arising in dynamic systems and related areas.
For some articles related to Presic type results, we refer to [4,10,24] and references
therein.

On the other hand, the real world is filled with uncertainty, vagueness and im-
precisions. The notions we meet in everyday life are vague rather than precise. In
practical, if a model asserts that conclusions drawn from it have some bearings on
reality, then two major complications are obvious, namely, real situations are often
not crisp and deterministic; a complete description of real systems often requires
more detailed data than human beings can recognize simultaneously, process and
understand. Conventional mathematical tools, which require all inferences to be ex-
act, are not always sufficient for handling imprecisions in a wide variety of practical
fields. Thus, to reduce these shortcomings inherent with the earlier mathematical
concepts, the introduction of fuzzy sets were introduced in 1965 by Zadeh [29]. Con-
sequently, various areas of mathematics, social sciences and engineering witnessed

†The corresponding author.
Email address: shagaris@ymail.com (M. S. Shagari), balarabem@abu.edu.ng
(M. Balarabe)

1Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello
University, Zaria, Nigeria

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.1 | Generated on 2024-12-19 04:40:58

http://dx.doi.org/10.12150/jnma.2024.1


2 M. S. Shagari & M. Balarabe

tremendous revolutions. In the mean time, the basic notions of fuzzy sets have
been improved and applied in different directions. In 1981, Heilpern [14] availed
the idea of fuzzy set to initiate a class of fuzzy set-valued mappings and proved a
fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of
fixed point theorems by Nadler [23] and Banach [6]. Afterwards, several authors
have studied the existence of fixed points of fuzzy set-valued maps. For example,
see [7, 13, 19–22]. One of the useful generalizations of fuzzy sets by replacing the
interval [0, 1] of the range set by a complete distributive lattice was initiated by
Goguen [12] and was called L-fuzzy sets. Not long ago, Rashid et al., [26] came up
with the notion of L-fuzzy mappings and established a common fixed point theorem
through βFL-admissible pair of L-fuzzy mappings. As an improvement of the notion
of Hausdorff distance and σ∞-metric for fuzzy sets, Rashid et al., [27] defined the
concepts of Dα̃L and σ∞

L distances for L-fuzzy sets and generalized some known
fixed point theorems for fuzzy and multi-valued mappings.

Following the above chain of developments, we initiate in this paper a general
examination of Presic type L-fuzzy fixed point results by employing weakly contrac-
tive conditions in the bodywork of metric space. Stability of L-fuzzy mappings and
associated novel notions are proposed to complement their corresponding concepts
related to multi-valued and point-to-point-valued mappings. In the case where the
L-fuzzy set valued map is reduced to its crisp counterparts, our results improve a
number of significant metric fixed point theorems in the related literature.

2. Preliminaries

Hereafter, the sets R, R+ and N, represent the set of real numbers, positive real
numbers and natural numbers respectively.

Definition 2.1. Let (X̃, σ) be a metric space. A mapping ϑ : X̃ −→ X̃ is said to

be weakly contractive, if for all x, y ∈ X̃,

σ(ϑ(x), ϑ(y)) ≤ σ(x, y)− φ(σ(x, y)),

where φ : R+ −→ R+ is a continuous and non-decreasing function such that φ(0) =
0 and φ(t) −→ ∞ as t −→ ∞.

Alber and Guerre-Delabriere [3] showed that every weakly contractive mapping
on a Hilbert space is a Picard operator. Rhoades [28] proved that the corresponding
theorem on a complete metric space is also true. Dutta et al., [11] extended the idea
of weak contractive condition and obtained a fixed point result which improved the
main results in [3, 28].

Definition 2.2. Let l ≥ 1 be a positive integer. A point u ∈ X̃ is called a fixed
point of ϑ : X̃ l −→ X̃, if ϑ(u, · · · , u) = u.

Consider the lth-order nonlinear difference equation given by

xn+l = ϑ(xn, · · · , xn+l−1), n ∈ N (2.1)

with initial values x1, · · · , xl ∈ X̃. Equation (2.1) becomes a fixed point problem

in the sense that u ∈ X̃ is a solution of (2.1), if and only if u is a fixed point of

ρ : X̃ −→ X̃ defined as

ρ(u) = ϑ(u, · · · , u), for all u ∈ X̃.
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Presic [25] established a very significant result in the light of (2.1) as follows.

Theorem 2.1 ( [25]). Let (X̃, σ) be a complete metric space, l a positive integer

and ϑ : X̃ l −→ X̃ be a mapping satisfying the condition

σ(ϑ(x1, · · · , xl), ϑ(x2, · · · , xl+1)) ≤ λmax{σ(x1, x2), · · · , σ(xl, xl+1)},

for all x1, · · · , xl ∈ X̃, where λ ∈ (0, 1). Then, there exists u ∈ X̃ such that

ϑ(u, · · · , u) = u. Moreover, for any arbitrary point x1, · · · , xl ∈ X̃, the sequence
defined by (2.1) converges to u and

lim
n−→∞

xn = ϑ( lim
n−→∞

xn, · · · , lim
n−→∞

xn).

Notice that by putting l = 1, Theorem 2.1 reduces to the Banach fixed point
theorem. Theorem 2.1 has attracted a lot of attention due to its importance in the
study of global asymptotic stability for the equilibrium of the fixed point problem
(2.1).

Not long ago, Abbas et al., [1] studied the convergence of a generalized weak
Presic type l-step method for a certain family of operators fulfilling Presic type
contractive conditions as follows.

Theorem 2.2 ( [1]). Let (X̃, σ) be a complete metric space. If a mapping ϑ :

X̃ l −→ X̃, for a positive l, satisfies:

σ(ϑ(x1, · · · , xl), ϑ(x2, · · · , xl+1)) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),

for all (x1, · · · , xl+1) ∈ X̃ l+1, where φ : R+ −→ R+ is a lower semi-continuous
function with φ(t) = 0, if and only if t = 0. Then, for arbitrary point x1, · · · , xl ∈
X̃, the sequence defined by (2.1) converges to u ∈ X̃ and ϑ(u, · · · , u) = u. Moreover,
if

σ(ϑ(x, · · · , x), ϑ(y, · · · , y)) ≤ σ(x, y)− φ(σ(x, y))

holds for all x, y ∈ X̃ with x ̸= y, then ϑ has a unique fixed point in X̃.

Let the set of all nonempty compact subsets of X̃ be denoted by K(X̃), where

(X̃, σ) is a metric space. For A,B ∈ K(X̃), the function H̃ : K(X̃)×K(X̃) −→ R+

defined by

H̃(A,B) = max

{
sup
x∈A

σ(x,B), sup
x∈B

σ(x,A)

}
is called Hausdorff-Pompeiu metric on K(X̃) induced by the metric σ, where

σ(x,A) = inf
y∈A

σ(x, y).

The following Lemma due to Nadler [23] is useful for establishing our results.

Lemma 2.1. Let (X̃, σ) be a metric space and A,B ∈ K(X̃). Then, for each a ∈ A,
there exists b ∈ B such that

σ(a, b) ≤ H̃(A,B).
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In the following, we recall specific concepts of fuzzy sets and L-fuzzy sets that
are needed in the sequel. For these concepts, we follow [12,26,29].

Let X̃ be a universal set. A fuzzy set in X̃ is a function with domain X̃ and
values in [0, 1] = I. If A is a fuzzy set in X̃, then the function value A(x) is called
the grade of membership of x in A. The α̃-level set of a fuzzy set A is denoted by
[A]α̃, and is defined as follows

[A]α̃ =

{
{x ∈ X̃ : A(x) > 0}, if α̃ = 0;

{x ∈ X̃ : A(x) ≥ α̃}, if α̃ ∈ (0, 1],

where by M , we mean the closure of the crisp set M . We denote the family of fuzzy

sets in X̃ by IX̃ .
A fuzzy set A in a metric space V is said to be an approximate quantity, if and

only if [A]α̃ is compact and convex in V and supx∈V A(x) = 1. Denote the collection
of all approximate quantities in V by W (V ). If there exists an α̃ ∈ [0, 1] such that

[A]α̃, [B]α̃ ∈ K(X̃), then we define

Dα̃(A,B) = H̃([A]α̃, [B]α̃),

σ∞(A,B) = sup
α̃

Dα̃(A,B).

Definition 2.3. A relation ⪯ on a nonempty set L is called a partial order, if it is

(i) reflexive;

(ii) antisymmetric;

(iii) transitive.

A set L together with a partial ordering ⪯ is called a partially ordered set (poset for
short), and is denoted by (L,⪯L). Recall that partial orderings are used to provide
an order for sets that may not have a natural one.

Definition 2.4. Let L be a nonempty set and (L,⪯) be a partially ordered set.
Then, any two elements x, y ∈ L are said to be comparable if either x ⪯ y or y ⪯ x.

Definition 2.5. A partially ordered set (L,⪯L) is called:

(i) a lattice , if x ∨ y ∈ L and x ∧ y ∈ L, for any x, y ∈ L;

(ii) a complete lattice, if
∨
A ∈ L, and

∧
A ∈ L, for any A ⊆ L;

(iii) distributive lattice, if x∨(y∧z) = (x∨y)∧(x∨z) and x∧(y∨z) = (x∧y)∨(x∧z),
for any x, y, z ∈ L.

A partially ordered set L is called a complete lattice, if for every doubleton
{x, y} in L, either sup{x, y} = x

∨
y or inf{x, y} = x

∧
y exists.

Definition 2.6. Let L be a lattice with top element 1L and bottom element 0L,
and let x, y ∈ L. Then, y is called a complement of x, if x∨ y = 1L and x∧ y = 0L.
If x ∈ L has a complement, then it is unique. We denote by xc, the complement of
x.

Definition 2.7. An L-fuzzy set A on a nonempty set X̃ is a function with domain
X̃ and whose range lies in a complete distributive lattice L with top and bottom
elements 1L and 0L respectively.

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.1 | Generated on 2024-12-19 04:40:58



On Stability of L-Fuzzy Mappings 5

Remark 2.1. The class of L-fuzzy sets is larger than the class of fuzzy sets as an
L-fuzzy set reduces to a fuzzy set, if L = I = [0, 1].

Denote the class of all L-fuzzy sets on a nonempty set X̃ by LX̃ (to mean a

function: X̃ −→ L).

Definition 2.8. The α̃L-level set of an L-fuzzy set A is denoted by [A]α̃L, and is
defined as follows

[A]α̃L =

{
{x ∈ X̃ : 0L ⪯L A(x)}, if α̃ = 0;

{x ∈ X̃ : α̃L ⪯L A(x)}, if α̃L ∈ L \ {0L}.

Definition 2.9. Let X̃ be an arbitrary nonempty set and Y a metric space. A
mapping S̃ : X̃ −→ LY is called an L-fuzzy mapping. The function value S̃(x)(y)

is called the degree of membership of y in S̃(x). For any two L-fuzzy mappings

S, S̃ : X̃ −→ LY , a point u ∈ X̃ is called an L-fuzzy fixed point of S, if there exists
α̃L ∈ L\{0L} such that u ∈ [Su]α̃L

. A point u is known as a common L-fuzzy fixed

point of S and S̃, if u ∈ [Su]α̃L
∩ [S̃u]α̃L

.

3. Main results

We begin this section by inaugurating the notion of stationary points (also called
end points) for L-fuzzy mappings which is motivated by the uniqueness concept of
fixed point of point-valued mappings. For related articles on end point results, we
refer to Amini-Harandi [5] and Choudhury [8].

Definition 3.1. Let X̃ be a nonempty set. An element u ∈ X̃ is called a stationary

point of an L-fuzzy set-valued map S̃ : X̃ −→ LX̃ , if there exists an α̃L ∈ L \ {0L}
such that [Tu]α̃L

= {u}. Similarly, for l ∈ N, the point u is said to be a stationary

point of S̃(x1, · · · , xl) : X̃ l −→ L, if there exists an α̃L ∈ L \ {0L} such that

[S̃(u, · · · , u)]α̃L
= {u}.

Theorem 3.1. Let (X̃, σ) be a complete metric space, l a positive integer and

S̃(x1, · · · , xl) : X̃ l −→ L an L-fuzzy set-valued map. Assume that the following
conditions hold

(i) there exists an α̃L ∈ L \ {0L} such that [S̃(x1, · · · , xl)]α̃L
is a nonempty com-

pact subset of X̃;

(ii) there exists a lower semi-continuous function φ : R+ −→ R+ satisfying φ(t) =
0, if and only if t = 0 such that

H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),

(3.1)

for all (x1, · · · , xl+1) ∈ X̃ l+1. Then, for any arbitrary point x1, · · · , xl ∈ X̃, the
sequence {xn+l}n≥1 defined by

xn+l ∈ [S̃(xn, · · · , xn+l−1)]α̃L
, n ∈ N (3.2)
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converges to u ∈ X̃ and u ∈ [S̃(u, · · · , u)]α̃L
. Moreover, if

H̃([S̃(x1, · · · , x)]α̃L
, [S̃(y, · · · , y)]α̃L

) ≤ σ(x, y)− φ(σ(x, y)) (3.3)

holds for all x, y ∈ X̃ with x ̸= y, then S̃ has a stationary point in X̃.

Proof. Let x1, · · · , xl be arbitrary l elements in X̃. Consider the sequence defined
by (3.2). If there exists an α̃L ∈ L \ {0L} such that xi = xi+1 for all i = n, n +

1, · · · , n + l − 1, then xi ∈ [S̃(xi, · · · , xi)]α̃L
. That is, xi is an L-fuzzy fixed point

of S̃, and the proof is finished. Hence, we assume that xi ̸= xi+1 for all i =
n, n+1, · · · , n+ l− 1. For l ≥ n, from (3.1) and Lemma 2.1, we have the following
inequalities

σ(xl+n, xl+n−1) ≤ H̃([S̃(xn, · · · , xl+n−1)]α̃L
, [S̃(xn+1, · · · , xn+l)]α̃L

)

≤ max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1}
−φ(max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1})

< max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1}.

σ(xl+1, xl+2) ≤ H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

)

≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
−φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l})

< max{σ(xi, xi+1) : 1 ≤ i ≤ l}.

σ(xl, xl+1) ≤ H̃([S̃(x1, · · · , xl−1)]α̃L
, [S̃(x2, · · · , xl)]α̃L

)

≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l − 1}
−φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l − 1})

< max{σ(xi, xi+1) : 1 ≤ i ≤ l − 1}.

σ(xl−n, xl−n+1) ≤ H̃([S̃(x1, · · · , xl−n−1)]α̃L
, [S̃(x2, · · · , xl−n)]α̃L

)

≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l − n− 1}
−φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l − n− 1})

< max{σ(xi, xi+1) : 1 ≤ i ≤ l − n− 1}.

Hence, we conclude that the sequence {σ(xn+l−1, xn+l)}n≥1 is monotone non-
increasing and bounded below. Therefore, there exists τ ≥ 0 such that

lim
n−→∞

σ(xn+l−1, xn+l) = lim
n−→∞

max{σ(xn+i, xn+i+1) : 1 ≤ i ≤ l − 1} = τ. (3.4)

We claim that τ = 0. To see this, consider the following inequalities

σ(xl+n, xl+n+1) ≤ H̃([S̃(xn, · · · , xl+n−1)]α̃L
, [S̃(xn+1, · · · , xl+n)]α̃L

)

≤ max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1}
− φ(max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1}).

(3.5)
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Taking upper limit in (3.5) as n −→ ∞, we have τ ≤ τ − φ(τ), which implies that
φ(τ) ≤ 0. Hence, φ(τ) = 0. Therefore, limn−→∞ σ(xl+n, xl+n+1) = 0.

Next, we show that {xn}n≥1 is a Cauchy sequence in X̃. Let m,n ∈ N with n ≥ m.
Then, from (3.1) and Lemma 2.1, we obtain

σ(xl+n, xl+m)

≤ H̃([S̃(xn, · · · , xl+n−1)]α̃L
, [S̃(xm, · · · , xl+m−1)]α̃L

)

≤ H̃([S̃(xn, · · · , xl+n−1)]α̃L
, [S̃(xn+1, · · · , xl+n)]α̃L

)

+ H̃([S̃(xn+1, · · · , xl+n)]α̃L
, [S̃(xn+2, · · · , xl+n+1)]α̃L

)

+ · · ·+ H̃([S̃(xm−1, · · · , xl+m−2)]α̃L
, [S̃(xm, · · · , xl+m−1)]α̃L

)

≤ max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1}
− φ(max{σ(xi, xi+1) : n ≤ i ≤ l + n− 1})
+ max{σ(xi, xi+1) : n+ 1 ≤ i ≤ l + n}
− φ(max{σ(xi, xi+1) : n+ 1 ≤ i ≤ l + n})
+ · · ·+max{σ(xi, xi+1) : m− 1 ≤ i ≤ l +m− 2}
− φ(max{σ(xi, xi+1) : m− 1 ≤ i ≤ l +m− 2}).

(3.6)

Taking upper limit in (3.6) as n −→ ∞ gives limn−→∞ σ(xl+n, xl+m) = 0. This

shows that {xn}n≥1 is a Cauchy sequence in X̃. Hence, the completeness of this

space guarantees the existence of u ∈ X̃ such that

lim
n−→∞

σ(xn, u) = 0. (3.7)

Now, to show that u is an L-fuzzy fixed point of S̃, let n ∈ N, then consider

σ(u, [S̃(u, · · · , u)]α̃L
) ≤ σ(u, xn+l) + σ(xn+l, [S̃(u, · · · , u)]α̃L

)

≤ σ(u, xn+l) + H̃([S̃(xn, · · · , xn+l−1)]α̃L
, [S̃(u, · · · , u)]α̃L

)

≤ σ(u, xn+l) + H̃([S̃(u, · · · , u)]α̃L
), [S̃(u, · · · , xn)]α̃L

+ H̃([S̃(u, · · · , xn)]α̃L
, [S̃(u, · · · , xn, xn+1)]α̃L

)

+ · · ·+ H̃([S̃(u, xn,· · ·, xn+l−2)]α̃L
, [S̃(xn,· · ·, xn+l−1)]α̃L

).

≤ σ(u, xn+l) + max{σ(u, xi) : 1 ≤ i ≤ n}
− φ(max{σ(u, xi) : 1 ≤ i ≤ n})
+ max{σ(u, xn), σ(xn, xn+1)}
− φ(max{σ(u, xn), σ(xn, xn+1)})
+· · ·+max{σ(u, xn), σ(xn, xn+1),· · ·, σ(xn+l−2, xn+l−1)}
− φ(max{σ(u, xn), σ(xn, xn+1), · · · , σ(xn+l−2, xn+l−1)}).

(3.8)

Taking upper limit in (3.8) gives σ(u, [S̃(u, · · · , u)]α̃L
) ≤ 0, which implies that

u ∈ [S̃(u, · · · , u)]α̃L
. That is, u is an L-fuzzy fixed point of S̃. Now, we prove that

under condition (3.3), S̃ has a stationary point in X̃. For this purpose, assume that

there exists u∗ ∈ [S̃(u∗, · · · , u∗)]α̃L
with u ̸= u∗ such that [S̃(u, · · · , u)]α̃L

̸= {u}.
Then, by Lemma 2.1, we have

σ(u, u∗) ≤ H̃([S̃(u, · · · , u)]α̃L
, [S̃(u∗, · · · , u∗)]α̃L

)
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≤ σ(u, u∗)− φ(σ(u, u∗))

< σ(u, u∗) (3.9)

as a contradiction. Hence, S̃ has a stationary point in X̃.

Example 3.1. Let L = {a, b, c, g, s,m, n, v} be such that a ⪯L s ⪯L c ⪯L v, a ⪯L

g ⪯L b ⪯L v, s ⪯L m ⪯L v, g ⪯L m ⪯L v, n ⪯L b ⪯L v, and each element of the
doubletons {c,m}, {m, b}, {s, n}, {n, g} are not comparable. It follows that (L,⪯L)

is a complete distributive lattice. Let X̃ = [0,∞) and define σ : X̃ × X̃ −→ R by

σ(x, y) = |x − y|, for all x, y ∈ X̃. Clearly, (X̃, d) is a complete metric space. Let

α̃L : X̃ −→ L \ {0L} be a mapping. For all x1, · · · , xl ∈ X̃, consider an L-fuzzy

set-valued map S̃(x1, · · · , xl) : X̃
l −→ L defined as follows

S̃(x1, · · · , xl)(t1, · · · , tl) =


v, if (t1, · · · , tl) ∈

[
0, x1+···+xl

5l2

]
;

s, if (t1, · · · , tl) ∈
(
x1+···+xl

5l2 , x1+···+xl

4l2

]
;

m if (t1, · · · , tl) ∈
(
x1+···+xl

4l2 , x1+···+xl

3l2

]
;

g, if (t1, · · · , tl) ∈
(
x1+···+xl

3l2 ,∞
)
.

Assume that α̃L = v, then there exists α̃L ∈ L \ {0L} such that

[S̃(x1 · · · , xl)]α̃L
=

[
0,

x1 + · · ·+ xl

5l2

]
.

Define the function φ : R+ −→ R+ by

φ(t) =

{
t
6 , if t ∈

[
0, 5

2

)
2n(2n+1t)
22n+1−1 , if t ∈

[
22n+1
2n , 22(n+1)+1

2n+1

]
, n ∈ N.

A direct calculation verifies that φ is lower semi-continuous on R+ and φ(t) = 0, if

and only if t = 0. Now, for all (x1, · · · , xl+1) ∈ X̃, we have

Dα̃L
(S̃(x1, · · · , xl), S̃(x2, · · · , xl+1))

= H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

)

= H̃

([
0,

x1 + · · ·+ xl

5l2

]
,

[
0,

x2 + · · ·+ xl+1

5l2

])
≤ 1

5l
|x1 − xl+1| ≤

1

5
max{|xi − xi+1| : 1 ≤ i ≤ l}

≤ 5

6
max{σ(xi, xi+1) : 1 ≤ i ≤ l}

= max{σ(xi, xi+1 : 1 ≤ i ≤ l)}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}).

Moreover, for all x, y ∈ X̃, we have

H̃([S̃(x, · · · , x)]α̃L
, [S̃(y, · · · , y)]α̃L

) ≤ 1

20
|x− y|

≤ 5

6
σ(x, y)
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= σ(x, y)− φ(σ(x, y)).

Therefore, all the conditions of Theorem 3.1 are satisfied. Consequently, there exists
u = 0 ∈ X̃ such that 0 ∈ [S̃(0, · · · , 0)]α̃L

. That is, 0 is an L-fuzzy fixed point of S̃.

Corollary 3.1. Let (X̃, σ) be a complete metric space, l a positive integer and

S̃(x1, · · · , xl) : X̃
l −→ L be an L-fuzzy set-valued map. Assume that the following

conditions hold

(i) there exists α̃L ∈ L \ {0L} such that [S̃(x1, · · · , xl)]α̃L
is a nonempty compact

subset of X̃;

(ii) there exists λ ∈ (0, 1) such that

H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

)

≤ λmax{σ(xi, xi+1) : 1 ≤ i ≤ l},
(3.10)

for all (x1, · · · , xl+1) ∈ X̃ l+1. Then, for any arbitrary point x1, · · · , xl ∈
X̃, the sequence {xn+l}n≥1 defined by xn+l ∈ [S̃(xn, · · · , xn+l−1)]α̃L

, n ∈ N
converges to u ∈ X̃ and u ∈ [S̃(u, · · · , u)]α̃L

. Moreover, if for all x, y ∈ X̃
with x ̸= y,

H̃([S̃(x, · · · , x)]α̃L
[S̃(y, · · · , y)]α̃L

) ≤ λσ(x, y),

then S̃ has a stationary point in X̃.

Proof. Put φ(t) = (1− λ)t, where λ ∈ (0, 1) and t ≥ 0 in Theorem 3.1.

Corollary 3.2. Let (X̃, σ) be a complete metric space, l a positive integer and

S̃(x1, · · · , xl) : X̃
l −→ L be an L-fuzzy set-valued map. Assume that the following

conditions are satisfied

(i) there exists α̃L ∈ L \ {0L} such that [S̃(x1, · · · , xl)]α̃L
is a nonempty compact

subset of X̃;

(ii) there exist non-negative constants λ1, · · · , λl with
∑l

i=1 λi < 1 such that

H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

) ≤ λ1σ(x1, x2) + λ2σ(x2, x3)

+ · · ·+ λlσ(xl, xl+1),

(3.11)

for all (x1, · · · , xl+1) ∈ X̃ l+1. Then, for any arbitrary point x1, · · · , xl ∈ X̃, the

sequence {xn+l}n≥1 defined by xn+l ∈ [S̃(xn, · · · , xn+l−1)]α̃L
converges to u ∈ X̃

and u ∈ [S̃(u, · · · , u)]α̃L
. Moreover, if

H̃([S̃(x, · · · , x)]α̃L
, [S̃(y, · · · , y)]α̃L

)

≤
l∑

i=1

λiσ(x, y)
(3.12)

holds for all x, y ∈ X̃ with x ̸= y, then S̃ has a stationary point in X̃.
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10 M. S. Shagari & M. Balarabe

Proof. Obviously, condition (3.10) can be followed from condition (3.11) by taking

λ =
∑l

i=1 λi. Furthermore, let x, y ∈ X̃ with x ̸= y. Then, from (3.12), we have

H̃([S̃(x, · · · , x)]α̃L
, [S̃(y, · · · , y)]α̃L

) ≤ H̃([S̃(x, · · · , x)]α̃L
, [S̃(y, · · · , x, y)]α̃L

)

+H̃([S̃(x, · · · , x, y)]α̃L
, [S̃(x, · · · , x, y, y)]α̃L

)

+ · · ·+ H̃([S̃(x, y, · · · , y)]α̃L
, [S̃(y, · · · , y)]α̃L

)

≤
l∑

i=1

λiσ(x, y).

Thus, all the assertions of Corollary 3.1 are satisfied with λ =
∑l

i=1 λi, and that
completes the proof.

The following theorem is a Presic-type generalization of the main result of
Heilpern [14] using the concept of σ∞

L distance for L-fuzzy sets.

Theorem 3.2. Let (X̃, σ) be a complete metric space, l a positive integer and

S̃ : X̃ l −→ W (X̃) an L-fuzzy set-valued map. Assume that there exists a lower
semi-continuous function φ : R+ −→ R+ with φ(t) = 0, if and only if t = 0 such
that

σ∞
L (S̃(x1, · · · , xl), S̃(x2, · · · , xl+1)) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}

− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),
(3.13)

for all (x1, · · · , xl+1) ∈ X̃ l+1. Then, for each arbitrary point x1, · · · , xl ∈ X̃, the
sequence {xn+l}n≥1 defined by

xn+l ∈ S̃(xn, · · · , xn+l−1), n ∈ N

converges to u ∈ X̃ and {u} ⊂ S̃(u, · · · , u).

Proof. Let x1, · · · , xl ∈ X̃ and α̃L ∈ L\{0L}. Then, according to the hypothesis,

S̃(x1, · · · , xl)]α̃ ∈ K(X̃). Now, by definitions of Dα̃L
and σ∞

L -metric for L-fuzzy

sets, for all x1, · · · , xl+1 ∈ X̃ l+1, we have

Dα̃L
(S̃(x1, · · · , xl), S̃(x2, · · · , xl+1)) = H̃([S̃(x1, · · · , xl)]α̃L

, [S̃(x2, · · · , xl+1)]α̃L
)

≤ sup
α̃L

H̃([S̃(x1,· · ·, xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

)

= σ∞
L (S̃(x1, · · · , xl), S̃(x2, · · · , xl+1))

≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
−φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}).

Thus, Theorem 3.1 can be applied to find u ∈ X̃ such that {u} ⊂ S̃(u, · · · , u).

Remark 3.1. If we take L = [0, 1], l = 1 and φ(t) = (1 − λ)t for all t ∈ R+ and
λ ∈ (0, 1), then Theorem 3.2 reduces to the main result of Heilpern [14].

Definition 3.2. [14] Let (X̃, σ) be a metric space. A fuzzy set-valued map S̃ :

X̃ −→ W (X̃) is called fuzzy λ-contraction, if there exists a constant λ ∈ (0, 1) such

that for all x, y ∈ X̃,
σ∞(S̃(x), S̃(y)) ≤ λσ(x, y).
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In [14], it has been shown that every fuzzy λ-contraction on a complete metric
space has a fuzzy fixed point. Following this idea, we inaugurate the next definition
in order to establish a significant consequence of Theorem 3.2.

Definition 3.3. Let (X̃, σ) be a metric space. An L-fuzzy set-valued map S̃ :

X̃ −→ W (X̃) is called an L-fuzzy weak contraction, if there exists a lower semi-
continuous function φ : R+ −→ R+ with φ(t) = 0, if and only if t = 0 such that for

all x, y ∈ X̃ with x ̸= y,

σ∞
L (S̃(x), S̃(y)) ≤ σ(x, y)− φ(σ(x, y)).

Corollary 3.3. Let (X̃, σ) be a complete metric space and S̃ : X̃ −→ W (X̃) be an

L-fuzzy weak contraction on X̃. Then, S̃ has at least one L-fuzzy fixed point in X̃.

Proof. It is enough to take l = 1 in Theorem 3.2.

Remark 3.2. If we put L = [0, 1], φ(t) = (1 − λ)t for all t ≥ 0 and λ ∈ (0, 1),
Corollary 3.3 reduces to the main result of Heilpern [14, Theorem 3.1].

4. Further consequences

Here, we apply the results from Section 3 to discuss some new fixed point results
of fuzzy, multi-valued and single-valued mappings. To this end, recall that a point
u ∈ X̃ is called a fixed point of a multi-valued (single-valued) mapping A on X̃, if

u ∈ Au (u = Au). A point u ∈ X̃ is said to be a stationary point of a multi-valued
mapping A, if Au = {u}.

Theorem 4.1. Let (X̃, σ) be a complete metric space, l a positive integer and

S̃(x1, · · · , xl) : X̃ l −→ [0, 1] a fuzzy set-valued map. Assume that the following
conditions hold

(i) there exists an α̃ ∈ (0, 1] such that [S̃(x1, · · · , xl)]α̃ is a nonempty compact

subset of X̃;

(ii) there exists a lower semi-continuous function φ : R+ −→ R+ satisfying φ(t) =
0, if and only if t = 0 such that

H̃([S̃(x1, · · · , xl)]α̃, [S̃(x2, · · · , xl+1)]α̃) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),

for all (x1, · · · , xl+1) ∈ X̃ l+1. Then, for any arbitrary point x1, · · · , xl ∈ X̃, the
sequence {xn+l}n≥1 defined by

xn+l ∈ [S̃(xn, · · · , xn+l−1)]α̃, n ∈ N

converges to u ∈ X̃ and u ∈ [S̃(u, · · · , u)]α̃. Moreover, if

H̃([S̃(x1, · · · , x)]α̃, [S̃(y, · · · , y)]α̃) ≤ σ(x, y)− φ(σ(x, y))

holds for all x, y ∈ X̃ with x ̸= y, then S̃ has a stationary point in X̃.

Proof. Put L = [0, 1] in Theorem 3.1.
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12 M. S. Shagari & M. Balarabe

Theorem 4.2. Let (X̃, σ) be a complete metric space, l be a positive integer and

A : X̃ l −→ K(X̃) be a multi-valued mapping. Assume that

H̃(A(x1, · · · , xl), A(x2, · · · , xl+1)) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
= −φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l})

holds for all (x1, · · · , xl+1) ∈ X̃ l+1, where φ : R+ −→ R+ is a lower semi-continuous
function with φ(t) = 0, if and only if t = 0. Then, for any arbitrary point

x1, · · · , xl ∈ X̃, the sequence {xn+l}n≥1 defined by xn+l ∈ A(xn, · · · , xn+l−1), n ∈
N converges to u ∈ X̃ and u ∈ A(u, · · · , u). Moreover, if

H̃(A(x, · · · , x), A(y, · · · , y)) ≤ σ(x, y)− φ(σ(x, y))

holds for all x, y ∈ X̃ with x ̸= y, then A has a stationary point in X̃.

Proof. Let L = {ξ,ϖ, ς, τ} with ξ ⪯L ϖ ⪯L τ , ξ ⪯L ς ⪯L τ , ϖ and ς are not

comparable, then (L,⪯L) is a complete distributive lattice. Let α̃L : X̃ l −→ L\{0L}
be a mapping, and consider an L-fuzzy set-valued map S̃(x1, · · · , xl) : X̃ l −→ L
defined by

S̃(x1, · · · , xl)(t1, · · · , tl) =

{
α̃L(x1, · · · , xl), if (t1, · · · , tl) ∈ A(x1, · · · , xl);

0L, otherwise.

If we take α̃L := α̃L(x1, · · · , xl) = τ , then, for all (x1, · · · , xl) ∈ X̃, there exists
α̃L ∈ L \ {0L} such that

[S̃(x1, · · · , xl)]α̃L
= {(t1, · · · , tl) ∈ X̃ : τ ⪯L S̃(x1, · · · , xl)(t1, · · · , tl)}
= A(x1, · · · , xl).

From this point, Theorem 3.1 can be applied to find u ∈ X̃ such that u ∈ A(u, · · · , u)
and {u} = A(u, · · · , u).

Theorem 4.3. (see [1, Theorem 2.1]) Let (X̃, σ) be a complete metric space, l a

positive integer and ϑ : X̃ l −→ X̃ be a single-valued mapping. Assume that there
exists a lower semi-continuous function φ : R+ −→ R+ with φ(t) = 0, if and only
if t = 0 such that

σ(ϑ(x1, · · · , xl), ϑ(x2, · · · , xl+1)) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l})

holds for all (x1, · · · , xl+1) ∈ X̃ l+1. Then, for any arbitrary point x1, · · · , xl ∈ X̃,
the sequence {xn+l}n∈N defined by xn+l = ϑ(xn, · · · , xn+l−1), n ∈ N converges to

u ∈ X̃ and u = ϑ(u, · · · , u). Moreover, if

σ(ϑ(x, · · · , x), ϑ(y, · · · , y)) ≤ σ(x, y)− φ(σ(x, y))

holds for all x, y ∈ X̃ with x ̸= y, then u ∈ X̃ is the unique fixed point of ϑ.

Proof. Let L = {ξ,ϖ, ς, τ} be as defined in the proof of Theorem 4.2. Then

(L,⪯L) is a complete distributive lattice. Let α̃Lϑ
: X̃ l −→ L\{0L} be an arbitrary
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mapping and define an L-fuzzy set-valued map S̃(x1, · · · , xl) : X̃
l −→ L as

S̃(x1, · · · , xl)(t1, · · · , tl) =

{
α̃Lϑ

(x1, · · · , xl), if (t1, · · · , tl) = ϑ(x1, · · · , xl);

0L, if (t1, · · · , tl) ̸= ϑ(x1, · · · , xl).

By taking α̃L := α̃Lϑ
(x1, · · · , xl), we have

[S̃(x1, · · · , xl)]α̃L
= {(t1, · · · , tl) ∈ X̃ : α̃Lϑ

(x1, · · · , xl) ⪯L S̃(x1, · · · , xl)(t1, · · · , tl)}
= {ϑ(x1, · · · , xl)}.

Obviously, {ϑ(x1, · · · , xl)} ∈ K(X̃). Notice that in this case,

H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

) = σ(ϑ(x1, · · · , xl), ϑ(x2, · · · , xl+1)).

Consequently, Theorem 3.1 can be applied to find u ∈ X̃ such that
u ∈ [S̃(u, · · · , u)]α̃L

= {ϑ(u, · · · , u)}, which further implies that
ϑ(u, · · · , u) = u.

Remark 4.1.

(i) Theorems 3.1 and 4.2 are L-fuzzy set-valued and multi-valued extensions of
the result of Abbas et al., [1, Theorem 2.1].

(ii) Theorem 3.1 is an L-fuzzy generalization of the results of Ciric [10] and Presic
[25].

(iii) If l = 1, Theorem 3.1 is an L-fuzzy improvement of the result of Rhoades [28].

(iv) By setting φ(t) = (1 − λ)t, where λ ∈ (0, 1) and t ≥ 0, we can deduce the
Banach contraction theorem from Theorem 3.1 by employing the method of
proving Theorem 4.3.

5. Stability of L-fuzzy mappings

In this section, the study of stability of Presic type L-fuzzy fixed point problems is
initiated. We start with the following result.

Theorem 5.1. Let (X̃, σ) be a complete metric space, l a positive integer and

S̃i(x1, · · · , xl) : X̃ l −→ L be a sequence of L-fuzzy set-valued maps for i = 1, 2.
Assume that the following assertions hold:

(i) there exists α̃L ∈ L\{0L} such that [S̃i(x1, · · · , xl)]α̃L
is a nonempty compact

subset of X̃;

(ii) there exists a lower semi-continuous function φ : R+ −→ R+ satisfying φ(t) =
0, if and only if t = 0 such that

H̃([S̃i(x1, · · · , xl)]α̃L
, [S̃i(x2, · · · , xl+1)]α̃L

)

≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),

(5.1)

for all (x1, · · · , xl+1) ∈ X̃ l+1 and

H̃([S̃i(x, · · · , x)]α̃, [S̃i(y, · · · , y)]α̃) ≤ σ(x, y)− φ(σ(x, y)) (5.2)
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holds for all x, y ∈ X̃. Then,

φ(H̃(Fix(S̃1),Fix(S̃2))) ≤ δ,

where
δ = sup

x∈X̃

H̃([S̃1(x, · · · , x)]α̃L
, [S̃2(x, · · · , x)]α̃L

).

Proof. Following Theorem 3.1, we have that Fix(S̃i) is nonempty. Let θ0 ∈
[S̃1(θ0, · · · , θ0)]α̃L

. Then, by Lemma 2.1, there exists θ1 ∈ [S̃2(θ0, · · · , θ0)]α̃L
such

that
σ(θ0, θ1) ≤ H̃([S̃1(θ0, · · · , θ0)]α̃L

, [S̃2(θ0, · · · , θ0)]α̃L
).

Since [S̃1(θ1, · · · , θ1)]α̃L
, [S̃2(θ0, · · · , θ0)]α̃L

∈ K(X̃) and θ1 ∈ [S̃2(θ0, · · · , θ0)]α̃L
,

then by Lemma 2.1, there exists θ2 ∈ [S̃1(θ1, · · · , θ1)]α̃L
such that

σ(θ1, θ2) ≤ H̃([S̃2(θ0, · · · , θ0)]α̃L
, [S̃1(θ1, · · · , θ1)]α̃L

).

Continuing in this way, we generate a sequence {θn}n≥1 in X̃ with

θn ∈ [S̃2(θn−1, · · · , θn−1)]α̃L
, θn+1 ∈ [S̃1(θn, · · · , θn)]α̃L

such that

σ(θl+1, θl+1) ≤ H̃([S̃1(θl, · · · , θl)]α̃L
, [S̃2(θl+1, · · · , θl+1)]α̃L

)

≤ σ(θl, θl+1)− φ(σ(θl, θl+1)).

Similarly,

σ(θl, θl+1) ≤ H̃([S̃1(θl−1, · · · , θl−1)]α̃L
, [S̃2(θl, · · · , θl)]α̃L

)

≤ σ(θl−1, θl)− φ(σ(θl−1, θl)).

Therefore, for all l ≥ n, we have

σ(θl−n, θl−n+1) ≤ H̃([S̃1(θl−n−1, · · · , θl−n−1)]α̃L
, [S̃2(θl−n, · · · , θl−n)]α̃L

) (5.3)

≤ σ(θl−n−1, θl−n)− φ(σ(θl−n−1, θl−n)). (5.4)

Continuing as in Theorem 3.1, it follows that {θn}n≥1 is a Cauchy sequence in

X̃, and the completeness of this space implies that there exists u ∈ X̃ such that
θn −→ u as n −→ ∞. Now, let u ∈ [S̃2(u, · · · , u)]α̃L

. Then, by assumption, we
have

σ(θ0, θ1) ≤ H̃([S̃1(θ0, · · · , θ0)]α̃L
, [S̃2(θ0, · · · , θ0)]α̃L

)

≤ sup
x∈X̃

H̃([S̃1(x, · · · , x)]α̃L
, [S̃2(x, · · · , x)]α̃L

) = δ.

Thus, by triangle inequality, we get

σ(θ0, u) ≤ σ(θ0, θ1) + σ(θ1, u)

≤ σ(θ0, θ1) + H̃([S̃1(θ0, · · · , θ0)]α̃L
, [S̃2(u, · · · , u)]α̃L

)

≤ δ + σ(θ0, u)− φ(σ(θ0, u)),

which implies that φ(σ(θ0, u)) ≤ δ. It follows that for any arbitrary point θ0 ∈
Fix(S̃1), there exists u ∈ Fix(S̃2) such that φ(σ(θ0, u)) ≤ δ. On similar steps, for

any point ξ0 ∈ Fix(S̃2), we can find an element γ ∈ Fix(S̃1) such that φ(σ(ξ0, γ)) ≤
δ. Consequently, it follows that H̃(Fix(S̃1),Fix(S̃2)) ≤ δ.

For the next results, we introduce the following concept of uniform convergence
of sequence of L-fuzzy set-valued maps.
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Definition 5.1. Let (X̃, σ) be a metric space. A sequence of L-fuzzy set-valued

maps {S̃n(x) : X̃ −→ L, n ∈ N} is said to converge uniformly to an L-fuzzy set-

valued map S̃(x) : X̃ −→ L, if for every ϵ > 0 and for all x ∈ X̃, there exists
α̃L(x) := α̃L ∈ L \ {0L} and nϵ ∈ N such that for all n ≥ nϵ,

H̃([S̃nx]α̃L
, [Tx]α̃L

) < ϵ. (5.5)

If (5.5) holds, then we write

lim
n−→∞

H̃([S̃nx]α̃L
, [Tx]α̃L

) = 0,

where [Tx]α̃L
is called the limiting cut set, and is given by

[Tx]α̃L
= lim

n−→∞
[S̃nx]α̃L

.

.

Example 5.1. Take X̃ = [0, 5] and define σ : X̃ × X̃ −→ R as σ(x, y) = |x− y| for
all x, y ∈ X̃. Let L = {ξ,ϖ, ς, τ} be as defined in the proof of Theorem 4.2, then

(L,⪯L) is a complete distributive lattice. Consider a mapping α̃L : X̃ −→ L \ {0L}
and a sequence of L-fuzzy set-valued maps {S̃n}n≥1 defined by

S̃n(x)(t) =

{
α̃L(x), if 0 ≤ t ≤ 1

(n+x) ;

0L, if 1
(n+x) < t ≤ 5.

Assume that α̃L := α̃L(x) for all x ∈ X̃, then

[S̃nx]α̃L
=

[
0,

1

(n+ x)

]
.

Given ϵ > 0, we get

H̃([S̃nx]α̃L
, [Tx]α̃L

) =
1

(n+ x)
< ϵ.

Notice that n ≥ 1
ϵ − x decreases with x and the maximum value is 1

ϵ . Thus,
choose nϵ ≥ 1

ϵ , so that for ϵ > 0, there exists nϵ ∈ N such that for all n ≥ nϵ,

H̃([S̃nx]α̃L
, [Tx]α̃L

) < ϵ. Hence, {S̃n}n≥1 converges uniformly to S̃ on X̃.

We recall that the fixed point sets Fix(S̃n) of a sequence of multi-valued map-

pings S̃n : X̃ −→ K(X̃) are stable, if H̃(Fix(S̃n),Fix(S̃)) −→ 0, as n −→ ∞, where

S̃ = limn−→∞ S̃n. Similar to the concept of stability of fixed points in [9,16,18], we
propose the following definition of stability of fixed point sets of sequence of L-fuzzy
set-valued maps.

Definition 5.2. Let {S̃n(x) : X̃ −→ L, x ∈ X̃, n ∈ N} be a sequence of L-fuzzy set-

valued maps that converges uniformly to an L-fuzzy set-valued map S̃(x) : X̃ −→
L. Suppose that {Fix(S̃n)}n≥1 is the sequence of fixed point sets of the sequence

{S̃n}n≥1 and {Fix(S̃)} is the fixed point set of S̃. Then, we say that the L-fuzzy

fixed point sets of {S̃n}n≥1 are stable, if

lim
n−→∞

H̃(Fix(S̃n),Fix(S̃)) = 0.
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Lemma 5.1. Let (X̃, σ) be a complete metric space, l a positive integer and

{S̃n(x1, · · · , xl) : X̃ l −→ L, n ∈ N} be a sequence of L-fuzzy set-valued maps

uniformly convergent to S̃(x1, · · · , xl) : X̃
l −→ L. If {S̃n(x1, · · · , xl)}n≥1 satisfies

(5.1) and (5.2) for each n ∈ N, then S̃ also satisfies (5.1) and (5.2).

Proof. Since S̃n satisfies (5.1) and (5.2) for each n ∈ N, then for all (x1, · · · , xl+1) ∈
X̃, we have

H̃([S̃n(x1, · · · , xl)]α̃L
, [S̃n(x2, · · · , xl+1)]α̃L

) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),

(5.6)

and
H̃([S̃n(x, · · · , x)]α̃L

, [S̃n(y, · · · , y)]α̃L
) ≤ σ(x, y)− φ(σ(x, y)). (5.7)

As S̃n converges to S̃ uniformly and φ is lower semi-continuous, taking upper limit
in (5.6) and (5.7) yields

H̃([S̃(x1, · · · , xl)]α̃L
, [S̃(x2, · · · , xl+1)]α̃L

) ≤ max{σ(xi, xi+1) : 1 ≤ i ≤ l}
− φ(max{σ(xi, xi+1) : 1 ≤ i ≤ l}),

and
H̃([S̃(x, · · · , x)]α̃L

, [S̃(y, · · · , y)]α̃L
) ≤ σ(x, y)− φ(σ(x, y)).

In what follows, we apply Theorem 5.1 and Lemma 5.1 to establish a stability
result for the sequence of L-fuzzy set-valued maps.

Theorem 5.2. Let (X̃, σ) be a complete metric space and {S̃n(x1, · · · , xl) : X̃
l −→

L, n ∈ N} be a sequence of L-fuzzy set-valued maps, uniformly convergent to

S̃(x1, · · · , xl) : X̃
l −→ L. Assume that the following conditions are satisfied

(i) there exists α̃L ∈ L \ {0L} such that [S̃n(x1, · · · , xl)]α̃L
and [S̃(x1, · · · , xl)]α̃L

are nonempty compact subsets of X̃;

(ii) S̃n satisfies (5.1) and (5.2) for each n ∈ N.
Then,

lim
n−→∞

H̃(Fix(S̃n),Fix(S̃)) = 0.

That is, the set of all L-fuzzy fixed points of S̃n are stable.

Proof. By Lemma 5.1, S̃ satisfies (5.1) and (5.2).

Let δn = supx∈X̃ H̃([S̃n(x)]α̃L
, [S̃x]α̃L

). Since S̃n converges to S̃ uniformly on X̃,
we have

lim
n−→∞

δn = lim
n−→∞

sup
x∈X̃

H̃([S̃nx]α̃L
, [S̃x]α̃L

) = 0.

Applying Theorem 5.1 yields φ(H̃(Fix(S̃n),Fix(S̃))) ≤ δn for all n ∈ N. Given that
φ is lower semi-continuous, we have

lim
n−→∞

inf φ(H̃(Fix(S̃n),Fix(S̃))) ≤ lim
n−→∞

δn = 0,

from which it follows that

lim
n−→∞

H̃(Fix(S̃n),Fix(S̃)) = 0.
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Presićć-Kannan operators, Acta Mathematica Universitatis Comenianae, New
Series, 2010, 79(1), 77–88.
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