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Fractional Langevin Equation at Resonance*

Zhiyuan Liu' and Shurong Sun'f

Abstract The study of fractional Langevin equation has obtained abundant
results in recent years. However, there are few studies on resonant fractional
Langevin equation. In this paper, we investigate boundary value problems for
fractional Langevin equation at resonance. By virtue of Banach contraction
mapping principle and Leray-Schauder fixed point theorem, we obtain the
uniqueness and existence of solutions. In addition, we get different stability
results, including Ulam-Hyres stability and generalized Ulam-Hyres stability.
Finally, give relevant examples to demonstrate the main results.
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1. Introduction

Langevin equation is a motion equation proposed by Langevin in 1908 when he
studied Brownian motion. It is well known that Langevin equation is widely used to
describe the physical phenomena of waves in evolving environments [1,2]. However,
in the complex evolution environment, Langevin equation of integer order cannot be
described correctly. The fractional Langevin equation appears, that is, the integer
derivative is replaced by the fractional derivative in the equation [3]. Compared
with integer order, fractional calculus has non-local and memory properties and
can better describe physical phenomena, such as heat conduction of soft matter,
fractal phenomena and image processing [4,5].

The fractional Langevin equation is widely used in various fields [6-9]. In bio-
chemistry, Langevin equation can be used to study protein folding dynamics [6]. In
physics, Langevin equation can be used to study quantum noise [7]. For example,
the stable two-state update model can be abstracted into the following fractional
Langevin equation, which describes the underdiffusion process of potential fields
and external signal forces [8]

¢DYx(t) = ax — ba® + Acos(2mft) + £(t), 0<a<1.

Based on the extensive application of the fractional Langevin equation, the so-
lutions to its initial value problem and boundary value problem are concerned by
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scholars [10-15]. For example, Ahmad et al. [10] considered the existence and u-
niqueness of solutions for three-point boundary value problem of fractional Langevin
equation

eDA(EDY + N)x(t) = f(t,z(t), 0<t <1,

2(0) =0,z(n) =0,z(1) =0, 0<a<1l,1<pB<2.

Baleanu et al. [11] studied the existence of solutions for fractional Langevin equation
involving Atangana-Baleanu operators

ABD DB(ABD pa 4 XY (t) = f(t,x(t)), 0<t<1,
x(o) = ’}/1,1'/(0) =72, 0< avﬁ <L

Wang et al. [12] investigated the fractional Langevin equation with integro-differential
strip-multi-point boundary conditions

gD“ODa+Aﬁﬁ)=f@$()ODQ+A)(D,0<tS¢
()] im0 = wr [y x( dS+ZHz(i)7 0<a,pB,v<1,

m
=B (DY + N (t)|i=o = w2 [y §Dx(s)ds + > vig D*x(&;).
i=1

For the study of fractional Langevin equation, as far as we know, it is consid-
ered in the case of non-resonance, and the resonance case has not been studied at
present. Based on this, this paper establishes the fractional Langevin equation at
resonance. Aiello [16] used the Langevin equation to describe the random move-
ment of pollen under the action of water molecules. In the network public opinion
environment, netizens’ opinions are like the movement of pollen under the action
of water molecules, which is very similar to the evolutionary structure of Langevin
equation [17]. The resonance phenomenon between multiple events in network pub-
lic opinions can be abstracted into the fractional Langevin equation at resonance,
which makes the study of the resonant fractional Langevin equation not only have
theoretical significance [18,19], but also have certain practical value.

In addition to the existence and uniqueness of solutions, it is important to know
the stability of them. As one of the qualitative theories of fractional differential
equations, stability theory has gradually penetrated into various fields [20]. In the
process of establishing the differential model, there are inevitably small disturbances
that cannot be estimated, and these disturbances make the stability of differential
equations fundamentally change. The stability of the system is an important basis
to judge whether the system can run normally, so the stability of the system is worth
further study. Antoniadou [21] proposed five different resonance orbitals, and found
that the resonance orbitals with stability generally have larger eccentricity. Wang
et al. [22] investigated the Ulam-Hyers stability of fractional Langevin equations

D} (°Df + Na(t) = f(t,x(t), teJ',
Ax(ty) =z(tf) —z(t,) = I, Iy €R.

In this paper, we consider the following boundary value problem for fractional
Langevin equation at resonance

{CD@(CDO%A) x(t) = f(t,2(t), te(0,1),

(1.1)
z(0) = 0,° Dy z(0) = 0,z(1) = nx ( ),
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where 0 < a < 1,1 < <2, 0<f-a<1l,A>07>00<¢<1,
+oo ata
kzo % =0, °Dg, is Caputo fractional derivative and f :[0,1] x R — R
is continuous.

Boundary value problem (1.1) is resonant since the corresponding homogeneous
boundary value problem

{CD{; (°Dg, — N)z(t) =0, t€ (0,1), 12)
2(0) = 0,° DG (0) = 0,2(1) = na ()

oo Ak ghatatl
has a nontrivial solution Z fhatat2)"

Inspired by the above Work in this paper we study the existence, uniqueness and
stability of solutions for fractional Langevin equation at resonance. The structure
of this paper is as follows. In part 2, we review the basic definitions, theorems and
lemmas. In part 3, the existence of solutions is obtained by Leray-Schauder fixed
point theorem and the uniqueness of solution is studied by Banach contraction
mapping principle. In part 4, we give different stability results, including Ulam-
Hyers stability and generalised Ulam-Hyers stability. In part 5, examples are given
to verify our main results.

2. Preliminaries

Definition 2.1. [23] The Riemann-Liouville fractional integral of order o > 0 of
a function x : (0, +00) — R is given by

t a—1
(t—s)
IS z(t) = — d
O+x( ) /0 F(Oé) J?(S) S,
provided the right-hand side is point-wise defined on (0, +00).

Definition 2.2. [23] The Caputo fractional derivative of order o > 0 of a function
x : (0,400) — R is given by

t — s n—a—1
‘Dgra(t) = /0 (tr(n)_a)x(")(s)ds,

provided the right-hand side is point-wise defined on (0, +00), where n is the small-
est integer greater than or equal to «.

Lemma 2.1. /23] Let o > 0. If x € C[0, 1], then the following equation holds
& (CDYa(t)) = 2(t) — co — 1t — eat? — - — ¢y t"

where ¢; € R,i=10,1,--- ,n—1, and n is the smallest integer greater than or equal
to a.

Lemma 2.2. [23] Let « > 0, 8 > 0. If x € C[0,1], then the following equations

hold
5 (I, (1) = I+ a(t),

o+ (Igr(t)) = =(1).



Fractional Langevin Equation at Resonance 291

Consider the following boundary value problem which is equivalent to (1.1)
“DJ. (D a(1)) = f(t,2(t)) + XDf, (1), te (0,1), o)
2(0) = 0.6 D, 2(0) = 0,(1) = na(©).

Definition 2.3. Function z € AC?[0,1] and y € AC|0, 1] satisfying (2.3) is called
the solution of boundary value problem (2.2).

Lemma 2.3. If z € AC?|0,1], y € AC[0, 1], then the unique solution of problem

{CDé’ L (Dgyx(t) = (), 1€ (0,1), (22)
#(0) = 0,° Dg(0) = 0, 2(1) = na(£)

18

t —s a+p—1 a+1
x(t) :/0 (t(>y(s)d8 + kti

INCE e pea+l -
13 _sa+,l3’—1 1 —So‘+ﬁ_1 .
[n/o %y(s)ds_A (1F(a)+ﬂ)y(s)d8 ., telo,1].

Proof. (i) We present that if z(¢) is the solution of(2.2), it can be expressed as
(2.3).
Applying I§+ to the both sides of (2.2)
I§+ (CD§+ (“Dgr (1)) = I(?er(t)-
From Lemma 2.1, we get

°Dfix(t) = Io+y( )+ co + ct.

By the boundary condition °Df, 2(0) = 0, we have ¢y = 0. Then
*Dg.a(t) = I, y(t) + ct.

Applying I, to the both sides and by Lemmas 2.1 and 2.2, we obtain
w(t) — oo = IgTF Py (t) + I (ct).
From the boundary condition z(0) = 0, we get co = 0. Then
a(t) = ISPy (t) + Ig: (ct).
By Definition 2.1, we have
t @ —1 a+1
(t —s)*th ct
z(t) = ————y(s)ds + ———.
®) /0 Ta+p) O+ rarg

Then

B L (1- s)aJrB*l c
=), A O Ty

_ [ st cg !
z(§) = /0 Wy(s)ds + Ta+2)
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+o0 (i cata
Notice that kzo % =0and 0 < & <1, we get n€*T! £ 1. Otherwise, if

nétl =1, we have

+oo /\k(l _ ngoH_OH_l) _ too )\k(l _ gka)
I'(ka+a+2) I'(ka+a+2)

)

k=0 k=0

which is a contradiction. By the boundary condition z(1) = nz(£), we obtain
TMa+2) £ (g —s)otht /1 (1 —s)ath-1
= ds — _ ds|.
T T [”/o Tats) "7 ) Tarp O

Then z(t) can be expressed as follows

t —s a+p—1 a+1
x(t) :/0 Ly(s)cl:s—&- !

T(a+f) 1—ngott
13 (f _ S)a+6—1 1 (1 _ S)a_;,_g_l
0 Sy v [ v

(i1) We show that if z(¢) can be expressed as (2.3), it is the solution of (2.2). In

fact,
B bt —s)oth-1 ctot!
o0 = [ YO g

= I y(t) + Igi (ct),

where

_ P2 oot o At
*1—n§a+1["/0 Tlat ) Y& /0 a1 p) V(s)ds]:

Then, we have
DG a(t) = D (ISP y(1)) + DG (Ig. (ct)).

By Lemma 2.2, we get
“Dga(t) = 10 y(t) + ct.

Applying CDg+ to the both sides
“Dy. (*Dgva(t)) = Dy (I y(t)) + Dy (ct).
From Lemma 2.2, we have
“Dy, (“Dg: x(t) = y(b).
This completes the proof. O

Lemma 2.4. [2/] Let E be a Banach space and there exists a completely continuous
operator T : E — E, such that

V={reFE:x=uTz,0< <1}

is a bounded set. Then the operator T has fized points on E.
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Lemma 2.5. [25] Let E be a Banach space and D C E be a non-empty closed
subset, the mapping T : D — D 1is a contraction, that is,

Ve,y e D, ||Tx—Ty| <kllz—y| (0<k<1).

Then there is a unique point x* € D, such that Tx* = x*, that is, T exists a unique
fixed point on D.

3. The solvability of fractional Langevin equation
Let E={x:x,° D§+a: € C[0,1]} be a Banach space with the norm
_ B
ol = max |2 (t)] + max [*Dy, x(1)]. (3.1)

Define operator T : E — E as follows

t o at+B—1 a+1
Ta(t) = /0 (tr(a)w)[f(s,x(s)) + X°Dg.a(s)lds + #
€ (g - g)atB-1
[n/o %[f(svx(s)) + Dy a(s)|ds (3.2)

1 _ g)etB-1
‘A ﬂnal;>[ﬂau@»+*0$ﬂﬁwﬁ-

For convenience, we make the following notations

B 1 B n+1
SR VPN N Sl TRy Ty
foo 1L A, — (n+ 1) (a+2)
ST D+l YT et T2 - B+ a)l(a+B+1)

Theorem 3.1. If the following assumptions hold
(Hy) f:]0,1] x R — R is continuous;
(Ha) there exists constants m,n > 0 such that
|f(t,z)| <m+nlz|, V(tz)e€[0,1] xR.
Then boundary value problem (1.1) has at least a solution provided that

0<(n+MN)(A1+ A+ A3+ Ay) < 1.

Proof. Take D ={z € E: ||z|| <r} where

m(Ay + Ag + Az + Ay)
<. 3.3
1—(n+/\)(A1+A2+A3+A4)_T (3:3)

(i) First, we prove that T'(D) C D. For Vx € D, Vt € [0, 1], from (3.2) and (H>),
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we get
a+ﬁ 1 a+1
| T(t) ‘/0 a+ﬁ (#(5)) + XDyl ”dH%
3 _s a+pB-—1
g %[f( #() + X°Dg, a(s)]ds
1 (1 _ S)a+5—1 .
- [ S el + XD a(o)lds]
S/O ot B (1/(s, ()| + [A°Dgya(s)])ds + [T pgat]
§ 75 aJrﬁ 1
[,7/0 St MGt )|+ [A°Dy, x(s)|)ds
L (1 - g)ots-1
+ [ s o) + Do)
" (tf aJrﬁ 1 tonrl
/0 (m + nlz(s)| + AI°DE, x(s)|)ds + = peart]
.f aJrﬁ 1
[,7/0 a+6 (m + nla(s)| + A" Dy a(s)|)ds
a+pB-1
+/0 (1<)+5><m+n|x< )+ DG (5) s |
(m 4 nr + Ar)tets + ot (m 4 M) (€T 1)
Tla+B+1) ' [I—ngett] Dla+B+1)
1 n+1
S(m+nr+)\T){F(a+ﬂ+1) |1f7]§a+1|F(a+5+1)}

=(m+nr+ Xr)(4; + A).

By the definition of the operator T and (Hsz), we have

D5, T
—5)" 1 . ['(a + 2)tt—A+a
<| [} iyt Dol + e
a+pB—1
W[ %ms #(5)) + XDf, a(s)]ds
1 (1 o s)a+571
- | SRl rsate) + X°Da(las)
—5)a— 1 a 1—-B+«
< [ oo+ Dol + eI
f _ a+ﬁ 1
[ [ S s o)+ Do)
1 _ oc+5 1 .
+/O aw (155, 2()] + N DG ()]s
t (t [(o+ 2)tt—B+a

i m+n|a:( )|+ MDDy, (s)|)ds + 1— et D2 — B+ a)
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€ (g — )i
0 [ C i m e+ nla(s) + XD (s) s

I'(a+p)
1 _
(1 _s)a+5 1 .
+/0 W(ernlx( s)| + A°DZ, x(s)|)ds
(m + nr + Ar)t® D(a+ 2170 (m+nr 4 Ar) (et 4 1)
- T(e+1) 1 —ngetT(2 - B +a) Cla+pB+1)

1 (n+ D (a+2)
Mot 1) " [I-ng 0@~ B+ a)l(a+ B+ 1)
=(m +nr+ Ar)(As + Ay).

S(m—!—m‘—l—)\r)[

Therefore, from (3.1), we obtain
[Tl = g [T2(0)] + gmax ' DS ()

<(m+nr—+ Ar)(Ar + As + As + Ay)
<r.

Then T'(D) C D. It’s clear that operator T is uniformly bounded on D and from
the continuity of f we know that operator T is continuous.

Next, we show that operator T is equicontinuous. For Vx € D and 0 < t; <
t2 <1, by (3.2) and (Hz), we have

|Tx(t2) — Tx(t1)]

=| / rsz[f( 2(s)) + A°DE, a(s))ds

_ atp-1
- / (“(”[f( £(s)) + A“DE, x(s)]ds

a+f)
AR T AN () S ¢
+ W[n/o W[f(s,x( s))+ A D0+x( s)|ds

O o)+ XDl

| [ o) + 4D (s

_ JNatp—1
- [ o)+ D ()|

Ta+p)
(taJrl _ toz+1) 13 (5 _ 8)a+’871 .
+ i ) Sty e e+ XDt
(1 —g)ots-t .
“r/() W‘f( x(s)) + A D0+$ )‘ds}
(m A nr 4+ Ar)(t5 ™7 —4977) (57— ) (mtnr 4+ Ar) (€ 4 1)
- T(a+p+1) |1 — ngotl] Na+p+1)

(st 1) (1) (st — 5t }
Dla+p+1) 1 —néttl(a+F+1)
=(m 4 nr + Mr)[A (t5T7 — 19TF) £ Ay (15+ — 10t Y)].

§(m+nr+)\r)[
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Similarly, we get
ICD§+T:v(t2) — DP. Ta(ty)]
\/ (0 4 XDl
I‘(a + 2)( 1= BH+a t%*BJra) § (5 _ S)a+5_1
i (I —ng>tI'(2-B+a) { /0 T(a+f)
P —s)etht .
_14 Ty e 2(5)) + A°DY, ()|

_ S)a—l

= :
<| [ o) + XD (o)

[f(s,2(s)) + A°Dg x(s)]ds

h (tl_s)a_l c
- [t + XD ()|

F(a+2)( 1 B+a 7t17ﬁ+a) { /5 (5 7 s)omLB*l
I néeHtT2—B+a) ')y T(a+p)

+/01(1F_(Of):g_l‘f(s,x( )) + A°DE, a(s )‘ds]

(m+nr 4+ Ar)(tg —19)  T(a+2)(t5 7T — 1755 (m+ nr + M) (n€ P + 1)
= L(a+1) |1 —peetiT(2 = B+ a) D(a+pB+1)
(tg —t5) | (+1T(a+2)(ty " -7t
Fla+1)  [1—netT2=B+a)l(a+B+1)
=(m 4 nr + Ar)[As(tS — 1) 4+ Ay (th7 T —gl=Fte,
Therefore, by (3.1), we have
_ ayel B8
| Taxe — Ta1]| = [nax |Tx(tz) — Tx(t1)| + Jmax, |°D, Tx(t2) —° Dy, Ta(ty))|

[F(s,(s)) + A°DY a(s)|as

§(m+nr+)\r)[

S[AL (157 —197P) 4 Ap (15 — 10 + As(tg — t9)
+ AP P (m 4 e+ Ar) = 0, 1y — .

Then operator T is equicontinuous. From Arzela-Ascoli theorem, we obtain that
operator T : D — D is completely continuous.
(ii) Finally, we present that the following set is bounded,

={zeFE:x=pTz,0< pu<1}.
For Vz € V, ¥Vt € [0,1], we obtain
2 (t)] =[uTa(t)| < |Tx(t)|

ti(tis)wrﬂil s, z(s °DP x(s)|)ds 7ta+1
< [ R (el + WD) + s
13 _ g)ats-1
o [ s + D (o)

1 (1 _ S)a+ﬁ—1 .
+/O W(If(s,x( s))| + [\°Dy, (s )|)ds}
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_mtnlle] + Azt et (mt ]+ All2l) (0672 + 1)
= Cla+B+1) 1= mgett Fla+5+1)

1 ntl
<o+l + N 55 55 T T e T T 55T

=(m + nllz|| + Allz]))(A1 + A2),
and
D8, a(t)] = |u“ DY, Ta(t)] < |°Df. Te(t)

T e} 1-B+a
§/0 uﬂf(s (s ))|+|>\CDO+x( s)|)ds + I+ 2)t

[() |1 =gt I(2 - B+ a)
€ (g _ g)atB-1
[77/0 (gr(a)Jrﬁ)(lf(s,x( s))| + [\DJ, x(s)|)ds
L _ g)etB-1
+ [ (o) + D (o))
< (m A nz]| + Allz[))e* T(a+ 28 (m+n|z| + Az|)(Hea+s + 1)
- P(a+1) [1—nét0(2 8 + ) T(atB+1)

1 (n+ D (a +2)
<(m+nlel+ M) | s ¥ T r e = f el @+ 5+ D)

=(m + nfjzl| + A])(Az + As).
Therefore, from (3.1), we have
[zl < (m + nllzl] + Mz])(Ar + A2 + A3 + As),

and
]l < m(Ai+ A+ Az + As)
T 1-(n4+AN)(A1+ Ay + A5+ Ay)
Then V is bounded. From Leray-Schauder fixed point theorem, we get boundary
value problem (1.1) has at least a solution on D. This completes the proof. O

Theorem 3.2. If the following assumptions hold
(Hs) f:]0,1] x R — R is continuous;
(Hy) there exists a constant k > 0 such that

[f(t,21) = f(t,22)] < Kloy — @of, V(t,2) €[0,1] xR,i=1,2,
then boundary value problem (1.1) has a unique solution provided that
O0<(k+AN)(A1+Ax+ A5+ Ay) <1
Proof. For Vz,y € E, Vt € [0,1], by (3.2) and (Hy4), we obtain

Tx(t) — Ty(t)|
— g)atB-1
< [ = ) DA )~ D (0
patl 13 (5 )a+ﬁ 1
+W[ﬁ/o W(’f s,z ( f(s,y(S))‘
(lfs)‘”ﬁ 1
+ [\DE a(s) — A°DL, y(s )|)ds+/0 Wﬂf s,2(5)) — f(s,y(s))|

+[ADE, 2(s) — XD, y(s )|)ds]
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t—s)oth
S/O (<2)+,3(’f|ff ()| + AI"Dg a(s) = Dy y(s)|)ds
toc+1 13 o a+B-1
+H—%%Hh/@<3w'“M ()| + A" Dy a(s) = Diy(s) ) ds
L g)ts-1
o [ Wlate) — o) + A D) = Do) ]
(k+/\)||17*y||ta+ﬁ pa+l (k+)\)\|:cfy||(77§°‘+ﬁ+1)
Pla+p+1) [1—ngott] D(a+A+1)

1 n+1
S(k+)\)[1“(a+ﬂ+l) - |1fn£a“\F(a+ﬂ+1)}” ~l

=(k + N)(A1 + A2)|lz — yl],

and

°Dg T(t) CD§+Ty(t)|

—g)o— 1
< [ (1000 = 0, (0D + 3D 6) ~ Dt
0

r
D(a 4 2)tt Pt

T et IN@ - Bt a)
st ‘ ‘
[ a2 s000) — S50 + Do) = Do)
1 (1 _ S)Oé+/3 1 c ¢
‘) W(ms,x(s)) F(s,9(s))| +|A°DGx(s) = A DG y(s)] )|
t (t— S)a—l
S/O INE) (k[a(s) = y(s)| +A[°DF,x(s) = D y(s)])ds
. r(a+2)tlfﬁ+“
[1—ngt L2 -6+ a)
£ — g a+p
[,7/0 %(mx ()| + AI“Dgy w(s) = Dy, y(s)] ) ds
— g)atB-1
+/0 (1(04)+5(’f|$ ()] + A" D a(s) = Dfy(s)) ds]
LGNyl T (ke -yl 4+ 1)
T(a+ 1) 1 —néH T2 +a) Tlat+p+1)
1 (n+ ' (a+2)
S(k+)\){F(a+ 1) + |1 —néat T2 - B+ a)l(a+ 6+ 1)] lz =l

=(k+ A)(As + Ay)lz — y].
Therefore, by (3.1), we get
_ - _ cpbB _epb
T2 = Tyl = guass, [Ta(e) = Ty(0)] + s, 1°DGs T(e) = D, Ty(e)
<(k+ M) (A1 + Az + Az + Ay)llz — y].

Then T is a contraction. By contraction mapping principle, we obtain that bound-

ary value problem (1.1) has a unique solution on E. This completes the proof.
O
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4. The stability of fractional Langevin equation

Definition 4.1. The solution is Ulam-Hyers (UH) stable, if there exist constants
M; > 0 and € > 0, for each solution z € C([0,1],R) of

|°Dg: (°Dgs = Na(t) = f(t,a(t)] <&, t€0,1], (4.1)
and a solution z* € C([0,1],R) of (1.1), such that |z — 2*| < Mje. The solution is

generalised Ulam-Hyers (GU H) stable, if there exists ¢ € C(R™,R™) with ¢(0) =
such that |x — 2*| < Myy(e).

Lemma 4.1. Function © € C([0,1],R) is the solution of (4.1), if there exists a
function w € C([0,1],R) depending on x, such that
i) |w(t)| <e telo,1];
(i4) “DE. (°Dg, — \a(t) — f(t, (1)) — w(t) = 0.
Proof. If (i) and (é¢) hold, we obtain
DG, (DG = Na(t) = f(t,2(1)] = [w()] < e.
If € C([0,1],R) is the solution of (4.1), we get
e <° DY, (DG — Nalt) - f(ta(t) <=.
Hence, there exists w(t) € [—¢, ], such that
"Dy (“Dg = Na(t) = f(t,2(t)) = @(?).
This completes the proof. O
Lemma 4.2. If u € C(]0,1],R) is the solution of

DS (°Dg, — Na(t) = f(t,z(t)) + w(t), te€ (0,1),
{ﬂm=0fDmu> 0,2(1) = ne(€), (4.2)

then, u satisfies the following inequality
|z(t) — Tx(t)] < mae,

where

oo~ [y e e - )
Y Ta+s+) "1 —neer \"Tla+5+1) T(a+p+r1)/]
Proof. If z € C([0,1],R) is the solution of (4.2), then

t (t _ S)a—i—ﬁ’—l toz-{—l

x(t) =Tx(t) +/0 WW(S)dS + W

13 _ g)atB-1 1 _ g)etB-1
[77/0 (EF(Q)—i—ﬁ) w(s)ds—/o (lf(a)—i—ﬁ) w(s)ds}.
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In view of Lemma 2.3, we obtain

— T ti(t_s)aﬂgilws s 7#%1
o)~ 200 < | S el +

[77 /05 w’w(sﬂds _ /01 w’w(sﬂds}

I(a+ 8) Ta+p)
t (t _ s)a—i—B—l ta+1
SE[/O Ta+p) -]
§ (5 _ S)a+5—1 - 1 (1 - s)a+5—1
(T el e )
<€{ 1 n 1 (77 1 _ 1 )}
T (a+B8+1)  J1—ntt ] \'T(a+B8+1) T(a+p+1)
=maé&.
This completes the proof. O

Theorem 4.1. If (Hs3) and (H4) hold and
(B + M) (A + A2 + A3 + Ay) < 1,

then boundary value problem (1.1) is UH stable and GUH stable.

Proof. For each solution z € C([0,1],R) of (4.2) and the unique solution z* of
(1.1), by Theorem 3.2 and Lemma 4.2, we get

= ||x—T:v* = Hm—Ta?—i—T:v—Tsc*
< Hx —TIH + HTx —Tz*

< mie+ k;||a: —z*

Hq:—m*

Therefore,
my

1-k

Hw—x*” < €:= Me.

Then boundary value problem (1.1) is UH stable. For ¢(¢) = €, boundary value
problem (1.1) is GUH stable, which can be seen in Figure 1. O

—— xi(t)
015 — ()
()

X - o
9
8
3006
T
g
01
015

5 10 15 20 25 30
time t

Figure 1. Illustration of proof.
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5. Examples

Example 5.1. Consider the following boundary value problem

{cpg’; (€D, —0.0D)a(t) = f(t,x(t), te€(0,1), o)
(0) = 0. D4, 2(0) = 0,2(1) = na (1),

=

1 5 A
where a = 5, 8 = 3, A =001, n = 5, A = Z F(ka+a+2) ~ 0.7573, B =
+ oo )\kglm+a+1

)\k(l_ngka+a+l)
= T'(kata+2)

—+oo
~ 0.0943, ;;o Fhatats) ~ = 0, £ = %, r = 100, °D§, is Caputo

fractional derivative and f : [0, 1]xR — R is continuous and f (¢, z(t)) = t+%.
Then

1 1
A= = ~ 0.6217
" T(a+f+1)  [(2.75) ’

n+1 9.03
Ay = = ~ 1496
2T L —peetT(a+ B +1)  0.003750(2.75) ’
1 1

Az = = ~ 1.1284
T T(a+1)  T(15) ’
Ay = (n+1I'(a+2) 47 9.03I(2.5) 9105,

11—t T2 - B+ a)T(a+ f+1)  0.003750(1.25)0(2.75)
By (5.1), we get

72 O)] €2+ o5l

Then m = 2, n—%and

m(A;s + As + Az + Ayg)

~ 96 < 100.
1—(n+ M) (A + Az + Az + Ay)

Then from Theorem 3.1, boundary value problem (5.1) has at least a solution.

Example 5.2. Consider the following boundary value problem

{Dé(Dé 0.01)a(t) = f(t,2(t), te(0,1), 652
(O) =0,° Do+x( ) = 0,$(1) = 7733(%)7

Wherea=%,ﬂzg,)\=0.01,n B,A_Zm%07573,32

Tk ghototl
0 T'(kata+2)

1 ngka+a+1)

~ 0.0943, Z F(ka+a+2)

=0,¢= i, r = 100, °Dg, is Caputo

fractional derivative and f : [07 1] x R — R is continuous and f(¢,x(t)) = %.
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Then
A =T +1,8 1) I‘(21.75) ~ 06217,
A2 =z n§a+?|;(; YA+1) 0.037%19:())2.75) ~ 1496,
A = I‘(a1+ 0 r(i5) ~ 1.1284,
" (n+1)T(a +2) 9.03T(2.5) o105

T L= peet T2 =B+ a)l(a+B+1)  0.0375I(1.25)T(2.75)

From (5.2), we have

1
|f(ta$1) _f(t7$2)‘ < m|$1 —$2‘
1
S ﬁ’fﬁl _x2|.

Then k = ﬁ and
(k + )\)(Al + A2 + Ag + A4) ~ 0.3417 < 1.

Therefore by Theorem 3.2, boundary value problem (5.2) has a unique solution.
From Theorem 4.1, we obtain (5.2) is UH stable and GUH stable.

0 5 10 15 20 25 30
time t

Figure 2. Illustration of proof.
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