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Well-Posedness of MHD Equations in
Sobolev-(Gevery Space

Qian Liu' and Baoquan Yuan!

Abstract This paper is devoted to the study of the 3D incompressible mag-
netohydrodynamic system. We prove the local in time well-posedness for any
large initial data in H, ;(R®) or Hj,(R®). Furthermore, the global well-
posedness of a strong solution in L>(0,T; H} 1 (R?)) N L*(0,T; H} 1 (R®) N
H? | (R®)) with initial data satisfying a smallness condition is established.
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1. Introduction

The magnetohydrodynamic equations reflect the basic physics laws governing the
dynamics of electrically conducting fluids. The velocity field obeys the Navier-Stokes
equations, and the magnetic field satisfies the Maxwell’s equations of electromag-
netism. The magnetohydrodynamic equations play important roles in the study of
many phenomena in geophysics, astrophysics, and cosmology(see, [1-3]). In this pa-
per, we consider the 3D incompressible magnetohydrodynamic (short written MHD)
equations, which can be written as:

Oru— pAu+u-Vu+Vp=>-Vb,
Otb—vAb+u-Vb=0b-Vu,
V-u=0,V-b=0,

u(x,0) = up(x),b(x,0) = by(x),

(1.1)

for t > 0, x € R3. We denote u = u(z,t), b = b(x,t) and p = p(x,t) the velocity
field, magnetic field and scalar pressure respectively. The constants p and v are
the viscosity and resistivity coefficient, ug and by are the initial velocity field and
initial magnetic field satisfying V - ug = 0, V- by = 0. When b = 0, equation
(1.1) reduces to the classical Navier-Stokes equation, which has been investigated
in many exciting results. Leray [4] and Hopf [5] established the global existence of
weak solutions. Fujita and Kato [6] obtained the local well-posedness for large initial
data and the global well-posedness for small initial data in Sobolev space. And
Kato [7] established similar results in L™ (R™). Lei and Lin [8] proved the existence of
global mild solution with small initial data in the critical space x ~*(R?). Benameur
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and Jlali [16] studied the long time decay of global solution in Sobolev-Gevery
. 25 _92q .
spaces H, ,(R?). Sun and Liu [20] proved that if u € C([0, +00), H;_f (R3)) is a

a

global solution of the 3D fractional Navier-Stokes equation, then Hu(t)HH §-20 oy
ol
decays to zero as time approaches infinity. More results about the solutions to
the Navier-Stokes equations in Sobolev-Gevery spaces can be found in ( [17-19]).
For the MHD equation (1.1), there are several important results. Duvaut and
Lions [9] constructed a global weak solution and local strong solution. Sermange
and Temam [10] established the local well-posedness of equation (1.1) in Sobolev
space for any initial data. Chaabani [21] proved the local in time well-posedness

for any large initial data in Ha% +(T3) as well as global in time well-posedness when
initial data satisfies a smallness condition. More researches on the well-posedness
for MHD eugqations can be referred to ( [11-14]).

In this paper, we study not only the well-posedness of the local solution in
C([0,T); H:(R%)) and C([0,T]; H} ,(R?)) for large initial data but also the well-
posedness of the global solution in L (0, T; H} ; (R®))NL2(0,T; H} ; (R*)NHZ | (R?))
for small initial data. We use the Banach contraction mapping principle to prove
it. Although it is considered to be valid, the construction of the work space in the
process of proof is delicate and not easy. We present it in this paper. Our results
are stated in the following theorems.

Theorem 1.1. Consider the MHD equation (1.1) with p > 0, and v > 0. As-
sume (ug,bo) € Hj,(R?) with divug = divby = 0. There exists a time T =
T(||uo |l g2 g llboll 1 ) >0, such that (1.1) has a unique solution (u,b) € C([0,T7;
H; 1 (R%)).

Theorem 1.2. Consider the MHD equation (1.1) with p > 0, and v > 0. As-
sume (ug,bo) € Hj,(R®) with divug = divby = 0. There exists a time T =
T(luollzz + ol ) > 0, such that (1.1) has a unique solution (u,b) € C([0,T];

a,l

Hj 1 (R?)).

Theorem 1.3. Consider the MHD equation (1.1) with p > 0, and v > 0. Assume
(uo,bo) € Hy 1 (R?) with divug = divby = 0. There exists a small enough constant
€ > 0 such that if |[(uo, bo)||g1 | < e, then system (1.1) has a unique global solution

(u,b) € L*=(0,T; H} | (R®)) N L2(0, T; HY ,(R®) N HZ , (R?)), for any T > 0.

2. Notations and lemmas

In this section, we first introduce some notations and definitions that will be used
later, then we present several tool lemmas which serve as preparation for the proof
of our main results.

e The Fourier transformation is defined as

F()E) = f(6) = /R e ).

e The homogeneous Sobolev space is defined as

H* ={f eS8 (R3; feLl and|¢*f e L2(R3)}.

loc
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e The Sobolev-Gevery space is defined as: for a >0, s >0, 0 > 1,
. 1 .
H; ,(R®) = {f € L*(R®) : e**" f € H*},
with the norm

1Oy = ( /R JEPo eI | f(t, ) Pae)t = e 1l

Here the Zygmund operator A £ (fA)% is defined via Fourier transform &\f & =

~

1€1£(6)-

e The Lebesgue-Gevery space Lf , is defined as follows. For 1 < p < oo, a > 0,
o>1,

. . 1
LY ,(R%) = {f € LP(R%) : "7 f € L7},
with the norm
i 1 1
Ifllzz, = (/33(6“‘5‘” |f(t,ONPdE)7 = [ fl|Lr-
We shall use the Banach contraction mapping principle which can be found

n [15], Lemma 5.5.

Lemma 2.1. Let E be a Banach space, B a continuous bilinear map from E x E
to E, and « a positive real number such that

a < gy with [|Bll = sup [B(f,9)ll.
171 llgl<1

For any a in the ball B(0,«) (with center 0 and radius o) in E, a unique x then
exists in B(0,2a) such that

x=a+ B(z,z).
The following Lemma 2.2 is a Holder inequality in the Lebesgue-Gevery spaces.

Lemma 2.2. Leta>0,021,p>1,q>1,%—F%:%. Then

lu®@vllrz  ®e) < llullez,@e)llvllLe, @) (2.1)
Proof.
i 1 a % ~ ~ =
luolls, = ( /5 217 [T 0 (¢)[2de) < ( /6 ( / e“I€17 [ia(¢ — ) |[5(n)|dn)?de) .
n
(2.2)

1 1 1
Using the inequality e®¢l7 < ealé=nl7 galnl e get
1 1
Jue olaz, < ([ <17 ate - mler!® @l
£ Jn
<NUVIze < WUllzellVize < llulleg , ol

where U = e?l€17 [5(¢)|, and V = eal¢1” [a()]. O
The similar argument can also deduce the following Lemma 2.3.
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Lemma 2.3. ( [17]) For any (o, 8) € (—2,3), a constant C exists such that if
a+ (B is positive, then we have

”ngH:;_;ﬁ_%(R?*) < CHf”Hg“l(R%”gHHf’l(RS)- (2'3)

The following Lemma 2.4 is the classical LP — L9 estimates of heat operator.
Lemma 2.4. ([22]) Let s > 0,1 <p<q<o0. Then

||AsetAfHLq(Rd) <cririhoy

£l o ge)- (2.4)

The following Lemma 2.5 is an interpolation inequality in the Sobolev-Gevery
spaces.

Lemma 2.5. Let s1 < s < 89,a>0,0>1,0<6 < 1. Then, Hjlo ﬂHjZU 18
included in H;W and we have

lull gy < lull2? ullyes with s = (1= 0)sy + bso.
Proof. Using the Sobolev interpolation inequality which can be found in [15],
Proposition 1.32, we have

Al < A1

H#1

|f||?5152’ s = (1 - 0)81 + Oss.

1
Let f = e 7w, and the Lemma 2.5 is proved.

The similar argument can also infer the following Lemma 2.6.
Lemma 2.6. Let a > 0. Then

1 3
lullzs, < Nullly Nl

(2.5)
Proof. Using the Lebesgue interpolation inequality and || f| s < || f|| g1, we have

1 3
[ llzs < WAIE NS s <

b oend
(ARl
Let f = e, and the Lemma 2.6 is proved.

3. Proof of Theorem 1.1

Taking the integral form of system (1.1), we have

u(t, z) = etPug(x) — te(t_s)A u - Vu)(s)ds te(t_s)A . s)ds .
(t,2) = ¢ ug(z) / P(u - V) (s)d +/0 P(b- Vb)(s)ds, (3.1)

b(t, x) = ePby(z) — /Ot =92 (4 - Vb)(s)ds + /Ot =98 Vu)(s)ds,  (3.2)

where P := Id — V(—A)~!div stands for the Leray projector onto a divergence-free
vector field.
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We will construct a local solution in H, iyl(RS). We first prove the estimate of

Il (u, b)HL"C(Hi,l)' Applying (3.1) and (3.2) by Ae®®, we get

t
Ae®Mu(t, x) =e® Aeug () — / Ae(=92 TP (4, @ u)(s)ds
0

t
+ / At =92 AP (b @ b)(s)ds
0

20+ I+ s, (3:3)

¢
AeMb(t, z) =et® Ae® by (z) — / Aet=9)27 e (4 @ b)(s)ds
0

t
—|—/ Aet=)2Te N (b @ u)(s)ds
0
L7+ Jo+ Js. (3.4)

Taking the L2-norm, by Lemma 2.4 with p = ¢ = 2,

12l z2 < ol s, -

11l 2 < Nboll gz , -
By Lemmas 2.4 and 2.3 with a = 8 = 1, we have

¢ 3 DA 1 A
151z < / [A3eTI2AZ e P (u @ u)(s)]| 2 ds
0

t
<c [t- 9 Hate Plueu)(s) oo ds
0

t
gC/(t—s)_%Hu@uH_; ds
0 HZ

a,1

< CTHullfa 4 - (3:5)
By a similar argument it can be deduced
sl < CTHIONS w11 (3.6)
[ 72ll e < CT 5 ull po (g )10 e 11, (3.7)
and
195112 < CTHbl o (11 )l (11, ) (3:8)

Thus we obtain

D) e 11,y < M0, D0y, + CTH (D) - (3.9)
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> (C. Thus the local

By Lemma 2.1, take HUOHHQJ + ||b0||H;1 <

4
existence time T' < o) L , and we construct a local solution on
4Co([luollgr | +lboll 2 )

[0,T7].
By (3.1) and (3.2), u(t, x) and b(t, z) are continuous with respect to ¢, and their
(R ) is bounded. By the Lebesgue dominated convergence theorem, we obtain

(

that u, b 0,7]; H} |, (R3)). The proof of Theorem 1.1 is finished.
a,l

4. Proof of Theorem 1.2

We can also construct a local solution in H, ;71(]1%3). We use the estimate of
Il (u, b)HLN(Hl ) in section 3. Next, we prove the estimate of | (u, b)||L°°(L2 ): Ap-
a,l a,l

plying (3.1) and (3.2) by e®}, we get
t
Au(t, ) =etP e ug(z) — / Vel=92c P (y @ u)(s)ds
0

t
+ / Velt=9)2eaAP (b @ b)(s)ds
0

éKl + Ko + +K3, (4.1)

eaAb(t, ) tA aAb / Vet s)A aA(u®b)( )d

I /t V=92 oA (h & ) (s)ds
0
EM; + My + +Ms. (4.2)
Taking the L2-norm, we have
1l < fluoll 2
Ml g2 < [lbollzz , -
By Lemma 2.4 with p = ¢ = 2 and Lemma 2.3 with o« = 8 =1, we get
K]l < / AR 98NP @ () 2 d
0

t
< c/ (t—s) 5| AZe P(u® u)(s)| 2 ds

<c/ (t—s)tuoul. n
<cri ||u||Loo(H; ) (4.3)
Arguing similarly to the above inequality (4.3), we obtain

1Kalle < CTHE < 0 - (14)
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3
1M 2 < OTH ull o 1 ) Wl 111 (45)
and
3
1632 < CT 0l e s Nl o 111, (46)
Thus we obtain
3
)z ) < Niosbo)lz, + CTH B 1 (17)

Combining the estimates (3.9) and (4.7), we have

1, D) e 1z ) < Nl (wos bo) | g2, + C(T +TZ)||(u7b)||2m( (4.8)

Hjq)'
By Lemma 2.1, take ||u0||H;1 + Hb0||H;’1 < m for Cp > C. Thus we
can obtain the local existence time T(HUOHHé,l’ Hb0||H;)1), and we construct a local
solution on [0, 7.

By (3.1) and (3.2), u(¢,z) and b(t, z) are continuous with respect to ¢, and their
H ;,1 (R3) is bounded. By the Lebesgue dominated convergence theorem, we obtain
that (u,b) € C ([0,T); Hy, (R?)). The proof of Theorem 1.2 is finished.

5. Proof of Theorem 1.3

Taking the Fourier transform to the integral form of system (1.1), we have

t p —_—
a(t,€) =e PP g — / e HINE pig . g u(s)ds
0

t
+/ e M=’ Pic . b h(s)ds, &-1)
0

t
b(t,€) =e "1 hy — / e V=i @ b(s)ds
0

t
I / e—l/(t—s)|5|2i£ b ® u(s)ds. (5-2)
0

We first prove the estimate of ||(u7b)||ioo(H1 ) Multiplying (5.1) and (5.2) by

|€ \e“‘g‘, and summing up the resulting equations, we get
lelec€la(t, )] + [¢le”€l|b(t, €)]

t
<emHIER g1 ealél o | + e R €]l o | +/ IEle—PE=9IER ¢)e9lél [T u(s)|ds
0
t 2 — t 2 —_—
+/ [Ele (=2l \€|6“'5'|b®b(5)\ds+/ [€le™ =P el u @ b(s) |ds
0 0

t
b [l el s s (5.3
0
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Taking the L*-norm in time to (5.3), by Young inequality for convolution, we
conclude that

sup [¢le*lfa(t, )]+ sup [€leIb(t,€))|
0<t<oo 0<t<oo

. 1 t - 3
<|¢le™E g | + [€]e!€Nb —|—(/ ¢Pe*lélu @ u(s 2ds)
|€le*™do| + [€] Iolmoll | (s)]
+ (/t €22l 5@ B(s) 2 ds) i L (/t €PN T b(s) ds)
V21 \Jo v2v \Jo

+ \/% ( / e ) P ds) " (5-4)

Taking L?-norm with respect to ¢ for (5.4), we obtain

1
2

el oo (12 )+ 10l e 1 )
- 2 !
< [[uoll boll s + —— L (s)d
<Nl + Mol + = ([ Tuully (9 as)
1 ¢ ) z 1 t ) 3
+m(/0 b bl (s) ds) +\@</0 o ® bl () ds)
1

+\/% (/Ot ||b®u||i~li‘1(s) ds)Q. (5.5)

By Lemma 2.3 with a = = % and Lemma 2.5, we have
t 3 t
([ s, @ as) <o [y o as
0 a1 0 HIY
t
<0 ([ Ml Tl I, (9 )

¢ 3
< iy ([ Nl Il () )
< Ollull oo (a2 ) IVUll L2 (a1 - (5.6)

1
2

[NE

Using a similar argument, we deduce that

t 3
([ ool ©ds) < Clblimay )IV¥gay . G)

t % C
([ 1oty ds) <l gay )19l

+bllz (i ) IV 2 ) (5.8)

t .
(/0 lo® ullyy () ds) <

and

ol
| Q

(”uHiw(H;J)HVUHL2(H3,1)
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+ bl a2 ) I VOl 21 ) (5.9)
Inserting the estimates (5.6)-(5.9) into (5.5), we get
G D)l e (2 ) < [0, b0) 111 |
(<Dl ) IT0 Ty - (6100

Next, we prove the estimate of ||(u,b)||ioo(L2 ) Multiplying (5.1) and (5.2) by

e?él and summing up the resulting equations, we get
e, &) + e ¥lb(t, )|
t
<e MU ealel| g | 4- eV HER calél |y | +/ |¢lePE=9)IEl calél TR u(s) | ds
0
t 2 — t 2 —
+/ |£|e—u(t—8)|€| e“‘5‘|b®b(s)|ds+/ |£|e—l/(t—s)|€| e“‘5‘|u®b(s)|ds
0 0
t
+/ |§|e_u(t_s)‘£‘2ea|5||b®u(s)|ds. (5.11)
0
Taking the L*-norm in time to (5.11), we conclude that

sup eljaft, §)I+ suwp elb(t, €)|
0<t<o0o

. 1 _ H
<eal€l g | 4 ealél]] / 2ale| 2 4
<eSlag| 4+ e bo| + G 06 lu @ u(s)|* ds
1 e ds) 4 L ([ el TS ds)
+ — /e“ b®b(s ds) +</e“ u® b(s ds)
o= ([ i) = ([ s

+ \/% (/Ot 2lE1 |5 R u(s) 2 ds) . (5.12)

Taking the L2-norm on both sides of (5.12), we have

Whﬂqﬂ+%hﬂﬂ)

<Jluollyz, + ollz + (/nu®wy 9 d )
1 t
+m</0 Ib@bl2: (s ds) +</ luwblZ; () )
1 t
+@</0 Hb®uH%3,1(s) ds) : (5.13)

Using Lemma 2.2 with p = ¢ = 4 and Lemma 2.6, we have

¢ 3 t 3
([ sz, @ as) <o ([ a0 0)
0 a,l 0 a,l
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t 5 i 4
sc( (e, wet,) @ ds>
t 3
<l [ Tl (9 as)
5 0 a,l

< Ollull oo (2 Y IVull 222 - (5.14)

Nl

By an argument similar to (5.14), we obtain

t 3
([ 10l ) as)" < Clllmon I F0lisgiz ) 515

t 1 C
2
2 < — = N ol 72
(/0 H“‘g’bHLM(S) ds) <5 (||u||Lm(Ha=1)HVuHL (2,
bl e (2 ) VBl 22 ,)- (5.16)

and

W=
| Q

. 1
([ 1oy, as) < Gl I Vulegs
o : : :
+ Hb”ioo(H;J)||VbHL2(L3‘1))~ (5.17)
Inserting the estimates (5.14)-(5.17) into (5.13), we get
Bl ) <
(e, TN D i () (T T sz ) (518)
Combining the estimates (5.10) and (5.18), we have
i < Wb,

(==, =) D)l e g2 IV O s ) (5:19)

f\ﬁ

To close the estimate, we prove the estimate of ||(Vu, Vb)HLQ(O T ) Firstly, we
sAsdg 1

estimate H(VMVZ’)HH(O,T;H;J) which is equal to ||(u,b)||L2(O7T;H3'1). Multiplying

(5.1) and (5.2) by |£[2e/¢l] we have

€[2e € [a(t, &) + 1€ €I, ©)|

t
e PUEP ¢ 2eol8 | 1o | 4 e HER €2 e0l€ By | + / €2 HE=2)IEF g |ealél[u @ u(s) | ds
0
t t
+ / €2 =El ¢l eolél | b(s)|ds + / €2 (E=IEF g lealél 4 @ B(s) s
0 0

t
b [ lee e e ) s, (5.20)
0
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Taking the L2-norm with respect to time ¢ in (5.20), we deduce that
¢ 3 t X 3
([ ereaeer as) + ([ irepe o as)
0 0
< lele ol + ——lele ol + - ([l TE as)
V2 V2v H\Jo
1 ¢ — 1 ¢ — 3
+= (/ |€|2€2a‘§‘|b®b(8)|2 ds) + = (/ \§|2e2“|§||u®b(s)\2 ds)
# \Jo v \Jo

L/ - 3
+ - (/O €228 b @ u(s)|? ds) : (5.21)

Taking the L?-norm with respect to & on both sides of (5.21), by an argument
similar to (5.10), we have

1
2

1 1
[(Vu, Vb)”m(H;J) Smax(ﬁa E) [0, bo)ll |
Cc C
+max(ﬁ7;)H(%b)||ioo(f‘1;11)||(vu»Vb)HB(H;,l)- (5.22)

In the following, we estimate the norm ||(Vu, Vb)||L2(O T2 ) which is equal to the
norm ||(u,b)||L2(O T ) Multiplying (5.1) and (5.2) by |¢|e?é], and summing up
the resulting equationé, we get

€le M a(t, €)] + |]e!<l|b(t, €)

t
<e HIER |g[ealél |qg| + e €| IE By | +/ € |2eHE=)IEl calél g u(s)|ds
0
t 2 — t 2 —
_,_/ |€‘2e—u(t—5)\£\ e“|’5|\b®b(s)|ds—|—/ |§|2e—V(t—S)I£I e“‘f‘|u®b(s)|ds
0 0

t
+ / € |2e (= 9)IEF galel | F gy (s)|ds. (5.23)
0

Taking the L2-norm with respect to time ¢ in (5.23), we deduce that

¢ 3 t R 3
( [ teeetac. o ds) +< [ it e ds)
0 0

1
1 1 - I — z
<—=e"litg| + —=e"*Ibo| + = (/ el @ u(s)[? ds>
2/’(’ \/@ M 0

1 t /\ % 1 t /\ %
+ - (/ e b @ b(s)|? ds) + - (/ ey @ b(s) | ds)
K \Jo v \Jo

1
1 ¢ o 2
+ - </ e2€lb @ u(s)|? ds) . (5.24)
v \Jo
Taking the L2-norm on both sides of (5.24), arguing similarly to (5.18), we have
1 1

H(V%Vb)HLZ(Lng) Smax(ﬁ’ E) 1(w0sbo)ll 2,
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c C
mar(oe D (g | T IO sz ) (5:25)
Combining the estimates (5.22) and (5.25), it arrives at

(Vu, Vb)”Lz(Hi,l) <max( ) (o, bo)l g1

ﬁ‘ —_
=
&“

+ max(

@B e ( NT D) s ) (5:26)

=1Q
< 1Q

Combining the estimates (5.19) and (5.26), we have

1. 0) | o (572 1) IV, VOl 21 )

1
<mazx(l, —

2# f) [I(w0, bo)ll 1 |

1 1 1
f o ;)H(U )|z (ma )V VO L2z - (5.27)
2.1

, if we take the initial data small enough,

+ Cmax(

ﬁ\

Applying Lemma
1

H(IUJOvbO)”Hi =g,

<
4T 4Cymax(1,

t\H

)

for Cy > C, then we have a unique global solution (u,b) € L* (0, T H,, (R?))
NL? (O, T; H;l (R3) N H§71 (Rg)), thus we complete the proof of Theorem 1.3.

1 1 1 1
va e o
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