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Existence and Decay of Global Strong Solution to
3D Density-Dependent Boussinesq Equations with
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Abstract This paper is concerned with the initial boundary problem for the
three-dimensional density-dependent Boussinesq equations with vacuum. We
obtain the existence of the global strong solution under the initial density in
the norm L∞ is small enough without any smallness condition of u and θ.
Furthermore, the exponential decay rates of the solution and their derivatives
in some norm was established. In addition, we show that the solution and
their derivatives are monotonically decreasing with respect to time t on [0, T ].
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1. Introduction

The density-dependent Boussinesq equations with vacuum were presented as
ρt + div(ρu) = 0,

ρut + ρu · ∇u+∇P − div(µ(ρ, θ)∇u) = ρθe3,

ρθt + ρu · ∇θ = div(κ(ρ, θ)∇θ),
divu = 0

in Ω ∈ R3, where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) denotes the fluid velocity vec-
tor field, P (x, t), ρ(x, t) and θ(x, t) are the scalar pressure, density and temperature,
respectively. e3 = (0, 0, 1). The constants µ and κ are the viscosity and the thermal
diffusivity, respectively.

The Boussinesq equation [2,4,10] is an important model in mathematics physics.
This system describes the influence of the convection phenomena on the dynamics
of the ocean or the atmosphere. Fan and Ozawa [3] obtained the local existence
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of the strong solution to the Cauchy problem for the system (1.1)-(1.2) in R3, and
they also established some blow-up criteria u ∈ L2/(1−r)(0, T ; Ẋr), (0 < r < 1)
or u ∈ L2q/(q−3)(0, T ;Lq), 3 < q ≤ ∞. Later, Zhang [15] proved the regularity
criterion in BMO space u ∈ L2(0, T ;BMO). In [11], they established the local
wellposedness for the incompressible Boussinesq system without dissipation terms
under the framework of the Besov spaces in dimension N ≥ 2. They also obtained
a Beale-Kato-Majda type regularity criterion. Zhong [17] considered the Cauchy
problem of the 2D density-dependent Boussinesq equations without a dissipation
term in the temperature equation with vacuum as far field density. He proved
that there exists a unique local strong solution provided the initial density and
the initial temperature decay not too slow at infinity. Global well-posedness of
two-dimensional density-dependent boussinesq equations with large initial data and
vacuum was investigated by Zhong in [18]. In [12], Ye and Zhu got the zero limit of
thermal diffusivity for the 2D density-dependent Boussinesq equations with vacuum.

When ρ = C, system (1.1) reduces to the classical homogeneous incompressible
Boussinesq system which is widely studied. Chae [1](see also [8]) proved the global
in time regularity for the 2D Boussinesq system with either the zero diffusivity
or the zero viscosity. He [6] studied the blow-up criterion of classical solution to
the Boussinesq equations with temperature-dependent viscosity and zero thermal
diffusivity in R2 and R3. Larios and Pei [9] studied the local well-posedness of
solutions to the 3D Boussinesq-MHD system. Some regularity criteria were also
investigated in [9]. Later, Zhao [16] investigated the well-posedness of the Cauchy
problem to the Boussinesq-MHD system with partial viscosity and zero magnetic
diffusion.

Inspired by [5, 13, 14], we consider the following density-dependent Boussinesq
equations 

ρt + div(ρu) = 0,

ρut + ρu · ∇u+∇P − div(µ(ρ, θ)∇u) = ρθe3,

ρθt + ρu · ∇θ = div(κ(ρ, θ)∇θ),
divu = 0,

(1.1)

where µ(ρ, θ) and κ(ρ, θ) are all function of ρ and θ, which are assumed to satisfy

(µ(ρ, θ), κ(ρ, θ)) ∈ C1[0,∞), 0 < κ ≤ κ(ρ, θ) ≤ C <∞, 0 < µ ≤ µ(ρ, θ) ≤ C <∞,
(1.2)

and

(µρ(ρ, θ), µθ(ρ, θ), κρ(ρ, θ), κθ(ρ, θ)) ≤ C (1.3)

for some positive constants µ, κ and C.
The initial and boundary conditions satisfy that

(ρ, u, θ)|t=0 = (ρ0, u0, θ0)(x), x ∈ Ω; (u, θ)|x∈∂Ω = 0. (1.4)

Our main purpose is to study the existence of the global strong solution to the
initial boundary value problem of (1.1)-(1.3). Now, we present our results as follows:

Theorem 1.1. Assume that the initial data (ρ0, u0, θ0) satisfies

0 ≤ ρ0 ≤ ρ̄, ∇ρ0 ∈ Lp(p > 3), (u0, θ0) ∈ H1
0 ∩H2
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and the compatibility condition

−div(µ(ρ0, θ0)∇u0) +∇P0 = ρ
1/2
0 f, − div(κ(ρ0, θ0)∇θ0) = ρ

1/2
0 g

for some (P0, f, g) ∈ H1 × L2 × L2. Then there exists a small positive constant
ε0, depending on Ω, p, q, µ(ρ, θ), κ(ρ, θ), f , g, ‖∇ρ0‖Lp , ‖√ρ0u0‖L2 , ‖∇u0‖L2 ,
‖√ρ0θ0‖L2 , ‖∇θ0‖L2 , such that if ρ̄ ≤ ε0, the initial boundary value problem (1.1)-
(1.4) has a global strong solution satisfying

0 ≤ ρ ≤ ρ̄, ∇ρ ∈ L∞(0, T ;Lp),

(
√
ρu,
√
ρθ,∇u,∇θ,√ρut,

√
ρθt) ∈ L∞(0, T ;L2),

(∇u,∇θ,√ρut,
√
ρθt,∇ut,∇θt) ∈ L2(0, T ;L2)

and the following decay rates(
‖√ρu‖2L2 + ‖√ρθ‖2L2

)
(t) ≤ Ce−C1t, for all t > 0

and(
‖∇u‖2L2 + ‖∇θ‖2L2 + ‖√ρut‖2L2 + ‖√ρθt‖2L2

)
(t) ≤ Ce−C2t, for all t > 0.

Remark 1.1. If the smoothness condition of the given initial condition is higher,
we can obtain the stronger regularity and the decay estimate of the higher-order
derivative of the solution for the problem (1.1)-(1.4).

Remark 1.2. With the method of reference [7], we can get similar results of The-
orem (1.1) for the Cauchy problem (1.1)-(1.2) in R3.

2. Preliminaries

To derive the estimates of the derivatives of the solutions, we need the following
Lemmas, whose proof can be proved using the similar method as in [5, 13].

Lemma 2.1. For any 3 < p < ∞, assume that µ(ρ, θ) ∈ W 1,p satisfies (1.4) with
0 ≤ ρ ≤ ρ, θ ≤ C. Let (u, P ) ∈ H1

0,σ × L2 be the unique weak solution to the
problem:

−div(µ(ρ, θ)∇u) +∇P = F, divu = 0 in Ω,

∫
Pdx = 0.

There exists a generic positive constant C, depending only on Ω, p, r and µ(ρ, θ),
such that
(i) if F ∈ L2, then (u, P ) ∈ H2 ×H1 and

‖u‖H2 + ‖P/µ(ρ, θ)‖H1 ≤ C (1 + ‖∇µ(ρ, θ)‖α2

Lp) ‖F‖L2 ; (2.1)

(ii) if F ∈ Lr for some r ∈ (3, p), then (u, P ) ∈W 2,r ×W 1,r and

‖u‖W 2,r + ‖P/µ(ρ, θ)‖W 1,r ≤ C (1 + ‖∇µ(ρ, θ)‖αr

Lp) ‖F‖Lr , (2.2)

where

α2 =
p

p− 3
and αr =

(5r − 6)p

2r(p− 3)
.
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3. Proof of Theorem 1.1

Proposition 3.1. Under the conditions of Theorem 1.1, if (ρ, u, θ) is a smooth
solution of (1.1)-(1.4) satisfying

sup
0≤t≤T

‖∇θ‖Lp ≤ 2K1, sup
0≤t≤T

‖∇ρ‖Lp ≤ 3K2, (3.1)

sup
0≤t≤T

(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
κ(ρ, θ)∇θ‖2L2

)
+

∫ T

0

‖√ρut‖2L2 +‖√ρθt‖2L2dt ≤ 3K3,

(3.2)

sup
0≤t≤T

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+

∫ T

0

(
‖∇θt‖2L2 + ‖∇ut‖2L2

)
dt ≤ 3K4, (3.3)

then the following estimates hold

sup
0≤t≤T

‖∇θ‖Lp ≤ K1, sup
0≤t≤T

‖∇ρ‖Lp ≤ 2K2,

sup
0≤t≤T

(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
κ(ρ, θ)∇θ‖2L2

)
+

∫ T

0

‖√ρut‖2L2 +‖√ρθt‖2L2dt ≤ 2K3,

sup
0≤t≤T

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+ min{µ, κ}

∫ T

0

(
‖∇θt‖2L2 + ‖∇ut‖2L2

)
dt ≤ 2K4

under the initial density is small enough. Here, K1 is a positive constant,

K3 ,
(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
µ(ρ, θ)∇θ‖2L2

) ∣∣
t=0

,

K2 , ‖∇ρ0‖Lp , K4 ,
(
‖√ρut‖2L2 + ‖√ρθt‖2L2

) ∣∣
t=0

.

Lemma 3.1. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a strong so-
lution of (1.1)-(1.4) on Ω× (0, T ). Then

‖ρ‖L∞ ≤ ‖ρ0‖L∞ ≤ ρ̄, (3.4)

sup
0≤t≤T

(
‖√ρu‖2L2 + ‖√ρθ‖2L2

)
+

∫ T

0

eC1t
(
‖∇u‖2L2 + ‖∇θ‖2L2

)
dt ≤ Ce−C1t (3.5)

and ‖(√ρu)(t)‖2L2 + ‖(√ρθ)(t)‖2L2 is decreasing on [0,T].

Proof. Firstly, it is easy to deduce (3.4), thus the process of the proof is omitted
here. Then, multiplying (1.1)2,(1.1)3 by u and θ in L2, respectively, integrating it
by parts, by Cauchy-Schwarz, Poincaré inequality, (3.2), (3.4) and choosing ρ̄ small
enough, we immediately get

d

dt

(
‖√ρu‖2L2 + ‖√ρθ‖2L2

)
+ C

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
≤ 0, (3.6)

which shows that ‖(√ρu)(t)‖2L2 + ‖(√ρθ)(t)‖2L2 is decreasing on [0,T]. And by Pio-
ncaré inequality, it is easy to get

‖√ρu‖2L2 + ‖√ρθ‖2L2 ≤ ρ̄
(
‖∇u‖2L2 + ‖∇θ‖2L2

)
.
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This, combined with (3.6), and by choosing ρ̄ to be sufficiently small, yields

d

dt

(
‖√ρu‖2L2 + ‖√ρθ‖2L2

)
+ C1

(
‖√ρu‖2L2 + ‖√ρθ‖2L2

)
+ C

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
≤ 0.

Multiplying the above inequality by eC1t, we have

d

dt

(
eC1t

(
‖√ρu‖2L2 + ‖√ρθ‖2L2

))
+ CeC1t

(
‖∇u‖2L2 + ‖∇θ‖2L2

)
≤ 0. (3.7)

Integrating (3.7) over [0, T ], the estimate of (3.5) is obtained. Hence, we finish the
proof of Lemma 3.1.

Lemma 3.2. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a strong so-
lution of (1.1)-(1.4) on Ω× (0, T ). Then

sup
0≤t≤T

(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
κ(ρ, θ)∇θ‖2L2

)
+

∫ T

0

‖√ρut‖2L2 + ‖√ρθt‖2L2dt ≤ 2K3.

Proof. Multiplying (1.1)1, (1.1)2 by ut and θt in L2, respectively, integrating by
parts, we infer

1

2

d

dt

(∫
µ(ρ, θ)|∇u|2dx+

∫
κ(ρ, θ)|∇θ|2dx

)
+

∫ (
ρ|ut|2 + ρ|θt|2

)
dx

=
1

2

∫ (
µt(ρ, θ)|∇u|2 + κt(ρ, θ)|∇θ|2

)
dx−

∫
ρu · ∇u · utdx

−
∫
ρu · ∇θθtdx+

∫
ρθe3 · utdx ,

4∑
i=1

Ii. (3.8)

Using Sobolev inequality, Poincaré inequality, (3.1), (3.2), (3.4) and (1.1)1, we
have the following inequalities:

I1 =
1

2

∫ [(
∂µ

∂ρ
ρt +

∂µ

∂θ
θt

)
|∇u|2 +

(
∂κ

∂ρ
ρt +

∂κ

∂θ
θt

)
|∇θ|2

]
dx

≤ C‖∇ρ‖Lp‖u‖L3

(
‖∇u‖2L6p/(2p−3) + ‖∇θ‖2L6p/(2p−3)

)
+ ‖θt‖L6 (‖∇u‖L2‖∇u‖L3 + ‖∇θ‖L2‖∇θ‖L3)

≤ C
(
‖∇u‖2H1 + ‖∇θ‖2H1

)
+ C‖∇θt‖L2 (‖∇u‖H1 + ‖∇θ‖H1) , (3.9)

I2 + I3 ≤ C
(
ρ̄1/2‖√ρut‖L2‖u‖L6‖∇u‖L3 + ρ̄1/2‖√ρθt‖L2‖u‖L6‖∇θ‖L3

)
≤ 1

4

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+ Cρ̄

(
‖∇u‖2H1 + ‖∇θ‖2H1

)
(3.10)

and

I4 ≤
1

4
‖√ρut‖2L2 + ρ̄‖θ‖2L2 ≤

1

4
‖√ρut‖2L2 + ρ̄‖∇θ‖2L2 . (3.11)

One derives from (2.1), (3.1) and Poincaré inequality that

‖∇u‖2H1
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≤C
(

1 + ‖∇ρ‖2p/(p−3)
Lp + ‖∇θ‖2p/(p−3)

Lp

)(
ρ̄1/2‖√ρut‖2L2 + ρ̄‖u · ∇u‖2L2 + ρ̄‖θ‖2L2

)
≤C

(
ρ̄1/2‖√ρut‖2L2 + ρ̄‖∇u‖2H1 + ρ̄‖∇θ‖2L2

)
. (3.12)

In a similar manner, for equation (1.1)3, we conclude that

‖∇θ‖2H1 ≤ C(1 + ‖∇ρ‖2p/(p−3)
Lp )

(
ρ̄1/2‖√ρθt‖2L2 + ρ̄‖u · ∇θ‖2L2

)
≤ C

(
ρ̄1/2‖√ρθt‖2L2 + ρ̄‖∇θ‖2H1

)
,

which together with (3.4), (3.12) and choosing ρ̄ small enough, yields

‖∇u‖2H1 + ‖∇θ‖2H1 ≤ Cρ̄1/2
(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
. (3.13)

Substituting (3.9)-(3.11) and (3.13) into (3.8), we arrive at

1

2

d

dt

(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
κ(ρ, θ)∇θ‖2L2

)
+

1

2

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
≤Cρ̄1/2‖∇θt‖2L2 , (3.14)

which integrated respect to t over (0, T ), yields

sup
0≤t≤T

(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
κ(ρ, θ)∇θ‖2L2

)
+

∫ T

0

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
dt

≤ K3 + C1ρ̄
1/2.

Now, we can take ρ̄ sufficiently small, such that

sup
0≤t≤T

(
‖
√
µ(ρ, θ)∇u‖2L2 + ‖

√
κ(ρ, θ)∇θ‖2L2

)
+

∫ T

0

‖√ρut‖2L2 + ‖√ρθt‖2L2dt ≤ 2K3.

Lemma 3.3. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a strong so-
lution of (1.1)-(1.4) on Ω× (0, T ). Then

sup
0≤t≤T

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+

∫ T

0

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
dt ≤ 2K4. (3.15)

Proof. Differentiating (1.1)1,2 with respect to t, and multiplying them by ut and
θt in L2, respectively, it has

1

2

d

dt

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+

∫ (
µ(ρ, θ)|∇θt|2 + κ(ρ, θ)|∇ut|2

)
dt

= −2

∫
(ρu · ut · ∇ut + ρu · ∇θtθt) dx−

∫
ρut · (∇u · ut +∇θθt) dx

−
∫
ρu · (∇(u · ∇u · ut) +∇(u · ∇θθt)) dx

−
∫

(µt(ρ, θ) · ∇u · ∇ut + κt(ρ, θ) · ∇θ · ∇θt) dx+

∫
(ρθ)te3 · utdx

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.360 | Generated on 2024-12-19 04:07:35



366 C. Gao, X. Ye & M. Zhu

,
5∑
i=0

Mi. (3.16)

Using (3.1) (3.4), (3.3), (1.1)1, Sobolev inequality and Poincaré inequality, we esti-
mate each Mi(i = 1, ..., 5) in the following way

M1 +M2 ≤ C (ρ̄‖u‖L6 (‖ut‖L3‖∇ut‖L2 + ‖θt‖L3‖∇θt‖L2)

+ρ̄‖ut‖L3 (‖∇u‖L2‖ut‖L6 + ‖∇θ‖L2‖θt‖L6))

≤ Cρ̄2
(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
,

(3.17)

M3 ≤ Cρ̄‖u‖L6

(
‖∇u‖2L3‖ut‖L6 + ‖∇θ‖2L3‖θt‖L6

)
+ Cρ̄‖u‖2L6

(
‖∇2u‖L2‖ut‖L6

+‖∇2θ‖L2‖θt‖L6 + ‖∇u‖L6‖∇ut‖L2 + ‖∇θ‖L6‖∇θt‖L2

)
≤ Cρ̄

(
‖∇u‖4H1 + ‖∇u‖2H1‖∇θ‖2H1 + ‖∇θ‖4H1

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
≤ Cρ̄

(
‖√ρut‖4L2 + ‖√ρθt‖4L2

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
≤ Cρ̄

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
, (3.18)

M4 =

∫
((µρρt + µθθt) · ∇u · ∇ut + (κρρt + κθθt) · ∇θ · ∇θt) dt

≤ C‖u‖L∞‖∇ρ‖Lp (‖∇u‖L2p/(p−2)‖∇ut‖L2 + ‖∇θ‖L2p/(p−2)‖∇θt‖L2)

+ C‖θt‖L6(‖∇u‖L3 + ‖∇θ‖L3)(‖∇ut‖L2 + ‖∇θt‖L2)

≤ C
(
‖∇u‖2H1 + ‖∇θ‖2H1

) (
‖∇u‖2H1 +∇θt‖2L2

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
≤ Cρ̄1/2

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

) (
‖∇u‖2H1 +∇θt‖2L2

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
≤ Cρ̄1/2

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
+

min{µ, κ}
8

(
‖∇ut‖2L2 + ‖∇θt‖2L2

)
, (3.19)

M5 =

∫
ρu · ∇(θe3 · ut)dx+

∫
ρθte3 · utdx

≤ Cρ̄ (‖u‖L3‖∇θ‖L2‖ut‖L6 + ‖u‖L3‖θ‖L6‖∇ut‖L2 + ‖∇θt‖L2‖∇ut‖L2)

≤ Cρ̄2
(
‖∇u‖2L2‖∇θ‖2L2 + ‖∇θt‖2L2

)
+

min{µ, κ}
8

‖∇ut‖2L2

≤ Cρ̄2‖∇θt‖2L2 +
min{µ, κ}

8
‖∇ut‖2L2 . (3.20)
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Substituting (3.17)-(3.20) into (3.16) and choosing ρ̄ sufficiently small, yield

1

2

d

dt

(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+

min{µ, κ}
2

(
‖∇θt‖2L2 + ‖∇ut‖2L2

)
≤ 0. (3.21)

Integrating the above equality about t over [0,T], we immediately deduce the result
as in Lemma 3.3.

Lemma 3.4. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a strong so-
lution of (1.1)-(1.4) on Ω× (0, T ). Then

sup
0≤t≤T

‖(∇u,∇θ,√ρut,
√
ρθt)‖2L2 +

∫ T

0

eC2t‖(√ρut,
√
ρθt,∇ut,∇θt)‖2L2dt ≤ Ce−C2t

(3.22)

and ‖(∇u,∇θ,√ρut,
√
ρθt)(t)‖2L2 is monotonically decreasing on [0,T].

Proof. Summing up the inequalities of (3.14) and (3.21), we obtain from (1.4)
that

d

dt

(
‖∇u‖2L2 + ‖∇θ‖2L2 + ‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+ C

(
‖√ρut‖2L2 + ‖√ρθt‖2L2 + ‖∇ut‖2L2 + ‖∇θt‖2L2

)
≤ 0 (3.23)

It follows from the above inequality that(
‖∇u‖2L2 + ‖∇θ‖2L2 + ‖√ρut‖2L2 + ‖√ρθt‖2L2

)
(t)

is decreasing on [0, T ]. Due to (3.13), by Poincaré inequality, we get

‖∇u‖2L2 + ‖∇θ‖2L2 + ‖√ρut‖2L2 + ‖√ρθt‖2L2

≤ Cρ̄
(
‖√ρut‖2L2 + ‖√ρθt‖2L2 + ‖∇ut‖2L2 + ‖∇θt‖2L2

)
. (3.24)

From (3.23), (3.24), choosing ρ̄ appropriately small, we deduce that

d

dt

(
‖∇u‖2L2 + ‖∇θ‖2L2 + ‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+ C2

(
‖∇u‖2L2 + ‖∇θ‖2L2 + ‖√ρut‖2L2 + ‖√ρθt‖2L2

)
+ C

(
‖√ρut‖2L2 + ‖√ρθt‖2L2 + ‖∇ut‖2L2 + ‖∇θt‖2L2

)
≤ 0

which is multiplied by eC2t. Integrating it about t, it is easy to deduce the result
of Lemma 3.4.

Lemma 3.5. Under the conditions of Proposition 3.1, let (ρ, u, θ) be a strong so-
lution of (1.1)-(1.4) on Ω× (0, T ). Then∫ T

0

(‖∇u‖L∞ + ‖∇u‖W 1,p) dt ≤ C max{ρ̄(5r−6)/4r, ρ̄}. (3.25)

Proof. It infers from Sobolev inequality, Pioncaré inequality, (2.2), (3.15) and
(3.22) that∫ T

0

‖∇u‖L∞dt ≤ C
∫ T

0

‖∇u‖W 1,pdt ≤ C
∫ T

0

‖ρut‖Lr + ‖ρθt‖Lr + ‖ρu · ∇u‖Lrdt
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≤ C
∫ T

0

‖ρut‖(6−r)/2rL2 ‖ρut‖(3r−6)/2r
L6 + ρ̄‖ρθt‖(6−r)/2rL2 ‖ρθt‖(3r−6)/2r

L6

+ ρ̄‖u · ∇u‖Lrdt

≤ Cρ̄(5r−6)/4r

(∫ T

0

(
eC2t/2‖(√ρut,

√
ρθt)‖L2

)(6−r)/2r
×

(
eC2t/2‖(∇ut,∇θt)‖L2

)(3r−6)/2r

e−C2t/2dt

)
+

∫ T

0

ρ̄‖∇u‖2H1dt

≤ Cρ̄(5r−6)/4r

(
sup

0≤t≤T

(
eC2t/2‖(√ρut,

√
ρθt)‖L2

)(6−r)/2r
×(∫ T

0

eC2t‖(∇ut,∇θt)‖2L2dt

)(3r−6)/4r (∫ T

0

e−2C2tr/(r+6)dt

)(r+6)/4r


+

∫ T

0

ρ̄‖∇u‖2H1dt ≤ C max{ρ̄(5r−6)/4r, ρ̄}.

Proof of Proposition 3.1. Taking operator ∇ to the equation of (1.1)1,
multiplying it by |∇ρ|p−2∇ρ, and integrating by parts, by Gronwall inequality and
(3.25), we have

sup
0≤t≤T

‖∇ρ‖Lp ≤ C‖∇ρ0‖Lp exp{
∫ T

0

‖∇u‖L∞dt}

≤ C‖∇ρ0‖Lp exp
{

min{ρ̄(5r−6)/4r, ρ̄}
}
.

Hence, we can choose ρ̄ appropriately small to obtain

sup
0≤t≤T

‖∇ρ‖Lp ≤ 2K1. (3.26)

To close ‖∇θ‖Lp , it follows from (1.1)3, (3.4) and (3.3) that

‖∇θ‖Lp ≤ Cρ̄1/4
(
‖√ρut‖2L2 + ‖√ρθt‖2L2

)1/2
≤ C2ρ̄

1/4. (3.27)

Therefore, collecting with Lemma 3.2, Lemma 3.3, (3.26) and (3.27), we complete
the proof of the Proposition 3.1.
Proof of Theorem 1.1. Combining the local strong solution and the global a priori
estimates in Lemmas 3.1-3.4, by continuity arguments, we can obtain the existence
of global strong solution for (1.1) when the initial density is suitable small. From
(3.5) and (3.25), the decay rates of the norm ‖u(t)‖2H1 + ‖θ(t)‖2H1 is proved.
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