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Long-Time Asymptotics of Complex mKdV
Equation with Weighted Sobolev Initial Data*

Hongyi Zhang' and Yufeng Zhang!!

Abstract In this paper, we apply O-steepest descent method to analyze the
long-time asymptotics of complex mKdV equation with the initial value be-
longing to weighted Sobolev spaces. Firstly, the Cauchy problem of the com-
plex mKdV equation is transformed into the corresponding Riemann-Hilbert
problem on the basis of the Lax pair and the scattering data. Then the long-
time asymptotics of complex mKdV equation is obtained by studying the
solution of the Riemann-Hilbert problem.
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1. Introduction

The study of nonlinear partial differential equations (NLPDEs) has played an im-
portant role in the development of science and technology. Until now, NLPDESs can
be used to explain some complex physical phenomena, including mathematics, fluid
mechanics, plasma physics, atmospheric oceans, aerodynamics, etc [2-9]. Nowa-
days, the inverse scattering transformation [10-13], Hirota bilinear method [14-16],
Darboux transformation [17,18] and so on are effective methods to solve NLPDEs.
Especially, the inverse scattering transformation is the first method which was found
and used to obtain the exact solution of the soliton equation. In the early 20th
century, the solution of Riemann-Hilbert (RH) problem was developed and pro-
moted [19,20]. In 1993, Deift and Zhou proposed the famous nonlinear steepest
descent method to analyze the long-time asymptotic behavior of integrable evolu-
tion equations. Deift and Zhou analyzed the long-time asymptotic behavior of the
solution to the initial value problem of the famous mKdV equation and Schrodinger
equation [21,22]. Cuccagna studied the asymptotic stability of N-soliton solutions
of the defocusing nonlinear schrédinger equation by 0-steepest descent method [23].
Robert analyzed the derivative nonlinear schrodinger equation via O-steepest de-
scent method [24]. In addition, Fan, Geng and Ma studied the soliton solutions
and long-time asymptotic behavior of some integrable evolution equations based on
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RH problem [25-36]; among them, Ma has already done some work on nonlocal
equations [35, 36].

In this paper, we study the equation derived from the Lax pair given by Yishen
Li [37]. The Lax pair is

Yz = —irosh + Py,

5 ) (1.1)
Y = (N7 + A+ 9N+ )osy + Q,
where ¢(z,t, \) is a 2 X 2 matrix, og=diag(1,—1), and
0w
P = ,
v 0
L —Bu, —nu
Q=icx2p—ix| 2 e
%vx —nu —%uv
B %(uvx — VUg) — duv ,%(,um + 2u*v) + duy — idu
_Tic(—vm + 2uv?) — Lv, — idv —%(uvz — VU, ) + Fuv
(1.2)
The Lax pair (1.1) derives the following system:
up = —%(uzm — 6uvuy) — 4 (Uge — 2u?v) + idu, + 2uu, (13)
vy = —%(Uﬂm — 6uvvy) + 2 (Vee — 20%u) + idv, — 2w, )

(I)Taking ( = —44, n =9 = ¢ = 0, and v = —1, system (1.3) reduces to the KdV
equation:
up + 6uty + Upry = 0. (1.4)

(IT)Taking ¢ = —4i, n =¥ =1+ =0, and v = —u, system (1.3) reduces to the mKdV
equation:
up + 6u Uy + Uppe = 0. (1.5)

(IIT)Taking n = —2i, ¢ = 9 = ¢+ = 0, and v = Fu, system (1.3) reduces to the
nonlinear Schrodinger equation:

iy + Uy £ 20T = 0, (1.6)

where superscript bar denotes complex conjugate.
(IV)Taking ¢ = =2, ( =9 = ¢ =0, and ¢, = wv = (%), system (1.3) reduces to
the Burger equation

In addition, taking ( = —ia (a > 0), n =19 = ¢ = 0 and v = T, system (1.3) reduces
to the complex mKdV equation:
@

Uy = Z(—uwm + 6ul?uy), (1.8)
where u(z,t) is complex-valued function of variate (z,t). In [38], Chen and Liu
obtained the long-time asymptotics of the mKdV equation in weighted Sobolev
spaces. However, the long-time asymptotics of the complex mKdV equation have
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not been studied. In this paper, we apply O-steepest descent method to analyze long-
time asymptotics of the complex mKdV equation with weighted Sobolev initial data
u(t = 0,z) = up(x) € H*Y(R) = {f(z) : f (x),zf(x) € L%(R)}. The significance of
our work is that it gives a referenceable example for later generalization of the real
equation to complexified equations in the study of the dynamical behaviour of the
solutions.

The layout of the paper is as follows. In Section 2, we analyze eigenfunction
and spectral function of equation (1.8) to construct the original Riemann-Hilbert
problem. In Section 3, by deforming the jump matrix of the original Riemann-
Hilbert problem and extending the region, the original Riemann-Hilbert problem is
transformed into a model Riemann-Hilbert problem. Then the solution of the mod-
el Riemann-Hilbert problem can be expressed by the solution of Weber equation.
Finally, we obtain the long-time asymptotics of the Cauchy problem for complex
mKdV equation.

2. Spectral analysis

In this section, by analyzing the Lax pair, the matrix Jost solutions of complex
mKdV equation (1.8) are constructed. Then the Cauchy problem of complex mKdV
equation (1.8) turns into the corresponding Riemann-Hilbert problem. The Lax pair
of complex mKdV equation is

Ve = —iAos3) + M, (2.1)
Yy = —iaX’o30 + Np, (2.2)
where
0w
M = : (2.3)
v 0
N = O[AQM —_ ’L)\ %uv _%UE _ %(U/Ul- - qu) _%(_ua:a: + 2U2U)
Uz —5uv — 5 (—Vzz + 2uv?) — 2 (uvy — V)
(2.4)

2.1. Asymptotics
Lax pair (2.1)-(2.2) has a Jost solution of the following asymptotic form

Y, t,\) = e OartaXlont) gl oo, (2.5)
Therefore, we make the transformation
p(x,t, X) = (@, t, A)elAoserarios), (2.6)
where u(z,t, \) satisfies the following Lax pair

fe +iNos, u] = Mp, (2.7)
pie + iaX?[os, p] = Ny,
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which can be written in the full derivative form
d (Ortexne ) — (e taX 0% (M dy + Ndbu]. (2.9)
Considering the asymptotic expansion

M1 M2 | M3 1
”:“°+A+A2+,\3+0(>\4)’ A = o0, (2.10)

where po, p1, pe and ps are independent of A. Substituting (2.10) into (2.7) and
comparing the coefficients of A, we obtain that p( is a diagonal matrix and

,LLO,x“i’iUSMl 71“[110'3 = Mﬂo, (211)
iU3MQ - 7:/,600'3 =0. (212)

In the same way, substituting (2.10) into (2.8) and comparing the coefficients of A,
we get

. . o Q o, B
po,t +iaosus — iapzos — aMpus + —utiozpuy + - Myospr + Z(uuz — Uz )O3 10

2 2
(2.13)
@ @
*sz - *Ms = 07
+ 1 to — 5 M7 o
. . o e’
iaose — tausos = aMpy — 5 Waospo — ?ngguo, (2.14)
taosuy — tapuros = aM g, (2.15)
iaospg — iapgos = 0. (2.16)
Through a series of calculations, we obtain
wa, t,A\) =1, A — oo, (2.17)
A—00

2.2. Analyticity and symmetry

To analyze the eigenfunction p(z,t, A), we choose two special integral paths
(—o0,t) = (x,t) and (o0,t) — (z,1) (2.19)

and acquire two Volterra type integral equations

x
pa(z,t,A) =1+ / ei()\y_)\w)&SM(yv t, pa(y, t, N)dy, (2.20)
po(z, t, \) =1 — / e ONV=ADT Ny N o (y, t, N)dy. (2.21)

From the transformation (2.6), it can be known that p(z, ¢, )\)e’i(’\"”*a)‘g”?’t) and

pio(z, t, \)e~{Aosr+ar’ost) are the two linear correlation matrix solutions of Lax pair
(2.7) and (2.8), so we have

(6, N) = po(a, t, N)e 0N G(N), (2.22)
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where
511(A) s12(N)

Sgl(A) 522()\)
S(A) is irrelevant to  and ¢, and it is called the spectral matrix function. Nextly, we
study the analyticity of uq(z,, \), pa(x,t,\) and S(\). For the integral equation
(2.20), a direct calculation shows that

O(N) = AZ + a3, S(\) =

, A 0 ue?i)\(y—w)
emA(y—x)ﬂ'sM(A; £ 1) = , (2.23)
0i
ue iX(y—x) 0

and
2iM(y — ) = 2i(ReX +iImA)(y — x) = 2iReA(y — z) — 2ImA(y — z),
so that the first column of pq(z, ¢, A) is analytical in the upper half plane C,, the
second column of uq(z,t, \) is analytical in the lower half plane C_, and pq(x,t,\)
can be written as
M(H) #(12)
1 1 _
H1 = (21)  (22) = (uf’ul ) (224)
1 1
Similarly, the first column of po(x,t, \) is analytical in the lower half plane C_, the
second column of us(x,t, \) is analytical in the upper half plane C, and po(x,t, \)
can be written as
(11) M(12)
2 2 _
H2 = (21)  (22) = (IU’Q 7/’63) (225)
2 2

Theorem 2.1. The eigenfunctions pi(x,t, N), pe(x,t, ) and spectral matriz S(\)
have the following symmetry properties

(2, t, ) = oy (z,t, Ao, (5=1,2), (2.26)

S()\) = 015@)017 (227)

01
10

where o1 =

Proof. Through Lax pair (2.7), we have
0,1, N) + i\, 15 (£, V)] = My, 1, ). (2.28)

Substituting A for A and taking the conjugate of the left and right sides of equation
(2.28) gives

gz (Tt A) — iXos, i (m, 8, N)] = Mpj(z,t,N). (2.29)
Multiplying the left and right sides of equation (2.29) by o7 leads to

[o1 (2, t, N)o1], — idarosp;(z,t, N)oy + idop; (@, t, N)ozor = o1 Mp;(z,t, X)oy.

By calculation, we get

[o15(, t, N)o1], + iX[os, o1 (@, 8, N)or] = Moy pj(z,t, X)oy. (2.31)
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Comparing equation (2.7) with equation (2.31), we know that u;(z,t, ) and
o1 (z,t, N)oy satisfy the same differential equation and have the same asymptotic
property

pi(z,t, ), olmol =1, ©— 0. (2.32)
Therefore,
(.8, ) = o1pa; (2, £, Vo, (2.33)
that is
pair(A) p2N) ) (01 [ paa(N) 2N ) 01 [ p22(A) p2r (V)
po N eV )\ 10 ) o) e ™) ) \10) e ) o)
(2.34)

By comparing the two sides of the above equation, we get p11(\) = p22(A), and

p12(A) = po1()). From equation (2.33), we get the symmetry property of spectral
matrix S(A):
a1S(N)or = S(N), (2.35)

that is Sll(X) = 822()\) and 812(X) = 821()\). O

Theorem 2.2. The eigenfunctions p(x,t, N), pa(x,t,\) and spectral matriz func-
tion S(\) also have the following symmetry properties

O-S/J';I (LU, t7X)0-3 = /’L;l ($7 t, )‘)7 (236)
39" (Vs = S7H(N), (2.37)

where superscript H denotes conjugate transpose.

Proof. Through direct calculation, we get

0'3#‘_5[ (Iv ta A)0'3

o . H

(10 (@, t,A) pyaz(@,t,A) 1o

0 -1 ,Uj721(33,t,X) Mj,gg(af,t,X) O -1
- 10 /J,j’u(ai,t,X) ijgl(m,t,X) 10

0 -1 u-712(a:,t,X) /L',QQ(Z‘,t,X) O —1

’ ! (2.38)

. 10 /J,j 22()\) ,uj"lg()\) 10

0—1/) \ py21(A) pj(A) ) \0 -1
o mg22(A) —pga2(N)

—pj21(A) 511 (N)
= uj_l(x, t,\).

Similarly, we can get
0357 (N)oz = S7L(N). (2.39)



Long-Time Asymptotics of Complex mKdV Equation with Weighted Sobolev Initial Data 419

O
From equation (2.22), we obtain that
“+o0 “+ o0 )
811(>\) =1 +/ uMlﬁgldf,Sgl(A) = / ﬂ6_2zA£,U,1711d§. (240)

3. The construction of an RH problem

Define the reflection coefficient as r(\) = 218‘;, and a piecewise analytical function

m(x,t, \) that

+
(j—l,u;) . Im\ >0,
m(z,t,A) = " - (3.1)
(u2 7) . ImA < 0.
By applying the analyticities and symmetries of the eigenfunctions and the spectral
matrix, the RH problem corresponding to the initial value problem of the complex
mKdV equation can be obtained.

RH problem 1:

e my(z,t,A) is analytical in Cg,
o  my(x,t, ) =m_(x,t, \v(z,t,\), (3.2)
o my(x,t,A\) > I as \— o0,

where the jump matrix is

ot = [ LT(A) Foe ) (3.3)
e?0r()) 1

This is an RH problem defined on the real axis, as shown in figure 1 and the solution
u(x,t) to the initial value problem of the complex mKdV equation can be expressed
as the RH problem above

u(x,t) = 24 ,\h—>Holo (A, t, )19 = 21 Ali—>Holo (Am(z,t,N))y = 2i Ali_>n;O (ma(z,t, X))o
(3.4)

Figure 1. The oriented contour of m(\)

4. Triangular decomposition of jump matrix

We write the oscillating term of the jump matrix as

eitf(A) — etso(A)7 e(\) =1i0(N),
to obtain two steady state phase points +A\g = £,/—5>. Since

O(A) = a (A4 X0)% = 3X0 (A + X0)” +2)5) , (4.1)
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and
O(A) = a (A= X0)® +3X0(A — X0)? — 2)3) , (4.2)

the complex plane can be divided into two types of regions on the basis of the expo-
nential decay of €'Y, see figure 2. The jump matrix v(x,t, ) has the lower/upper
triangular decomposition

1 —T(X)efmw()‘) 1 0
U(l’,t, /\) = . ) (>‘ ? OO) (43)
(A
0 1 r(\)e2tN) 1

and the upper/diagonal /lower decomposition

v(z, t,\)
1 0\ [1—r)rY) 0 1 —6—2“90)#%
T e2ito) ) 0 1 0 1 '
1—r(X)r(X) 1—r(2)r(X)
(4.4)
A E (—)\0, )\0)
iR

\ /
\ Re (i8(\)) > 0 /
\

Re (i6()\)) < 0\\ / Re (i0(\)) < 0
|

| R

—Xo 0 Ao
Re (i6(A\)) > 0 / Re (i6(\)) > 0
\
// Re (i0(N) < 0\
/ \‘"\

/
/

Figure 2. Symbol distribution map of Re(i6(\)).

In order to remove the intermediate diagonal matrix in the decomposition for
A € (=Xo, \o), we introduce a scalar RH problem:

e d(A\) is analytical in C\R,
() =3 (1=rr()) . A€ (=, ho),
) =5

00 (N)=0_-(N), \— oo,
e () =1, A= oo

* o+ (4.5)

According to Plemelj formula, we get the unique solution of the above RH problem:

20 Jog(1 — |r(€)]? Aoy
0(A) = exp <21m /7)\ lg(1§_|)\(§)|)d§> = exp (z/)\ g(_g))\a%) , (4.6)
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where
v(€) = —g5 log (1 = [r(§)?).
Assuming that 7(\) € L N L% and [[r(\)|[z=~ < p < 1, §(A\) has the following
properties:
(1) §(N) is analytic in C\ (=g, \o);
@56 =1, 8z — 1= < ez,
(3)(L—p*)2 <[6(N)] < (1 —p*)72.
Further, we rewrite 6()\) as

5(\)

B 0 () 0 v()
_exp<z/_/\0£_/\df+z ; E_/\df

_ 0 v(€) = x2(Or(=No) (€ + Ao — 1)
=exp (z/ £

Ao+l _
d§+iu(f)\o)/ &+ X 1d§>

—o o §=A
() — @) E— Ao+ D) L Mog- ot
- exp (Z/O -\ dé +iv(Xo) /}\01 5_)\dé‘)
= eXp(iﬁg()\, —)\0> + iV(—)\o) + Zl/(—)\o)[()\ + Ao — 1) log()\ + Ao — 1) — (/\ + )\Oz )
4.7

log(A + o)) - exp(iv(—Xg) log(A + Xo) + +iv(Xo) log(A — Xg)) - exp

(iB1 (A Ao) +iv(Ao) + i (Ao) [(A—A0) log(A — Ag) — (A — Ao + 1) log(A — Ag) +1])
= exp (iv(=Xo) + iB2(N, —X0)) (A 4 X0)™ T2 exp (iv(No) + i1 (A, Ao)) (A= Xg) A0

-exp (ir(=Xo)[(A + Ao — 1) 1og(A + Ao — 1) — (A + o) log(X + o))

-exp (w(Ao)[(A — Ag) log(A — Ao) — (A — Ao + 1) log(A — Ao + 1)])

where x1(£) is an eigenfunction defined on the (—Xg, —Ag + 1), x2(§) is an eigen-
function defined on the (Ag — 1, Ag), and

BiA do) = Jp M O0Edatl)

Ba(X, —Xo) = ff/\o V(f)—Xz(f)Vé:;o)(f-&-)\o-i-l).
Letting () = R, we make a transformation
m () = m(A)IN) ", (4.8)

and m(Y () satisfies the following RH problem.
RH problem 2:

emW(z,£,\) is analytical in C\SD,
° mgrl)(w,t,)\) = m(f)(iv»t?)\)v(l)(%t, A), A€ n), (4.9)

om(l)(x,t,/\) — I, as A — oo
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for A € (*)\0, A()),

oW (2,8, )

1 ) 2 ,—2it0(N\)

_ T(A)ézezite(x)? (1) 1—T(A)T(A)15+e ; (4.10)
1—r(N)r(X) —
for A — oo,
v (z,t, )

[ 1 =r(A)aZem ) 1 0 (4.11)

o 1 r(\)5=2e2it000 1 ]

Due to 6(A) = I, A — oo, the relation between the solution of the complex mKdV
equation and the solution of the corresponding RH problem is

u(z,t) = 2i lim (AmM(X)672) 15 = 2i lim (AmD (M) 1a. (4.12)

5. A hybrid 0-problem

We extended the scattering data by the O-steepest descent method:
(M) extends to the regions Q11 and o1;

(M) extends to the regions Q16 and Qog;

)T
2)r
(3) rQ) _ extends to the regions Q13 and s3;
(4)——"—

extends to the regions 214 and Qo4.

Figure 3. Regions Q;;.

Proposition 5.1. There exist functions Ry;(A) = C, n=1,2, j =1,3,4,6 satisfy
the following boundary conditions

7”()\), A€ (}\0,00),
D ‘ 5.1
n {fu = F10(A = X) 2O, X € Ty, o

_ )

Ris(\) ={ TP ‘ A € (0, 20), (5.2)
fiz = 7%(>\ _ )\0)21110\0)5727 A€ Yo,
_r)__ Ae (0.

R14()\) _ i—|r(V)[2? 2 () 2 ( ) O)a (53>
Jia= 1= ‘mp()\ Ao) TEIAIEE N € Ygs,
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Ris() = { "M NEDoodh
fie = —T10(A — Xg)2¥PM0)6=2 X € By,
R21()\) — T(A)a A € (7007 7)‘0)7 (5 5)
fo1 = Pag(A + Ag) T2V(T0)52 X € By, .
_ r(\) _
Roz(\) ={ T-FrVP , A€ (=0, 0), (5.6)
fos =~ (A + Ag)2(Tr0)672 X € Yo,
r(A\) _
Ras(d) = { TTOT | AECA0
foa = T (A4 Xg) PERIE N € B,
Ras()) = —T(X), ) A € (=00, \o), (5.8)
f26 = —Tao(A + X)W (TA0)§72 X € Sy,

where 719 = 1(A)e 2 R0)=2B1X020) - o = (= )g)em2W(—r0)=2B2(=20.=R0) g

R,;(\) have the following estimations

0B, (M) < 1A = Ao 2 + ealr’ (Re(N))], (5.9)
|Rn;(N)] < 1 sin2(a7‘g)\) + (Re)\)fé. (5.10)

Define the contour
Y@ =51 US 1 U3 US4 USe USog UXes Uy,

-1
1 0
(mlewwa—Q 1) P AE

1 R13e—2it9(z\)62

, A€ Qs
0 1 13
RO ()\) = 1 0 5.11
( ) R14627‘.t9()‘)572 1] AE Q14, ( )
1 —2it6()) 52
Rlﬁe ) A S QlGa

0 1

10
>7 A€ Q12 U Q53

01
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and

1
1 0
> ) )‘69217

<R2162it0()\)52 1

1 Rgge 2100V 52

-1

, A€ Qog,
0 1 23
R®()\) = 1 0
() Ryye2it?N =21 | A € Qay,
1R —21’t0(A)62
20¢ , A€ Qg
0 1
10
01>7AEQQQUQQ5.

(5.12)

Due to the boundedness of §(\) and R,,;(\), and the exponential decay of e*2?,

we have

RO\~ I, t— oo

We make a transformation

m®(3) = mO VRO (),

then the RH problem on X(1) becomes the RH problem on (%),

RH problem 3:

em @ (z,t,)\) is continuousin C\X®,

emP(x,t,\) = mP (z,t, )o@ (z,1,)), Aex?,

. mf) (x,t,\) —

I, as A — oo,

(5.13)

(5.14)

the relation between the solution of the complex mKdV equation and the solution

of corresponding RH problem is

u(z,t) = 2 lim (Am® (z,t, \))1a.

The exact expression for the jump

A—o0

matrix v(?()\) is

V@) = (BZA) DR,

that is

v () =

0

1 0
R, 20021 | A€ X,
1 R, 3e2it0() 52
0 3¢ 1 ) A € En?a
1 0
R, 420N §=21 | A € Yinz,
1 R, ge2it0() 52
o ) A€ E'n4~

1

(5.15)

(5.16)

(5.17)
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1 Ryzo2e=2t0 1 0
0 Ry6 220 1
.............. N N I
1 Ry402e%it0 1 Rygo2e2it0
0 1
Y13 P
Figure 4. The jump matrix v(2)(/\).
212 Zn
1 0 1 0
Ii,:f,‘.”‘)(/\ — o) 2iv(Xo) 2it0 | Fo(A — )\“)72”/1,2110 1
1 0 1 —Fo(A — Ag)2ive 2t
1,"',"‘,'”\:(’\ _ /\U)*ZH/[XH](JQINI 1 0 1

Figure 5. The jump matrix v(® ())
In order for v(? ()) to match the jump matrix v(P*)(\) of the parabolic cylindrical

RH problem, we make the scale transformation

A ] - ] 3
rio = 7'106“’ log(12atAo) 4zat)\0’ (518)

then the jump matrix v [y/12at (A — Ag)] corresponding to m®)[\/12at g(\ —
Ao)] is consistent with v(2)()\). We make the transformation

. .23
roo = rQOewlog(—12at)\o)+4zat/\0’ (519)

the jump matrix v(P9)[\/=12atXg(X + Ao)] corresponding to m P [y/12atXg( A+ Ao)]
is consistent with v(2)()\). Therefore, we infer that

v =(RX) v =0 12at — . 5.
@) = (RZ) O WRE = v [/12ath0(A = Ao)] (5.20)
On the boundary (Ag, 00), we have

v [I2atho(A=A0)] = I, v (X) =

1 —r(X)§2 e 20N 1 0
0 1 r(N)6 220N |

Therefore, equation (5.20) derives

@ (\)
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1 —r(N)s2 e~ 20N 1 0
(RO [ LT ) RO,
0 1 r(AN)6-2e20N) 1
=1 (5.21)
We define
-1
) 10 ) 1 —To2e 20
R®(\) = ‘ . AeQ; RPN = . A E Qg
ré 220 1 0 1
(5.22)
where Rj1(A) and Ri6(A) on the line (Ag, 00) have the boundary values
Rll()\) = T()\), Rlﬁ()\) = F()\), A E (/\0,00). (523)
On Y11, we have
o o 10
v (\) = I, vPI[/T2athg (A — Ao)] = e 093 (X — \g)™o3
o1

By using (5.23), (5.16) can be written as

@) 1 0 @) 1 0
v () = RO, = IR 7Y
R15_2€21t 1 7'1062“5 ()\ — )\0)—211/ 1

We take
RA(\) =1, X €Qy,
Comparing the elements at position 21 of the jump matrix (5.24), we get

R, ()\)6—262#0 _ f16—262it9 _ 721062#0()\ _ )\0)—21'1/_ (525)
Therefore, the boundary value of Ry1(A) on 17 is
Ru()\) = 7210()\ — )\0)_%”(52, A€ Xy, (526)

The proofs for the other regions are similar.
From the literature [39], we get

MFPE(X
MEC () =1+~ i§( ) 4 o(2), (5.27)
where
0 7
MY (No) = Bralfro) (5.28)
B21(f10) 0
with
—\2meTe e
) = 2
B12(T10) fwl“(—iu()\o)) (5 9>
Similarly, through the literature [39], we obtain
MEC (=)
Mg (6) = 1+ ML) ey (5.30)

i§
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where
0 7
MPC(=Xo) = Bralfao) (5.31)
B21(720) 0
with
— QFe%e_wu(;A)

20l (—iv(—Ao))

Since m(l)(é) is analytical in the regions Q,;,n =1,2,j = 1,3,4,6, and
(R (N\)"TORP(N) = IR (N), it follows that

Mm@\ =mW(NIRP(A) = mPDA)(RP (M) "PIRP (A) = mP (NIRP (N,
(5.33)
where

0 0
— DR, 210572 0
0 —OR, 3¢ 21102 e,
0 1

0 0
BR,,4e21105-2 ()

0 ER»,L —2it0 §2
o ’ ) A€ Qn67
0 0

) AEina

ARP(\) = JAE Qg (5.34)

00
S A E Qo U Qs
00) 2 <vi

n=1,2.

6. Pure O-problem and asymptotics of its solutions
We define
E(\) = m@ ) [mP) (120t Xo(X — o))l (6.1)
E()) is continuous in C without jumping. Through (5.14) and (6.1), on £4;,j =
1,2,3,4, have
E-YNEL(A) = mP (mP) L@ (m )1
— mP9y(2) (m(f%(pc))—l
— P2 (7P, (2)) -1

=1 (6.2)
Therefore, we get a pure 0-problem

e E(\) is continuous in C,
e JE(\) = E(NW (M), AeC,
e E(\)~1I, \— o0, (6.3)
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where
me0 (S 0><m<PC><A>>-1,AeQu,
OR11€%9572 0
m(®9) (1) 3_8&3?%962 (MO (X)L, A € O,
0 0

W(A) = ¢ mPI(N) > (m®PI(N)~L, X € Qu, (6.4)

DR14e2105-2 0
0 —5R166_2it0 52

m®) () 0 0 (m®PI(A)~, A € Qe
00
, A€ Qo U Q5.
(0 0) 12 15

O-problem (6.3) is equivalent to the following integral equation

B =1 - % / /C % dA(s), (6.5)

where dA(s) is the Lebesgue measure on the real plane. Equation (6.5) can also be
expressed as an operator
(1-8)E\) =1, (6.6)

where S is a Cauchy operator
S = —jr//cfc(z)WA(S) dA(s). (6.7)

Proposition 6.1. For sufficiently large t, the operator S is a small norm, (1—S)~!
exists, and
_1
||S||L°°—>L°° S ct™ 1. (68)

From equation (6.7), further expand E(\) as

Ei(\)
A

E\) =1+ +0(\7?), (6.9)

where
Ex(\) = = [Jq,, E(s)W (s) dA(s),

and satisfies the following estimation
By (\)] < et 7. (6.10)
In addition, we define

T(A) = mP (W) [mPI (\/=12at (A + Xo))], (6.11)

and T()) is continuous in C without jumping. Through (5.14) and (6.11), on
95,7 =1,2,3,4, we have

T2 T (N) = m® (m®) 7 tm @ (m )~
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= mP)y® (771(,196)11(?6))_1
= m(,pc)v@) (m(fm:)v@))_1

=1 (6.12)
Therefore, we get a pure J-problem

eT(\) is continuous in C,
e IT(\) =T(\)M(N), XeC,

e T(\) ~ 1, A— oo, (6.13)
where
meooy (O °>mM%mrHAe%b
OR21€29672 0
mPe)(X) 8 _5R23i_2it952 (m®PI(A) 7, A € s,
0 0

M(X) = S mPe()) FRoye2it052 0) (mPI(N) 71 A € Do, (6.14)

0 —DRyge 210 52
0 0

00
; A E Qoo U Qos.
(0()) 22 2

O-problem (6.13) is equivalent to the following integral equation

mP9(X) (m®I(A) 7 X € Qag,

T =1 - %/C SE_WA dA(s), (6.15)

where dA(s) is the Lebesgue measure on the real plane. Equation (6.11) can also
be represented as an operator

(1-8)T(\) =1, (6.16)

where S is a Cauchy operator

S[f](\) = —i/fcw dA(s). (6.17)

From (6.17), we further expand T'(\) as

+ O()\_2)7 (6.18)

where
Ti(A) = 2 [y, TW dAs).

T

and satisfies the following estimation

Ty (M) < et 1. (6.19)
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Recalling the series of transformations we have made (4.8), (5.13), (6.1) and
(6.11), we can reverse these transformations

m(A) & mBO ) & mP ) o (BN +TWN), (6.20)

m(\) = EQO)MEC(RP(N) 716N + TWMES (RP (V) 16V, (6.21)

Particularly, considering A — oo in A € Qa, Q15, Qog, Qas, R = I, then we have

m(\) = (I+E1)E/\>+...> <I+\/1(2%f\:i)> <I+A)\1+...>

(6.22)
:(]+Tl()\)+ ) I+M <[+A1+ )
A V=12athg + ... A T
There is also
(M) Pc)m (M_y Pc)lz
AN =EN+T1 (M = 2 = A1, 6.23
m1(A) 1()+1()+m+1m+1 (6.23)
01 0
where A\ =
0 —d
Therefore, we get
(M, "1a (M_x," 1o 3
) =2 2 O(t7), 6.24
U = 2 e 2 o, O (6.24)
Where M)l\::)c = —iﬂlg(f10)7 Mfg) = —iﬂlg(fgo).

Appendix A

Here we describe the solution to the parabolic cylindrical model problem introduced
by [39], which has been widely used to study the long-time asymptotics of integrable
systems in the literature [21,40]. Define the contour

i(2j—1)7

S = Ut 38 = {g — Rt = 1,2,3,4} , (6.25)

we have the following parabolic cylinder model problem.
RH Problem A.1:

o MPI(€) s analytic in C\XP°, (6.26)
o« M{P(&) = MU QOVPI(©), ¢exr, (6.27)
o« M@I(&) =T+ My +0(£%), € — . (6.28)

§
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where
. i£2 o 1 O
§oem a8 ; §€Xy,
To 1
o _—To _
giw%ge—%&g 1—|ro|? , € c 22’
(pc) 0 1
v\ P(€) = (6.29)
AN ig2 . 1 O
givore= 50 e,
T0 1
1—|ro|®
. i£2 o 1 —To
gvose= 0 . fexa
01
(See figure 6)
po%y P
1 < 1 0)
0 ,.(15—2111("3” 1
1 Feqai-tve's 1 —rozidive =5
0 0 1
3 P
Figure 6. The jump matrix v(P¢) (£)
We know that the RH Problem A.1 admits the solution
MPE (r
M (o) = 14 ) c( V) L o(c?) (6.30)
where
0 B2
M (ro) =
—fB21 0

with £12 and 27 which are two complex constants

in/4g—mv/2
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