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Abstract In this paper, we apply ∂̄-steepest descent method to analyze the
long-time asymptotics of complex mKdV equation with the initial value be-
longing to weighted Sobolev spaces. Firstly, the Cauchy problem of the com-
plex mKdV equation is transformed into the corresponding Riemann-Hilbert
problem on the basis of the Lax pair and the scattering data. Then the long-
time asymptotics of complex mKdV equation is obtained by studying the
solution of the Riemann-Hilbert problem.
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1. Introduction

The study of nonlinear partial differential equations (NLPDEs) has played an im-
portant role in the development of science and technology. Until now, NLPDEs can
be used to explain some complex physical phenomena, including mathematics, fluid
mechanics, plasma physics, atmospheric oceans, aerodynamics, etc [2–9]. Nowa-
days, the inverse scattering transformation [10–13], Hirota bilinear method [14–16],
Darboux transformation [17,18] and so on are effective methods to solve NLPDEs.
Especially, the inverse scattering transformation is the first method which was found
and used to obtain the exact solution of the soliton equation. In the early 20th
century, the solution of Riemann-Hilbert (RH) problem was developed and pro-
moted [19, 20]. In 1993, Deift and Zhou proposed the famous nonlinear steepest
descent method to analyze the long-time asymptotic behavior of integrable evolu-
tion equations. Deift and Zhou analyzed the long-time asymptotic behavior of the
solution to the initial value problem of the famous mKdV equation and Schrödinger
equation [21, 22]. Cuccagna studied the asymptotic stability of N-soliton solutions
of the defocusing nonlinear schrödinger equation by ∂̄-steepest descent method [23].
Robert analyzed the derivative nonlinear schrödinger equation via ∂̄-steepest de-
scent method [24]. In addition, Fan, Geng and Ma studied the soliton solutions
and long-time asymptotic behavior of some integrable evolution equations based on
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RH problem [25–36]; among them, Ma has already done some work on nonlocal
equations [35,36].

In this paper, we study the equation derived from the Lax pair given by Yishen
Li [37]. The Lax pair is

ψx = −iλσ3ψ + Pψ,

ψt = (ζλ3 + ηλ2 + ϑλ+ ι)σ3ψ +Qψ,
(1.1)

where ψ(x, t, λ) is a 2× 2 matrix, σ3=diag(1,−1), and

P =

 0 u

v 0

 ,

Q = iζλ2P − iλ

 iζ
2 uv − iζ2 ux − ηu

iζ
2 vx − ηv − iζ2 uv


−

 iζ
4 (uvx − vux)− η

2uv − iζ4 (−uxx + 2u2v) + η
2ux − iϑu

−iζ
4 (−vxx + 2uv2)− η

2vx − iϑv − iζ4 (uvx − vux) + η
2uv

 .

(1.2)
The Lax pair (1.1) derives the following system:{

ut = − iζ4 (uxxx − 6uvux)− η
2 (uxx − 2u2v) + iϑux + 2ιu,

vt = − iζ4 (vxxx − 6uvvx) + η
2 (vxx − 2v2u) + iϑvx − 2ιv.

(1.3)

(I)Taking ζ = −4i, η = ϑ = ι = 0, and v = −1, system (1.3) reduces to the KdV
equation:

ut + 6uux + uxxx = 0. (1.4)

(II)Taking ζ = −4i, η = ϑ = ι = 0, and v = −u, system (1.3) reduces to the mKdV
equation:

ut + 6u2ux + uxxx = 0. (1.5)

(III)Taking η = −2i, ζ = ϑ = ι = 0, and v = ∓u, system (1.3) reduces to the
nonlinear Schrödinger equation:

iut + uxx ± 2u2u = 0, (1.6)

where superscript bar denotes complex conjugate.
(IV)Taking ι = −2, ζ = ϑ = ι = 0, and qx = uv =

(
ux
u

)
x, system (1.3) reduces to

the Burger equation
qt = 2qqx − qxx. (1.7)

In addition, taking ζ = −iα (α > 0), η = ϑ = ι = 0 and v = u, system (1.3) reduces
to the complex mKdV equation:

ut =
α

4
(−uxxx + 6|u|2ux), (1.8)

where u(x, t) is complex-valued function of variate (x, t). In [38], Chen and Liu
obtained the long-time asymptotics of the mKdV equation in weighted Sobolev
spaces. However, the long-time asymptotics of the complex mKdV equation have
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not been studied. In this paper, we apply ∂̄-steepest descent method to analyze long-
time asymptotics of the complex mKdV equation with weighted Sobolev initial data
u(t = 0, x) = u0(x) ∈ H1,1(R) = {f(x) : f

′
(x), xf(x) ∈ L2(R)}. The significance of

our work is that it gives a referenceable example for later generalization of the real
equation to complexified equations in the study of the dynamical behaviour of the
solutions.

The layout of the paper is as follows. In Section 2, we analyze eigenfunction
and spectral function of equation (1.8) to construct the original Riemann-Hilbert
problem. In Section 3, by deforming the jump matrix of the original Riemann-
Hilbert problem and extending the region, the original Riemann-Hilbert problem is
transformed into a model Riemann-Hilbert problem. Then the solution of the mod-
el Riemann-Hilbert problem can be expressed by the solution of Weber equation.
Finally, we obtain the long-time asymptotics of the Cauchy problem for complex
mKdV equation.

2. Spectral analysis

In this section, by analyzing the Lax pair, the matrix Jost solutions of complex
mKdV equation (1.8) are constructed. Then the Cauchy problem of complex mKdV
equation (1.8) turns into the corresponding Riemann-Hilbert problem. The Lax pair
of complex mKdV equation is

ψx = −iλσ3ψ +Mψ, (2.1)

ψt = −iαλ3σ3ψ +Nψ, (2.2)

where

M =

 0 u

v 0

 , (2.3)

N = αλ2M − iλ

 α
2 uv −

α
2 ux

α
2 vx −

α
2 uv

−
 α

4 (uvx − vux) −α4 (−uxx + 2u2v)

−α4 (−vxx + 2uv2) −α4 (uvx − vux)

 .

(2.4)

2.1. Asymptotics

Lax pair (2.1)-(2.2) has a Jost solution of the following asymptotic form

ψ(x, t, λ) = e−i(λσ3x+αλ3σ3t), |x| → ∞. (2.5)

Therefore, we make the transformation

µ(x, t, λ) = ψ(x, t, λ)ei(λσ3x+αλ3σ3t), (2.6)

where µ(x, t, λ) satisfies the following Lax pair

µx + iλ[σ3, µ] = Mµ, (2.7)

µt + iαλ3[σ3, µ] = Nµ, (2.8)
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which can be written in the full derivative form

d
(
ei(λx+αλ3t)σ̂3µ

)
= ei(λx+αλ3t)σ̂3 [(Mdx+Ndt)µ]. (2.9)

Considering the asymptotic expansion

µ = µ0 +
µ1

λ
+
µ2

λ2
+
µ3

λ3
+ o

(
1

λ4

)
, λ→∞, (2.10)

where µ0, µ1, µ2 and µ3 are independent of λ. Substituting (2.10) into (2.7) and
comparing the coefficients of λ, we obtain that µ0 is a diagonal matrix and

µ0,x + iσ3µ1 − iµ1σ3 = Mµ0, (2.11)

iσ3µ0 − iµ0σ3 = 0. (2.12)

In the same way, substituting (2.10) into (2.8) and comparing the coefficients of λ,
we get

µ0,t + iασ3µ3 − iαµ3σ3 − αMµ2 +
iα

2
uūσ3µ1 +

iα

2
Mxσ3µ1 +

α

4
(uūx − ūux)σ3µ0

(2.13)

+
α

4
Mxxµ0 −

α

2
M3µ0 = 0,

iασ3µ2 − iαµ2σ3 = αMµ1 −
iα

2
uūσ3µ0 −

iα

2
Mxσ3µ0, (2.14)

iασ3µ1 − iαµ1σ3 = αMµ0, (2.15)

iασ3µ0 − iαµ0σ3 = 0. (2.16)

Through a series of calculations, we obtain

µ(x, t, λ)→ I, λ→∞, (2.17)

u(x, t) = 2i lim
λ→∞

(λµ)12 = 2i(µ1)12. (2.18)

2.2. Analyticity and symmetry

To analyze the eigenfunction µ(x, t, λ), we choose two special integral paths

(−∞, t)→ (x, t) and (∞, t)→ (x, t) (2.19)

and acquire two Volterra type integral equations

µ1(x, t, λ) = I +

∫ x

−∞
ei(λy−λx)σ̂3M(y, t, λ)µ1(y, t, λ)dy, (2.20)

µ2(x, t, λ) = I −
∫ ∞
x

ei(λy−λx)σ̂3M(y, t, λ)µ2(y, t, λ)dy. (2.21)

From the transformation (2.6), it can be known that µ1(x, t, λ)e−i(λσ3x+αλ3σ3t) and

µ2(x, t, λ)e−i(λσ3x+αλ3σ3t) are the two linear correlation matrix solutions of Lax pair
(2.7) and (2.8), so we have

µ1(x, t, λ) = µ2(x, t, λ)e−iθ(λ)σ̂3S(λ), (2.22)
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where

θ(λ) = λxt + αλ3, S(λ) =

 s11(λ) s12(λ)

s21(λ) s22(λ)

,

S(λ) is irrelevant to x and t, and it is called the spectral matrix function. Nextly, we
study the analyticity of µ1(x, t, λ), µ2(x, t, λ) and S(λ). For the integral equation
(2.20), a direct calculation shows that

eiλ(y−x)σ̂3M(λ; ξ, t) =

 0 ue2iλ(y−x)

ūe2iλ(y−x) 0

 , (2.23)

and
2iλ(y − x) = 2i(Reλ+ iImλ)(y − x) = 2iReλ(y − x)− 2Imλ(y − x),

so that the first column of µ1(x, t, λ) is analytical in the upper half plane C+, the
second column of µ1(x, t, λ) is analytical in the lower half plane C−, and µ1(x, t, λ)
can be written as

µ1 =

µ
(11)
1 µ

(12)
1

µ
(21)
1 µ

(22)
1

 = (µ+
1 , µ

−
1 ). (2.24)

Similarly, the first column of µ2(x, t, λ) is analytical in the lower half plane C−, the
second column of µ2(x, t, λ) is analytical in the upper half plane C+, and µ2(x, t, λ)
can be written as

µ2 =

µ
(11)
2 µ

(12)
2

µ
(21)
2 µ

(22)
2

 = (µ−2 , µ
+
2 ). (2.25)

Theorem 2.1. The eigenfunctions µ1(x, t, λ), µ2(x, t, λ) and spectral matrix S(λ)
have the following symmetry properties

µj(x, t, λ) = σ1µj(x, t, λ)σ1, (j = 1, 2), (2.26)

S(λ) = σ1S(λ)σ1, (2.27)

where σ1 =

 0 1

1 0

 .

Proof. Through Lax pair (2.7), we have

µj,x(x, t, λ) + iλ[σ3, µj(x, t, λ)] = Mµj(x, t, λ). (2.28)

Substituting λ for λ and taking the conjugate of the left and right sides of equation
(2.28) gives

µj,x(x, t, λ)− iλ[σ3, µj(x, t, λ)] = Mµj(x, t, λ). (2.29)

Multiplying the left and right sides of equation (2.29) by σ1 leads to

[σ1µj(x, t, λ)σ1]x − iλσ1σ3µj(x, t, λ)σ1 + iλσ1µj(x, t, λ)σ3σ1 = σ1Mµj(x, t, λ)σ1.
(2.30)

By calculation, we get

[σ1µj(x, t, λ)σ1]x + iλ[σ3, σ1µj(x, t, λ)σ1] = Mσ1µj(x, t, λ)σ1. (2.31)
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Comparing equation (2.7) with equation (2.31), we know that µj(x, t, λ) and

σ1µj(x, t, λ)σ1 satisfy the same differential equation and have the same asymptotic
property

µj(x, t, λ), σ1µj(x, t, λ)σ1 → I, x→∞. (2.32)

Therefore,

µj(x, t, λ) = σ1µj(x, t, λ)σ1, (2.33)

that isµ11(λ) µ12(λ)

µ21(λ) µ22(λ)

 =

0 1

1 0

µ11(λ) µ12(λ)

µ21(λ) µ22(λ)

 0 1

1 0

 =

µ22(λ) µ21(λ)

µ12(λ) µ11(λ)

 .

(2.34)

By comparing the two sides of the above equation, we get µ11(λ) = µ22(λ), and

µ12(λ) = µ21(λ). From equation (2.33), we get the symmetry property of spectral
matrix S(λ):

σ1S(λ)σ1 = S(λ), (2.35)

that is s11(λ) = s22(λ) and s12(λ) = s21(λ).

Theorem 2.2. The eigenfunctions µ1(x, t, λ), µ2(x, t, λ) and spectral matrix func-
tion S(λ) also have the following symmetry properties

σ3µ
H
j (x, t, λ)σ3 = µ−1

j (x, t, λ), (2.36)

σ3S
H(λ)σ3 = S−1(λ), (2.37)

where superscript H denotes conjugate transpose.

Proof. Through direct calculation, we get

σ3µ
H
j (x, t, λ)σ3

=

 1 0

0 −1

µj,11(x, t, λ) µj,12(x, t, λ)

µj,21(x, t, λ) µj,22(x, t, λ)

H  1 0

0 −1


=

 1 0

0 −1

µj,11(x, t, λ) µj,21(x, t, λ)

µj,12(x, t, λ) µj,22(x, t, λ)

 1 0

0 −1


=

 1 0

0 −1

µj,22(λ) µj,12(λ)

µj,21(λ) µj,11(λ)

1 0

0 −1


=

 µj,22(λ) −µj,12(λ)

−µj,21(λ) µj,11(λ)


= µ−1

j (x, t, λ).

(2.38)

Similarly, we can get
σ3S

H(λ)σ3 = S−1(λ). (2.39)
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From equation (2.22), we obtain that

s11(λ) = 1 +

∫ +∞

−∞
uµ1,21dξ, s21(λ) =

∫ +∞

−∞
ue−2iλξµ1,11dξ. (2.40)

3. The construction of an RH problem

Define the reflection coefficient as r(λ) = s21(λ)
s11(λ) , and a piecewise analytical function

m(x, t, λ) that

m(x, t, λ) =


(
µ+
1

s11
, µ+

2

)
, Imλ > 0,(

µ−2 ,
µ−1
s22

)
, Imλ < 0.

(3.1)

By applying the analyticities and symmetries of the eigenfunctions and the spectral
matrix, the RH problem corresponding to the initial value problem of the complex
mKdV equation can be obtained.
RH problem 1 :

• m±(x, t, λ) is analytical in C±,
• m+(x, t, λ) = m−(x, t, λ)v(x, t, λ),

• m±(x, t, λ)→ I, as λ→∞,
(3.2)

where the jump matrix is

v(x, t, λ) =

 1− |r(λ)|2 −e−2itθr(λ)

e2itθr(λ) 1

 . (3.3)

This is an RH problem defined on the real axis, as shown in figure 1 and the solution
u(x, t) to the initial value problem of the complex mKdV equation can be expressed
as the RH problem above

u(x, t) = 2i lim
λ→∞

(λµ(x, t, λ))12 = 2i lim
λ→∞

(λm(x, t, λ))12 = 2i lim
λ→∞

(m1(x, t, λ))12.

(3.4)

Figure 1. The oriented contour of m(λ)

4. Triangular decomposition of jump matrix

We write the oscillating term of the jump matrix as

eitθ(λ) = etϕ(λ), ϕ(λ) = iθ(λ),
to obtain two steady state phase points ±λ0 = ±

√
− x

3αt . Since

θ(λ) = α
(
(λ+ λ0)3 − 3λ0(λ+ λ0)2 + 2λ3

0

)
, (4.1)
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and
θ(λ) = α

(
(λ− λ0)3 + 3λ0(λ− λ0)2 − 2λ3

0

)
, (4.2)

the complex plane can be divided into two types of regions on the basis of the expo-
nential decay of eitθ, see figure 2. The jump matrix v(x, t, λ) has the lower/upper
triangular decomposition

v(x, t, λ) =

1 −r(λ)e−2itθ(λ)

0 1

 1 0

r(λ)e2itθ(λ) 1

 , (λ→∞) (4.3)

and the upper/diagonal/lower decomposition

v(x, t, λ)

=

 1 0

e2itθ(λ) r(λ)

1−r(λ)r(λ)
1

 1− r(λ)r(λ) 0

0 1

1−r(z)r(λ)

1 −e−2itθ(λ) r(λ)

1−r(λ)r(λ)

0 1

 ,

(4.4)
λ ∈ (−λ0, λ0).

Figure 2. Symbol distribution map of Re(iθ(λ)).

In order to remove the intermediate diagonal matrix in the decomposition for
λ ∈ (−λ0, λ0), we introduce a scalar RH problem:

• δ(λ) is analytical in C\R,

• δ+(λ) = δ−(λ)
(

1− r(λ)r(λ)
)
, λ ∈ (−λ0, λ0) ,

• δ+(λ) = δ−(λ), λ→∞,
• δ(λ)→ 1, λ→∞.

(4.5)

According to Plemelj formula, we get the unique solution of the above RH problem:

δ(λ) = exp

(
1

2πi

∫ λ0

−λ0

log(1− |r(ξ)|2)

ξ − λ
dξ

)
= exp

(
i

∫ λ0

−λ0

ν(ξ)

ξ − λ
dξ

)
, (4.6)
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where
ν(ξ) = − 1

2π log
(
1− |r(ξ)|2

)
.

Assuming that r(λ) ∈ L∞ ∩ L2 and ‖r(λ)‖L∞ ≤ ρ < 1, δ(λ) has the following
properties:
(1) δ(λ) is analytic in C\ (−λ0, λ0);

(2)δ(λ)δ(λ) = 1, ‖δ± − 1‖L2 ≤ c‖r‖L2

1−ρ ;

(3)(1− ρ2)
1
2 ≤ |δ(λ)| ≤ (1− ρ2)−

1
2 .

Further, we rewrite δ(λ) as

δ(λ)

= exp

(
i

∫ 0

−λ0

ν(ξ)

ξ − λ
dξ + i

∫ λ0

0

ν(ξ)

ξ − λ
dξ

)

= exp

(
i

∫ 0

−λ0

ν(ξ)− χ2(ξ)ν(−λ0)(ξ + λ0 − 1)

ξ − λ
dξ + iν(−λ0)

∫ −λ0+1

−λ0

ξ + λ0 − 1

ξ − λ
dξ

)

· exp

(
i

∫ λ0

0

ν(ξ)− χ1(ξ)ν(λ0)(ξ − λ0 + 1)

ξ − λ
dξ + iν(λ0)

∫ λ0

λ0−1

ξ − λ0 + 1

ξ − λ
dξ

)
= exp(iβ2(λ,−λ0) + iν(−λ0) + iν(−λ0)[(λ+ λ0 − 1) log(λ+ λ0 − 1)− (λ+ λ0)

(4.7)

log(λ+ λ0)]) · exp(iν(−λ0) log(λ+ λ0) + +iν(λ0) log(λ− λ0)) · exp

(iβ1(λ, λ0) + iν(λ0) + iν(λ0)[(λ−λ0) log(λ− λ0)− (λ− λ0 + 1) log(λ− λ0) + 1])

= exp (iν(−λ0) + iβ2(λ,−λ0)) (λ+ λ0)iν(−λ0) exp (iν(λ0) + iβ1(λ, λ0)) (λ−λ0)iν(λ0)

· exp (iν(−λ0)[(λ+ λ0 − 1) log(λ+ λ0 − 1)− (λ+ λ0) log(λ+ λ0)])

· exp (iν(λ0)[(λ− λ0) log(λ− λ0)− (λ− λ0 + 1) log(λ− λ0 + 1)]) ,

where χ1(ξ) is an eigenfunction defined on the (−λ0,−λ0 + 1), χ2(ξ) is an eigen-
function defined on the (λ0 − 1, λ0), and

β1(λ, λ0) =
∫ λ0

0
ν(ξ)−χ1(ξ)ν(λ0)(ξ−λ0+1)

ξ−λ ,

β2(λ,−λ0) =
∫ 0

−λ0

ν(ξ)−χ2(ξ)ν(−λ0)(ξ+λ0+1)
ξ−λ .

Letting Σ(1) = R, we make a transformation

m(1)(λ) = m(λ)δ(λ)−σ3 , (4.8)

and m(1)(λ) satisfies the following RH problem.
RH problem 2 :

•m(1)(x, t, λ) is analytical in C\Σ(1),

•m(1)
+ (x, t, λ) = m

(1)
− (x, t, λ)v(1)(x, t, λ), λ ∈ Σ(1),

•m(1)(x, t, λ)→ I, as λ→∞;

(4.9)
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for λ ∈ (−λ0, λ0),

v(1)(x, t, λ)

=

 1 0

r(λ)

1−r(λ)r(λ)
δ−2
− e2itθ(λ) 1

 1 − r(λ)

1−r(λ)r(λ)
δ2

+e
−2itθ(λ)

0 1

 ;
(4.10)

for λ→∞,
v(1)(x, t, λ)

=

 1 −r(λ)δ2
−e
−2itθ(λ)

0 1

 1 0

r(λ)δ−2
− e2itθ(λ) 1

 .
(4.11)

Due to δ(λ)→ I, λ→∞, the relation between the solution of the complex mKdV
equation and the solution of the corresponding RH problem is

u(x, t) = 2i lim
λ→∞

(λm(1)(λ)δσ3)12 = 2i lim
λ→∞

(λm(1)(λ))12. (4.12)

5. A hybrid ∂̄-problem

We extended the scattering data by the ∂̄-steepest descent method:
(1)r(λ) extends to the regions Ω11 and Ω21;

(2)r(λ) extends to the regions Ω16 and Ω26;

(3) r(λ)

1−r(λ)r(λ)
extends to the regions Ω13 and Ω23;

(4) r(λ)

1−r(λ)r(λ)
extends to the regions Ω14 and Ω24.

Figure 3. Regions Ωij .

Proposition 5.1. There exist functions Rnj(λ)→ C, n = 1, 2, j = 1, 3, 4, 6 satisfy
the following boundary conditions

R11(λ) =

{
r(λ), λ ∈ (λ0,∞),

f11 = r̂10(λ− λ0)−2iν(λ0)δ2, λ ∈ Σ11,
(5.1)

R13(λ) =

− r(λ)
1−|r(λ)|2 , λ ∈ (0, λ0),

f13 = − r̂10
1−|r̂10|2 (λ− λ0)2iν(λ0)δ−2, λ ∈ Σ12,

(5.2)

R14(λ) =

{
r(λ)

1−|r(λ)|2 , λ ∈ (0, λ0),

f14 = r̂10
1−|r̂10|2 (λ− λ0)−2iν(λ0)δ2, λ ∈ Σ13,

(5.3)
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R16(λ) =

{
−r(λ), λ ∈ (λ0,∞),

f16 = −r̂10(λ− λ0)2iν(λ0)δ−2, λ ∈ Σ14,
(5.4)

R21(λ) =

{
r(λ), λ ∈ (−∞,−λ0),

f21 = r̂20(λ+ λ0)−2iν(−λ0)δ2, λ ∈ Σ21,
(5.5)

R23(λ) =

− r(λ)
1−|r(λ)|2 , λ ∈ (−λ0, 0),

f23 = − r̂20
1−|r̂20|2 (λ+ λ0)2iν(−λ0)δ−2, λ ∈ Σ22,

(5.6)

R24(λ) =

{
r(λ)

1−|r(λ)|2 , λ ∈ (−λ0, 0),

f24 = r̂20
1−|r̂20|2 (λ+ λ0)−2iν(−λ0)δ2, λ ∈ Σ23,

(5.7)

R26(λ) =

{
−r(λ), λ ∈ (−∞, λ0),

f26 = −r̂20(λ+ λ0)2iν(−λ0)δ−2, λ ∈ Σ24,
(5.8)

where r̂10 = r(λ0)e−2iν(λ0)−2β1(λ0,λ0), r̂20 = r(−λ0)e−2iν(−λ0)−2β2(−λ0,−λ0) and
Rnj(λ) have the following estimations

|∂̄Rnj(λ)| ≤ c1|λ− λ0|−
1
2 + c2|r

′
(Re(λ))|, (5.9)

|Rnj(λ)| ≤ c1 sin2(argλ) + c1(Reλ)−
1
2 . (5.10)

Define the contour
Σ(2) = Σ11 ∪ Σ12 ∪ Σ13 ∪ Σ14 ∪ Σ21 ∪ Σ22 ∪ Σ23 ∪ Σ24,

R(2)(λ) =



(
1 0

R11e
2itθ(λ)δ−2 1

)−1

, λ ∈ Ω11,(
1 R13e

−2itθ(λ)δ2

0 1

)−1

, λ ∈ Ω13,(
1 0

R14e
2itθ(λ)δ−2 1

)
, λ ∈ Ω14,(

1 R16e
−2itθ(λ)δ2

0 1

)
, λ ∈ Ω16,(

1 0

0 1

)
, λ ∈ Ω12 ∪ Ω15;

(5.11)
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and

R(2)(λ) =



(
1 0

R21e
2itθ(λ)δ−2 1

)−1

, λ ∈ Ω21,(
1 R23e

−2itθ(λ)δ2

0 1

)−1

, λ ∈ Ω23,(
1 0

R24e
2itθ(λ)δ−2 1

)
, λ ∈ Ω24,(

1 R26e
−2itθ(λ)δ2

0 1

)
, λ ∈ Ω26,(

1 0

0 1

)
, λ ∈ Ω22 ∪ Ω25.

(5.12)

Due to the boundedness of δ(λ) and Rnj(λ), and the exponential decay of e±2itθ,
we have

R(2)(λ) ∼ I, t→∞.
We make a transformation

m(2)(λ) = m(1)(λ)R(2)(λ), (5.13)

then the RH problem on Σ(1) becomes the RH problem on Σ(2).
RH problem 3 :

•m(2)(x, t, λ) is continuousin C\Σ(2),

•m(2)
+ (x, t, λ) = m

(2)
− (x, t, λ)v(2)(x, t, λ), λ ∈ Σ(2),

•m(2)
+ (x, t, λ) −→ I, as λ→∞,

(5.14)

the relation between the solution of the complex mKdV equation and the solution
of corresponding RH problem is

u(x, t) = 2i lim
λ→∞

(λm(2)(x, t, λ))12. (5.15)

The exact expression for the jump matrix v(2)(λ) is

v(2)(λ) = (R2
−(λ))−1v(1)(λ)R2

+(λ), (5.16)

that is

v(2)(λ) =



(
1 0

Rn1e
2itθ(λ)δ−2 1

)
, λ ∈ Σn1,(

1 Rn3e
−2itθ(λ)δ2

0 1

)
, λ ∈ Σn2,(

1 0

Rn4e
2itθ(λ)δ−2 1

)
, λ ∈ Σn3,(

1 Rn6e
−2itθ(λ)δ2

0 1

)
, λ ∈ Σn4.

(5.17)
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Figure 4. The jump matrix v(2)(λ).

Figure 5. The jump matrix v(2)(λ)

In order for v(2)(λ) to match the jump matrix v(pc)(λ) of the parabolic cylindrical
RH problem, we make the scale transformation

r10 = r̂10e
iν log(12αtλ0)−4iαtλ3

0 , (5.18)

then the jump matrix v(pc)[
√

12αtλ0(λ− λ0)] corresponding to m(pc)[
√

12αtλ0(λ−
λ0)] is consistent with v(2)(λ). We make the transformation

r20 = r̂20e
iν log(−12αtλ0)+4iαtλ3

0 , (5.19)

the jump matrix v(pc)[
√
−12αtλ0(λ+λ0)] corresponding to m(pc)[

√
12αtλ0(λ+λ0)]

is consistent with v(2)(λ). Therefore, we infer that

v(2)(λ) = (R
(2)
− )−1v(1)(λ)R

(2)
+ = v(pc)[

√
12αtλ0(λ− λ0)]. (5.20)

On the boundary (λ0,∞), we have

v(pc)[
√

12αtλ0(λ−λ0)] = I, v(1)(λ) =

 1 −r(λ)δ2
−e
−2itθ(λ)

0 1

 1 0

r(λ)δ−2
− e2itθ(λ) 1

 .

Therefore, equation (5.20) derives

v(2)(λ)
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= (R(2)(λ)|Ω16
)−1

 1 −r(λ)δ2
−e
−2itθ(λ)

0 1

 1 0

r(λ)δ−2
− e2itθ(λ) 1

R(2)(λ)|Ω11

= I. (5.21)

We define

R(2)(λ) =

 1 0

rδ−2e2itθ 1

−1

, λ ∈ Ω11; R(2)(λ) =

 1 −rδ2e−2itθ

0 1

 , λ ∈ Ω16,

(5.22)
where R11(λ) and R16(λ) on the line (λ0,∞) have the boundary values

R11(λ) = r(λ), R16(λ) = r(λ), λ ∈ (λ0,∞). (5.23)

On Σ11, we have

v1(λ) = I, v(pc)[
√

12αtλ0(λ− λ0)] = e−itθσ̂3(λ− λ0)iνσ̂3

 1 0

r̂0 1

 .

By using (5.23), (5.16) can be written as

v(2)(λ) =

 1 0

R1δ
−2e2itθ 1

 · I ·R(2)(λ)|Ω2
=

 1 0

r̂10e
2itθ(λ− λ0)−2iν 1

 . (5.24)

We take
R(2)(λ) = I, λ ∈ Ω2,

Comparing the elements at position 21 of the jump matrix (5.24), we get

R1(λ)δ−2e2itθ = f1δ
−2e2itθ = r̂10e

2itθ(λ− λ0)−2iν . (5.25)

Therefore, the boundary value of R11(λ) on Σ11 is

R11(λ) = r̂10(λ− λ0)−2iνδ2, λ ∈ Σ11. (5.26)

The proofs for the other regions are similar.
From the literature [39], we get

MPC
λ0

(ξ) = I +
MPC

1 (λ0)

iξ
+O(ξ−2), (5.27)

where

MPC
1 (λ0) =

 0 β12(r̂10)

β21(r̂10) 0

 (5.28)

with

β12(r̂10) =
−
√

2πe
iπ
4 e−

πν(λ0)
2

r̂10Γ(−iν(λ0))
. (5.29)

Similarly, through the literature [39], we obtain

MPC
−λ0

(ξ) = I +
MPC

1 (−λ0)

iξ
+O(ξ−2), (5.30)
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where

MPC
1 (−λ0) =

 0 β12(r̂20)

β21(r̂20) 0

 (5.31)

with

β12(r̂10) =
−
√

2πe
iπ
4 e−

πν(−λ0)
2

r̂20Γ(−iν(−λ0))
. (5.32)

Since m(1)(λ) is analytical in the regions Ωnj , n = 1, 2, j = 1, 3, 4, 6, and
(R(2)(λ))−1∂R(2)(λ) = ∂R(2)(λ), it follows that

∂m(2)(λ) = m(1)(λ)∂R(2)(λ) = m(2)(λ)(R(2)(λ))−1∂R(2)(λ) = m(2)(λ)∂R(2)(λ),
(5.33)

where

∂R(2)(λ) =



(
0 0

−∂Rn1e
2itθδ−2 0

)
, λ ∈ Ωn1,(

0 −∂Rn3e
−2itθδ2

0 1

)
, λ ∈ Ωn3,(

0 0

∂Rn4e
2itθδ−2 0

)
, λ ∈ Ωn4,(

0 ∂Rn6e
−2itθδ2

0 0

)
, λ ∈ Ωn6,(

0 0

0 0

)
, λ ∈ Ωn2 ∪ Ωn5.

(5.34)

n = 1, 2.

6. Pure ∂-problem and asymptotics of its solutions

We define
E(λ) = m(2)(λ)[m(pc)(

√
12αtλ0(λ− λ0))], (6.1)

E(λ) is continuous in C without jumping. Through (5.14) and (6.1), on Σ1j , j =
1, 2, 3, 4, have

E−1
− (λ)E+(λ) = m

(pc)
− (m

(2)
− )−1m

(2)
+ (m

(pc)
+ )−1

= m
(pc)
− v(2)(m

(pc)
− v(pc))−1

= m
(pc)
− v(2)(m

(pc)
− v(2))−1

= I. (6.2)

Therefore, we get a pure ∂-problem

• E(λ) is continuous in C,
• ∂E(λ) = E(λ)W (λ), λ ∈ C,
• E(λ) ∼ I, λ→∞, (6.3)
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where

W (λ) =



m(pc)(λ)

(
0 0

∂R11e
2itθδ−2 0

)
(m(pc)(λ))−1, λ ∈ Ω11,

m(pc)(λ)

(
0 −∂R13e

−2itθδ2

0 1

)
(m(pc)(λ))−1, λ ∈ Ω13,

m(pc)(λ)

(
0 0

∂R14e
2itθδ−2 0

)
(m(pc)(λ))−1, λ ∈ Ω14,

m(pc)(λ)

(
0 −∂R16e

−2itθδ2

0 0

)
(m(pc)(λ))−1, λ ∈ Ω16,(

0 0

0 0

)
, λ ∈ Ω12 ∪ Ω15.

(6.4)

∂-problem (6.3) is equivalent to the following integral equation

E(λ) = I − 1

π

∫∫
C

E(s)W (s)

s− λ
dA(s), (6.5)

where dA(s) is the Lebesgue measure on the real plane. Equation (6.5) can also be
expressed as an operator

(1− S)E(λ) = I, (6.6)

where S is a Cauchy operator

S[f ](λ) = − 1

π

∫∫
C

f(s)W (s)

s− λ
dA(s). (6.7)

Proposition 6.1. For sufficiently large t, the operator S is a small norm, (1−S)−1

exists, and
‖S‖L∞→L∞ ≤ ct−

1
4 . (6.8)

From equation (6.7), further expand E(λ) as

E(λ) = I +
E1(λ)

λ
+O(λ−2), (6.9)

where
E1(λ) = 1

π

∫∫
Ω11

E(s)W (s) dA(s),
and satisfies the following estimation

|E1(λ)| ≤ ct− 3
4 . (6.10)

In addition, we define

T (λ) = m(2)(λ)[m(pc)(
√
−12αtλ0(λ+ λ0))], (6.11)

and T (λ) is continuous in C without jumping. Through (5.14) and (6.11), on
Σ2j , j = 1, 2, 3, 4, we have

T−1
− (λ)T+(λ) = m

(pc)
− (m

(2)
− )−1m

(2)
+ (m

(pc)
+ )−1
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= m
(pc)
− v(2)(m

(pc)
− v(pc))−1

= m
(pc)
− v(2)(m

(pc)
− v(2))−1

= I. (6.12)

Therefore, we get a pure ∂-problem

• T (λ) is continuous in C,
• ∂T (λ) = T (λ)M(λ), λ ∈ C,
• T (λ) ∼ I, λ→∞, (6.13)

where

M(λ) =



m(pc)(λ)

(
0 0

∂R21e
2itθδ−2 0

)
(m(pc)(λ))−1, λ ∈ Ω21,

m(pc)(λ)

(
0 −∂R23e

−2itθδ2

0 1

)
(m(pc)(λ))−1, λ ∈ Ω23,

m(pc)(λ)

(
0 0

∂R24e
2itθδ−2 0

)
(m(pc)(λ))−1, λ ∈ Ω24,

m(pc)(λ)

(
0 −∂R26e

−2itθδ2

0 0

)
(m(pc)(λ))−1, λ ∈ Ω26,(

0 0

0 0

)
, λ ∈ Ω22 ∪ Ω25.

(6.14)

∂-problem (6.13) is equivalent to the following integral equation

T (λ) = I − 1

π

∫∫
C

EW

s− λ
dA(s), (6.15)

where dA(s) is the Lebesgue measure on the real plane. Equation (6.11) can also
be represented as an operator

(1− S)T (λ) = I, (6.16)

where S is a Cauchy operator

S[f ](λ) = − 1

π

∫∫
C

f(s)W (s)

s− λ
dA(s). (6.17)

From (6.17), we further expand T (λ) as

T (λ) = I +
T1(λ)

λ
+O(λ−2), (6.18)

where
T1(λ) = 1

π

∫∫
Ω11

TW dA(s),
and satisfies the following estimation

|T1(λ)| ≤ ct− 3
4 . (6.19)
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Recalling the series of transformations we have made (4.8), (5.13), (6.1) and
(6.11), we can reverse these transformations

m(λ)↔ m(1)(λ)↔ m(2)(λ)↔ (E(λ) + T (λ)), (6.20)

and have

m(λ) = E(λ)MPC
λ0

(R(2)(λ))−1δ(λ)σ3 + T (λ)MPC
−λ0

(R(2)(λ))−1δ(λ)σ3 . (6.21)

Particularly, considering λ→∞ in λ ∈ Ω12, Ω15, Ω22, Ω25, R(2) = I, then we have

m(λ) =

(
I +

E1(λ)

λ
+ . . .

)(
I +

(Mλ0

PC
)√

12αtλ0 + . . .

)(
I +
41

λ
+ . . .

)

=

(
I +

T1(λ)

λ
+ . . .

)(
I +

(M−λ0

PC
)√

−12αtλ0 + . . .

)(
I +
41

λ
+ . . .

)
.

(6.22)

There is also

m1(λ) = E1(λ) + T1(λ) +
(Mλ0

PC
)12√

12αtλ0

+ 2i
(M−λ0

PC
)12√

−12αtλ0

+41, (6.23)

where 41 =

 δ1 0

0 −δ1

.

Therefore, we get

u(x, t) = 2i
(Mλ0

PC
)12√

12αtλ0

+ 2i
(M−λ0

PC
)12√

−12αtλ0

+O(t
3
4 ), (6.24)

where MPC
λ0

= −iβ12(r̂10), MPC
−λ0

= −iβ12(r̂20).

Appendix A

Here we describe the solution to the parabolic cylindrical model problem introduced
by [39], which has been widely used to study the long-time asymptotics of integrable
systems in the literature [21,40]. Define the contour

Σpc = ∪4
j=1Σj ,Σj =

{
ζ = R+e

i(2j−1)π
4 , j = 1, 2, 3, 4

}
, (6.25)

we have the following parabolic cylinder model problem.
RH Problem A.1 :

•M (pc)(ξ) is analytic in C\Σpc, (6.26)

•M (pc)
+ (ξ) = M

(pc)
− (ξ)V (pc)(ξ), ξ ∈ Σpc, (6.27)

•M (pc)(ξ) = I +
M1

ξ
+O(ξ2), ξ →∞. (6.28)
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where

v(pc)(ξ) =



ξiνσ̂3e−
iξ2

4 σ̂3

 1 0

r0 1

 , ξ ∈ Σ1,

ξiνσ̂3e−
iξ2

4 σ̂3

 1 −r̄0
1−|r0|2

0 1

 , ξ ∈ Σ2,

ξiνσ̂3e−
iξ2

4 σ̂3

 1 0

r0
1−|r0|2

1

 , ξ ∈ Σ3,

ξiνσ̂3e−
iξ2

4 σ̂3

 1 −r̄0

0 1

 , ξ ∈ Σ4.

(6.29)

(See figure 6)

Figure 6. The jump matrix v(pc)(ξ)

We know that the RH Problem A.1 admits the solution

Mpc (ζ, r0) = I +
Mpc

1 (r0)

iζ
+O

(
ζ−2

)
(6.30)

where

Mpc
1 (r0) =

 0 β12

−β21 0


with β12 and β21 which are two complex constants

β12 =
√

2πeiπ/4e−πν/2

r0Γ(−iv) , β21 = −
√

2πe−iπ/4e−πv/2

εnr̄0Γ(iv) .
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