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Threshold of Effective Degree SIR Model∗
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Abstract The effective degree SIR model is a precise model for the SIR dis-
ease dynamics on a network. The original ODE model is only applicable for
a network with finite degree distributions. The new generating function ap-
proach rewrites with model as a PDE and allows infinite degree distributions.
In this paper, we first prove the existence of a global solution. Then we analyze
the linear and nonlinear stability of the disease-free steady state of the PDE
effective degree model, and show that the basic reproduction number still de-
termines both the linear and the nonlinear stability. Our method also provides
a new tool to study the effective degree SIS model, whose basic reproduction
number has been elusive so far.
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1. Introduction

Classical compartmental models (see, e.g., [1, 7]) assume random mixing, i.e., each
pair of individuals has the same rate of contact. Network disease models [8] use
contact networks to represent a population and its contacts. Specifically, individuals
are represented by nodes and contacts are represented by edges. Such a contact
network can model realistic contact patterns in the population such as households
and workplaces. It can also be used to study the effectiveness of disease control
strategies such as contact tracing and prioritized vaccination.

Early network models are node based, which group individuals by their degrees
(the number of contacts) in addition to their infection status (e.g., susceptible,
infectious, recovered, etc.) The Sattaros and Vespignani model [11] used such a
model to show that, on scale-free networks with an infinite variance of the degree
distribution, there exists no disease threshold, i.e., any positive transmission rate
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may cause an outbreak in an infinite population. However, these simple node based
models ignore the correlation between the infection status of neighboring nodes,
leading to an over-estimate of the disease spread. Lindquist et al. [9] extended
these models by grouping the infection status of the nodes and their neighbors,
resulting in more precise effective-degree models. Based on effective-degree models,
they showed that an SIS type disease (without acquired immunity) is easier to
establish than an SIR type model (with acquired immunity), which contrasts the
predictions of classical random mixing models that these two types of diseases have
identical disease thresholds.

These node based models are systems of ordinary differential equations (ODE)
with dimensions dependent on the degree distribution of the network. Model the-
oretical studies rely on Poisson networks or scale-free networks that have infinite
numbers of degrees, resulting in an infinite system. It is a challenge to apply ODE
theories to these models. In an earlier paper [6], we have developed a generating
function approach to rewrite the effective-degree SIR model to a first-order nonlin-
ear partial differential equation (PDE). We have shown the well-posedness of the
PDE model, and shown that, if initially the infection status of the neighbors of a
random susceptible node are independent, then the effective-degree PDE model can
be simplified to the Volz model [12].

Interestingly, it has been shown (see, e.g., [8]) that, with the same condition on
initial conditions, the full SIR model of the pair approximation approach [4, 5] can
also be simplified to the Volz model, which can further be simplified to the Miller [10]
model. However, if this assumption does not hold, then the Volz-Miller models may
not be precise, yet the effective degree models and the pair approximation models
may still be applicable. Thus, it is still important to fully understand the effective-
degree models.

In this paper, we study the linear and nonlinear stability of the disease-free
steady states of the PDE effective-degree SIR model, and show that the disease
threshold condition (i.e., the basic reproduction number being unity) that is derived
in the finite dimensional effective-degree ODE model is also true for the infinite
dimensional model. This disease threshold condition also agrees with that derived
from other network models (such as the Volz-Miller models [10,12].)

In Section 3 we introduce the notation. Section 4 states the main theorems that
this paper sets out to prove. Sections 6, 7, and 8 prove the linear stability, nonlinear
instability, and nonlinear stability respectively. We provide some discussion and
remarks in Section 9.

2. The Effective-Degree PDE model

The Effective-Degree ODE model [9] considers an SIR model on a contact network
with degree distribution given by pk where k is the degree. The susceptibles are
infected by neighbouring infectious individuals with a per link transmission rate
β ≥ 0, and infectious individuals recover to full immunity at a rate γ > 0. This
model compartmentalizes nodes by both their state and by the number of neighbours
that it has in each state.

Denote Ssi as the fraction of susceptible nodes having s susceptible neighbours
and i infected neighbours, where s+ i is the effective degree of the node, and denote
I and R as the fractions of infected and recovered nodes in the population. You
may have noticed two things: 1) we don’t keep track of the number of recovered
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Figure 1. The flow between compartments for the Effective Degree SIR model. The straight arrows
represent infection and the curvy arrows represent recovery.

neighbours a susceptible node has, and 2) we don’t keep track of the neighbours of
infected/recovered nodes at all. By recognizing that once a node enters the recovered
state it no longer contributes to the disease dynamics, the model can be simplified by
only considering neighbouring nodes that are infected or susceptible. Furthermore,
once a central node becomes infected, its neighbours no longer influence its status.
The flow chart for the SIR effective degree system is given in Figure 1.

The system of ODEs that governs the SIR effective degree model is thus

Ṡsi = −βiSsi + β

∑
s,i siSsi∑
s,i sSsi

[(s+ 1)Ss+1,i−1 − sSsi]

+γ[(i+ 1)Ss,i+1 − iSsi], (2.1a)

S =
∑
s,i

Ssi, İ = −Ṡ − γI, Ṙ = γI. (2.1b)

Given an SIR effective degree model with susceptible fractions of a population
given by Ssi, one can use a generating function effective degree approach by defining

S(t, x, y) =
∑
s,i

xsyiSsi, (2.2)

set on the square (x, y) ∈ [0, 1]× [0, 1] to derive the following closed Partial Differ-
ential Equation

St = −(β + γ)
(
y − γ

β + γ

)
Sy +

Sxy(t, 1, 1)

Sx(t, 1, 1)
β(y − x)Sx. (2.3)

Biologically, a susceptible node remains susceptible if and only if none of its
infectious neighbors transmitted the disease. The probability that an infectious
neighbor does not transmit before it recovers is

Γ =
γ

β + γ
.

The disease dynamics is thus determined by the generating function S(t, x, z) =
S(t, x,Γ + z(1− Γ)) where y = Γ + z(1− Γ) is the probability generating function
for a Bernoulli random variable considering an infectious neighbor of a susceptible
node that eventually transmits to the node before it recovers. Mathematically, this
is equivalent to restricting the domain of the PDE (2.3) to the rectangle [0, 1]×[Γ, 1].

The following theorem guarantees that the long term behavior of S(t, x, z) is
determined by its behavior when restricted to x ∈ [Γ, 1].
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Theorem 2.1. The square R = [Γ, 1]×[Γ, 1] is negatively invariant for the following
system of characteristics that solves the PDE.

ds

dt
= 0, (2.4a)

dy

dt
= (β + γ)(y − Γ), (2.4b)

dx

dt
= β(x− y)ϕ̃′(t), (2.4c)

where

ϕ̃(t) =

∫ t

0

Sxy(s, 1, 1)

Sx(s, 1, 1)
ds.

Proof. For any characteristics with y(0) > Γ, (2.4b) guarantees that y(t) > Γ for
all time t. If, in addition, x(0) < Γ, then (2.4c) guarantees that dx/dt < 0, and
thus the characteristics cannot enter the square R.

We thus restrict the domain of (2.3) to the square R, and consider the generating
function

S̃(t, w, z) = S(t,Γ + w(1− Γ),Γ + z(1− Γ))

with the additional variable change x = Γ + w(1 − Γ). We abuse the notation by
dropping the ∼ for simplification. Furthermore, we rescale the time as t← (β+γ)t,
then the PDE (2.3) becomes

St = −zSz +
Swz(t, 1, 1)

Sw(t, 1, 1)
(z − w)Sw, (2.5)

with an initial condition
S(0, w, z) = S0(w, z). (2.6)

The system is defined on the unit square (w, z) ∈ [0, 1] × [0, 1], which corresponds
to (x, y) ∈ R.

In addition, the variables of the original ODE model Ssi can be computed from
St, x, y as

Ssi =
1

s!i!

∂s+i

∂xs∂yi
S(t, 1, 1),

and thus they are determined by S(t, x, y) in a small neighborhood of the point
(t, 1, 1).

We do not impose boundary conditions on this PDE due to the special structure
of its characteristics. We refer the interested reader to [6] for the development of
the model including well-posedness. Using the method of characteristics, solving
the characteristic equations

dS

dt
= 0, (2.7a)

dz

dt
= z, (2.7b)

dw

dt
= (w − z)ϕ′(t) (2.7c)

gives sufficiently regular solutions to (2.5) (see, [6])

S(t, w, z) = S(0, w0(t), z0(t)) = S0(w0(t), z0(t)), (2.8a)
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z0(t, z) = ze−t, (2.8b)

w0(t, w, z) = we−ϕ(t) + zη(t, ϕ(t)), (2.8c)

where ϕ and η are defined by

ϕ(t) =

∫ t

0

Swz(s, 1, 1)

Sw(s, 1, 1)
ds, (2.9a)

η(t, ϕ(t)) = e−t − e−ϕ(t) + e−t

∫ t

0

es−ϕ(s) ds. (2.9b)

Equation (2.9a) puts a constraint on solutions. Substituting (2.8) into (2.9a) gives
the “compatibility condition”ϕ′(t)

η′(t)

 =

 f(t, ϕ, η)e−t + h(t, ϕ, η)η

f(t, ϕ, η)e−t−ϕ + [h(t, ϕ, η)e−ϕ − 1]η

 (2.10)

with

f(t, ϕ, η) =
∂2
w0z0S0

∂w0
S0

(w0, z0)|w=z=1, (2.11a)

h(t, ϕ, η) =
∂2
w0

S0

∂w0
S0

(w0, z0)|w=z=1. (2.11b)

Recall that from [6], a unique solution exists to (2.7), and consequently, the
PDE (2.5) has a unique solution. This has been shown by proving the existence
and uniqueness of ϕ and η.

In addition, it is clear that S(t, w, z) = S̄(w) solves (2.5). From equation (2.2),
we see that S̄(w) corresponds to solutions to the ODE model where Ssi = 0 for
all i ≥ 0, i.e. I = 0. Thus S(t, w, z) = S̄(w) represents disease-free equilibrium
solutions.

In this paper we will show that the linear stability and the nonlinear instability
of the disease-free equilibrium are determined by the disease-threshold condition
R0

R0 =
β

β + γ

∑∞
k=0 k(k − 1)pk∑∞

k=0 kpk
. (2.12)

Importantly, this is the same threshold condition that determines the stability of
the finite dimensional ODE formulation of the effective degree SIR model.

3. Notation

In this section, we introduce the functional spaces in which we study the stability
of disease-free solutions, and recall a few standard definitions about unbounded
operators, and their spectrum.

Definition 3.1. Let X be the Banach space of functions of the form

S(w, z) =
∑
m,n

wmznsmn (3.1)
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endowed with the norm

∥S∥X =
∑
m,n

(1 +m+m2)|smn| <∞. (3.2)

Remark that the space X differs from the space used in the original development
of the model [6] by the inclusion of the weight factor m2. The current space X is a
smaller space, so the results of that paper apply here as well. Next, we recall the
definition of a bounded operator.

Definition 3.2. A linear operator L : X → Y between Banach spaces X and Y is
said to be bounded if there exists M such that for all x ∈ X [2, Section 12.5.1.1],

∥Lx∥Y ≤M∥x∥X . (3.3)

Next, we recall the definition of the resolvent of an operator.

Definition 3.3. Let X be a Banach space and L : D(L) ⊂ X → X be a linear
operator on X defined on domain D(L) ⊂ X. A complex number λ is said to be
in the resolvent set, that is, the complement of the spectrum of a linear operator if
the operator

L− λI : D(L)→ X (3.4)

has a bounded inverse (where I is the identity operator). That is, the inverse

(L− λId)
−1 : X → D(L) (3.5)

exists, and is bounded [3, Page 566].

Definition 3.4. Let L be the linearized operator of the PDE (2.5) about a disease-
free equilibrium S̄, i.e.,

L[S] = −zSz + (z − w)
S̄′(w)

S̄′(1)
Swz(t, 1, 1). (3.6)

We define its domain D(L) ⊂ X that has a finite domain norm

∥S∥Dom =
∑

m≥0, n≥0

((1 +m)(1 + n) +m2)|smn| <∞. (3.7)

Note that the X and domain norms are equivalent to the ones defined in [6].
Finally, we recall the definition of nonlinear stability.

Definition 3.5. We say that a steady state solution S̄(w) of (2.5) is unstable if
there exists an ϵ > 0, such that for all δ > 0, there exists an initial condition
S(0, w, z) and a time T such that ∥S(0, w, z) − S̄(w)∥Dom < δ but ∥S(T,w, z) −
S̄(w)∥X ≥ ϵ.

4. Main results

In this section we give our main results, with proofs to follow in later sections. The
first theorem guarantees that the system (2.5) is well-posed.

Theorem 4.1. Given an initial condition S0(w, z) in the domain, i.e., ∥S0∥Dom <
∞, there exists a unique solution solution S(t, w, z) ∈ X for all time t.
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The following theorem shows that the basic reproduction number R0 determines
the linear stability of the disease-free equilibrium S̄(w).

Theorem 4.2. The spectrum of the linearized operator about the disease-free equi-
librium S̄(w) consists of only eigenvalues with negative real part if and only if
R0 < 1, given by equation (2.12). That is, the equilibrium is linearly stable when
R0 < 1 and unstable when R0 > 1.

The last theorem shows the sharpness of the reproduction number threshold
even for the infinite dimensional system (PDE).

Theorem 4.3. For R0 given by equation (2.12), the disease-free equilibrium S̄(w)
is

(i) nonlinearly unstable for R0 > 1.

(ii) nonlinearly stable for R0 < 1.

In the following section we set out to prove Theorem 4.1.

5. Well-posedness

To prove Theorem 4.1, note that the solutions to (2.5) is given in implicitly in (2.8).
The existence and uniqueness is proved in [6]. In this section, we will show that, if
the initial condition S0(w, z) =

∑
m,n w

mznSmn is in the domain, i.e.,

∥S0∥Dom =
∑
m,n

(1 +m)(1 + n) +m2Smn <∞,

then the solution given in (2.8a)

S(t, w, z) = S0(e
−ϕ(t)w + η(t)z, e−tz) ∈ X.

Note that

S0(e
−ϕ(t)w + η(t)z, e−tz) =

∑
mn

(e−ϕ(t)w + η(t)z)me−tnznSmn

=
∑
m,n

m∑
i=0

(
m

i

)
e−ϕ(t)iηm−ie−tnwizn+m−iSmn

=
∑
i,n

∞∑
m=i

(
m

i

)
e−ϕ(t)iηm−ie−tnwizn+m−iSmn

=
∑
i

∞∑
n,m=0

(
m+ i

i

)
e−ϕ(t)iηme−tnwizn+mSm+i,n

=
∑
i

∑
k

k∑
n=0

(
k − n+ i

i

)
e−ϕ(t)iηk−ne−tnwizkSk−n+i,n

=
∑
i

∑
k

wizke−ϕ(t)i
k∑

n=0

(
k − n+ i

i

)
ηk−ne−tnSk−n+i,n
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=
∑
i

∑
k

wizke−ϕ(t)i
k∑

n=0

(
k − n+ i

i

)
ηk−ne−tnSk−n+i,n

:=
∑
i

∑
k

wizke−ϕ(t)iS̃ik.

Thus,

∥S∥X =
∑
i,k

(1 + i+ i2)S̃ik

=

∞∑
i,k=0

(1 + i+ i2)e−ϕ(t)i
k∑

n=0

(
k − n+ i

i

)
ηk−ne−tnSk−n+i,n.

We need to prove that this is bounded. Switch the order of k and n,

∥S∥X =

∞∑
n=0

∞∑
i=0

(1 + i+ i2)e−ϕ(t)i
∞∑

k=n

(
k − n+ i

i

)
ηk−ne−tnSk−n+i,n.

Let m = k − n+ i, k = m+ n− i, and then

∥S∥X =

∞∑
n=0

∞∑
i=0

(1 + i+ i2)e−ϕ(t)i
∞∑

m=i

(
m

i

)
ηm−ie−tnSm,n

=

∞∑
n=0

∞∑
m=0

m∑
i=0

(
m

i

)
ηm−ie−tn(1 + i+ i2)e−ϕ(t)iSm,n

=

∞∑
n=0

∞∑
m=0

∑m
i=0

(
m
i

)
ηm−i(1 + i+ i2)e−ϕ(t)i

(1 +m)(1 + n) +m2
e−tn[(1 +m)(1 + n) +m2]Sm,n.

We give a bound for the fraction above. Note that∑m
i=0

(
m
i

)
ηm−i(1 + i+ i2)e−ϕ(t)i

(1 +m)(1 + n) +m2
≤

∑m
i=0

(
m
i

)
ηm−ie−ϕ(t)i(1 +m+m2)

(1 +m)(1 + n) +m2

≤
m∑
i=0

(
m

i

)
ηm−ie−ϕ(t)i

= [e−ϕ(t) + η(t)]m.

So,

∥S∥X ≤
∞∑

n=0

∞∑
m=0

(e−ϕ(t) + η)me−tn[(1 +m)(1 + n) +m2]Sm,n.

Note that

e−ϕ(t) + η = e−t + e−t

∫ t

0

es−ϕ(s) ds,

which is the solution to the initial value problem

u′ = −u+ e−ϕ(t), u(0) = 1.

Thus 0 < u = e−ϕ(t) + η ≤ 1 because u′|u=1 < 0. This guarantees that

∥S∥X ≤ ∥S0∥Dom <∞.

That is, S(t, w, z) ∈ X for all time t. In the following section we set out to prove
Theorem 4.2.
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6. Linear stability

Let S̄(w) = S∗(x) be an disease-free equilibrium solution of (2.5), i.e.

S∗(x) =
∑
k

pkx
k, (6.1)

where pk is the network degree distribution. Let V = V (t, w, z) be a perturbation
from the equilibrium. Suppose S solves (2.5) such that

S = S̄(w) + V (t, w, z), (6.2)

and then the perturbation V satisfies

Vt = N [V ] + L[V ], (6.3)

where N is a nonlinear operator, and L is the linearized operator defined in (3.6).
To determine the linear stability, we consider the eigenvalue problem of the linear
operator:

(L− λId)V = 0, (6.4)

where Id is the identity operator.

Lemma 6.1. The set {−k, 0, S̄′′(1)
S̄′(1)

− 1, for k = 1, 2, . . .} is in the spectrum of the

operator L defined by equation (3.6).

Proof. By definition 3.3, the set λ is in the spectrum of L if (L − λId) is nonin-
vertible. This is equivalent to showing that non-trivial solutions exist to

(L− λId)V = 0. (6.5)

The eigenvalue problem (6.4) can be treated as an ODE of V (z) with w being a
parameter

zVz + λV = (z − w)
S̄′(w)

S̄′(1)
Vwz(1, 1). (6.6)

Using an integrating factor zλ, (6.6) can be rewritten as

∂

∂z

[
zλV

]
=

(
zλ − wzλ−1

) S̄′(w)

S̄′(1)
Vwz(1, 1). (6.7)

This gives rise to the following cases.

Case 1. If λ = 0, then (6.7) is

Vz =
(
1− wz−1

) S̄′(w)

S̄′(1)
Vwz(1, 1). (6.8)

Integrate with respect to z

V (w, z) =
[
z − w ln(z)

] S̄′(w)

S̄′(1)
Vwz(1, 1) + C(w), (6.9)

where C(w) is an undetermined function in X. Because ln(z) ̸∈ X (as well as
w ln(z)), for V to be in X it is required that

S̄′(w)

S̄′(1)
Vwz(1, 1) = 0. (6.10)

Thus, if λ = 0, then any function that depends only on w is a solution to (6.6). So,
λ = 0 is an eigenvalue.
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Case 2. If λ = −1, equation (6.7) is

d

dz

[
z−1V

]
=

(
z−1 − wz−2

) S̄′(w)

S̄′(1)
Vwz(1, 1). (6.11)

Integrate with respect to z

z−1V =
(
ln(z) + wz−1

) S̄′(w)

S̄′(1)
Vwz(1, 1) + C(w), (6.12)

that is,

V =
(
z ln(z) + w

) S̄′(w)

S̄′(1)
Vwz(1, 1) + zC(w), (6.13)

where C(w) is an undetermined function in X. Again, z ln(z) ̸∈ X, so for V ∈ X,

we require S̄′(w)
S̄′(1)

Vwz(1, 1) = 0. Hence

Vwz(1, 1) = 0, (6.14)

and thus
V (w, z) = zC(w). (6.15)

So
Vwz(1, 1) = C ′(1) = 0. (6.16)

Thus the solution to (6.6) for the case λ = −1 is

V (w, z) = zC(w), (6.17)

where C(w) ∈ X and C ′(1) = 0. So, λ = −1 is an eigenvalue.

Case 3. If λ ̸= 0 and −1, solve (6.7) by integrating with respect to z

zλV =
( 1

λ+ 1
zλ+1 − 1

λ
wzλ

) S̄′(w)

S̄′(1)
Vwz(1, 1) + C(w). (6.18)

That is,

V (w, z) =
[ 1

λ+ 1
z − 1

λ
w
] S̄′(w)

S̄′(1)
Vwz(1, 1) + C(w)z−λ. (6.19)

Thus, if V (w, z) ∈ X, then either λ = −2,−3, ..., or C(w) = 0.

Subcase 3.1. If C(w) = 0, then

V (w, z) =
[ 1

λ+ 1
z − 1

λ
w
] S̄′(w)

S̄′(1)
Vwz(1, 1). (6.20)

Note that the right hand side of (6.20) contains its own derivative. So ∂2
wzV of the

right hand side must equal Vwz(1, 1). This compatibility condition determines the
eigenvalue λ. Specifically,

Vzw =
1

λ+ 1

S̄′′(w)

S̄′(1)
Vwz(1, 1). (6.21)
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At w = z = 1,

Vwz(1, 1) =
1

λ+ 1

S̄′′(1)

S̄′(1)
Vwz(1, 1), (6.22)

which gives
1

λ+ 1

S̄′′(1)

S̄′(1)
= 1. (6.23)

Thus,

λ =
S̄′′(1)

S̄′(1)
− 1 (6.24)

is a real eigenvalue with the associated eigenfunction

V (w, z) =
[ 1

λ+ 1
z − 1

λ
w
] S̄′(w)

S̄′(1)
. (6.25)

In addition, λ > 0 is equivalent to

S̄′′(1)

S̄′(1)
> 1. (6.26)

Changing variables back to x and y, (6.26) is equivalent to

R0 =
β

β + γ

S̄′′(1)

S̄′(1)
> 1. (6.27)

Subcase 3.2. Suppose C(w) ̸= 0. Then for the solution (6.19) to be in X, it is
required that C(w) ∈ X and λ = −k for k = 2, 3, . . .. Thus the solution is

V (w, z) = C(w)zk +
[ 1

1− k
z +

1

k
w
] S̄′(w)

S̄′(1)
Vwz(1, 1). (6.28)

Note that (6.28) is still an implicit equation as both sides depend on V (w, z). To
see if (6.28) has an analytic solution in X (i.e., it is an eigenfunction of the linear
operator L), we take derivatives in z and w to find

Vwz(w, z) = kC ′(w)zk−1 +
1

1− k

S̄′′(w)

S̄′(1)
Vwz(1, 1). (6.29)

Evaluate at (w, z) = (1, 1), and gather like terms

[
1− 1

1− k

S̄′′(1)

S̄′(1)

]
Vwz(1, 1) = kC ′(1). (6.30)

If the coefficient of Vwz(1, 1) is non-zero, then (6.30) uniquely determines an eigen-
function for arbitrarily analytic C(w). If not, then for all C(w) where C ′(1) = 0,
(6.30) still determines a set of eigenfunctions. That is, λ = −k is an eigenvalue.

Lemma 6.2. The spectrum of the operator L, defined by equation (3.6), consists

of the set of eigenvalues {−k, 0, S̄′′(1)
S̄′(1)

− 1, for k = 1, 2, . . .} which are given in

Lemma 6.1.
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Proof. We want to show that, if λ is not an eigenvalue, then (L−λId) is invertible,
i.e., for all u =

∑
m,n umnw

mzn ∈ X,

(L− λId)V = u (6.31)

has a unique solution V ∈ D(L). If in addition the inverse operator is bounded,
then the spectrum of L is the discrete set of eigenvalues. As in (6.7), (6.31) can be
written as

d

dz

[
zλV

]
−
(
zλ − wzλ−1

) S̄′(w)

S̄′(1)
Vwz(1, 1) =

∑
m,n

umnw
mzn+λ−1. (6.32)

with an integrating factor zλ. This equation has a solution

V = z−λ

∫
zλ−1(z − w)

S̄′(w)

S̄′(1)
Vwz(1, 1) dz −

∑
m,n

umnw
mz−λ

∫
zn+λ−1 dz. (6.33)

Because λ is not an eigenvalue, λ ̸= −k, (k = 0, 1, 2, . . .) equation (6.33) becomes

V =
[ S̄′(w)

S̄′(1)
Vwz(1, 1)

]( z

1 + λ
− w

λ

)
+
∑
m,n

umn

λ+ n
wmzn. (6.34)

Note that this is still an implicit equation as both sides depend on V . To see if this
equation has a unique solution, we take the derivative ∂2

wz at (1, 1), giving

Vwz(1, 1) =
[
1− 1

1 + λ

S̄′′(1)

S̄′(1)

]−1 ∑
m,n

mn
umn

λ+ n
. (6.35)

This is uniquely defined because λ is not an eigenvalue, i.e., λ ̸= S̄′′(1)
S̄′(1)

− 1.

To show that V ∈ D(L), we see that the first term in (6.34) is in D(L) as long
as S̄′(w) ∈ D(L). For the second term, notice that because α is not a negative
integer, maxn

∣∣ 1+n
α+n

∣∣ is well defined. Hence

∑
m,n

((1 +m)(1 + n) +m2)
∣∣ umn

α+ n

∣∣ ≤ max
n

∣∣ 1 + n

α+ n

∣∣∑
m,n

(1 +m+m2)
∣∣umn

∣∣
= max

n

∣∣ 1 + n

α+ n

∣∣∥u∥X
< ∞.

This shows that V given by (6.34) is in the domain D(L) and ∥S∥Dom ≤ M∥u∥X .

7. Nonlinear instability

In this section we set out to prove Theorem 4.3, part (i). We study the instability by
considering a special case that reduces the PDE effective degree model to the Volz
model. The Volz model is a system of ODEs that has been shown to be unstable
for R0 < 1. The stability is proven by direct calculation.
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7.1. Reduction to the Volz model

Assume a generating function solution to (2.5) of the form

S(t, w, z) =
∑
k

pkSk(t) [pS(t)(w − 1) + pI(t)(z − 1) + 1]
k
, (7.1)

where Sk(t) is the proportion of susceptible nodes with degree k = s+i at time t, and
pS(t) and pI(t) are the probabilities of a susceptible node with a susceptible/infected
neighbour at time t, respectively.

Substituting (7.1) into Model (2.5) gives the system of ODEs (after simplifica-
tion)

θ′ = −θpI , (7.2a)

p′S = pIpS −
∑∞

k=0 k(k − 1)pkθ
k∑∞

k=0 kpkθ
k

pSpI , (7.2b)

p′I = p2I − pI +

∑∞
k=0 k(k − 1)pkθ

k∑∞
k=0 kpkθ

k
pSpI . (7.2c)

This is equivalent to the Volz model [12], with Sk = θk for k = 1, 2, . . . . See [6] for
more details. This system has the disease-free equilibrium Ȳ = (θ, pS , pI) = (1, 1, 0).
The stability of this equilibrium determined by its only non-zero eigenvalue

λ1 =

∑
k k(k − 1)pk∑

k kpk
− 1 =

S̄′′(1)

S̄′(1)
− 1 (7.3)

with the associated eigenvector

v⃗1 = (−1, −λ1, λ1). (7.4)

Noting that λ1 > 0 is equivalent to (6.26), i.e., the linear stability of the disease
free equilibrium of (2.5) and (7.2) are the same.

7.2. Proof of instability

This section provides a proof of Theorem 4.3, part (i), which states that the disease-
free equilibrium S̄(w) is nonlinearly unstable for R0 > 1, where R0 is given by
equation (2.12).
Proof. Suppose R0 > 1 and assume an initial condition to the effective degree
model (2.5)

S0(w, z) =
∑
k

pkθ
k(0)

(
pS(0)(w − 1) + pI(0)(z − 1) + 1

)k
. (7.5)

Let Y (t) = (θ(t), pS(t), pI(t)) be a solution to the Volz model (7.2), where the initial
condition Y (0) is an ε-perturbation from the disease-free equilibrium Ȳ along the
eigenvector v⃗1 given by (7.4), i.e.,

Y (0) = Ȳ + εv⃗1 . (7.6)

Substituting (7.6) into (7.5) gives

S0(w, z) =
∑
k

pk(1− ε)k [(1− ελ1)(w − 1) + ελ1(z − 1) + 1]
k
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= S̄(w) + ϵS̄′(w)(λ1z − w − λ1w) +O(ϵ2).

Since the equilibrium Ȳ of the Volz model is unstable when λ1 > 0, there exists
an ϵ > 0, such that, for all δ > 0, there exists a solution Y (t) with an initial
condition ∥Y (0) − Ȳ ∥2 < δ that leaves ε neighborhood of Ȳ at some time T , i.e.,
∥Y (T ) − Ȳ ∥2 = ϵ. Here ∥ · ∥2 is the Euclidean norm. We want to show that the
corresponding PDE solution satisfies

∥S(T,w, z)− S̄(w)∥X ≥ Cϵ (7.7)

for some constant C, where, from (7.1) with Sk = θk,

S(T,w, z) =
∑
k

pkθ(T )
k
(
pS(T )(w − 1) + pI(T )(z − 1) + 1

)k
. (7.8)

Expand Y (T ) in a Taylor series with respect to ε about the equilibrium Ȳ ,

S(T,w, z) = S̄(w) +
∂S

∂θ
|Ȳ (θ(T )− 1) +

∂S

∂pS
|Ȳ (pS(T )− 1) +

∂S

∂pI
|Ȳ pI(T ) + o(Y − Ȳ )

= S̄(w) +

(
∂S

∂θ
,
∂S

∂pS
,
∂S

∂pI

)
Ȳ

· (Y (T )− Ȳ ) + o(∥Y − Ȳ ∥2)

= S(w) + S̄′(w)(w,w − 1, z − 1) · (Y (T )− Ȳ ) + o(∥Y − Ȳ ∥2).

Then,

∥S(T,w, z)− S̄(w)∥X = ∥S̄′(w)(Y (T )− Ȳ ) · (w,w − 1, z − 1) + o(∥Y − Ȳ ∥2)∥X
≥ ∥S̄′(w)(Y (T )− Ȳ ) · (w,w − 1, z − 1)∥X −
∥o(∥Y (T )− Ȳ ∥2)∥X .

This inequality is true for all w and z, and the dot product (Y (T )−Ȳ ) · (w,w−
1, z − 1) = 0 for all (w, z) ∈ [0, 1]2 if and only if Y (T ) = Ȳ . Therefore,

C = min
(w,z)∈[0,1]2

Y (T )− Ȳ

∥Y (t)− Ȳ ∥2
· (w,w − 1, z − 1) > 0.

Thus

∥S(T,w, z)− S̄(w)∥X ≥ Cϵ− ∥o(∥Y (T )− Ȳ ∥2)∥X ≥
Cϵ

2

for sufficiently small Y (T )− Ȳ .

8. Nonlinear stability

This section sets out to prove Theorem 4.3, part (ii).
Proof. Let S̄(w) be an disease-free equilibrium of our model. Consider a small
perturbation E0(w, z) ∈ X to the initial condition, i.e., S0(w, z) = S̄(w)+E0(w, z).
Equation (2.8) allows us to write the solution starting with this initial condition as

S(t, w, z) = S̄(w0(t)) + E0(w0(t), z0(t)).
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To show the stability, we need to show that ∀ε > 0, ∃δ > 0, such that ∥S(t, w, z)−
S̄(w)∥X < ε for all t ≥ 0 as long as ∥E0(w, z)∥Dom ≤ δ.

∥S(t, w, z)− S̄(w)∥X = ∥S̄(w0(t)) + E0(w0(t), z0(t))− S̄(w)∥X
≤ ∥S̄(w0(t))− S̄(w)∥X + ∥E0(w0(t), z0(t))∥Dom.

We thus will show that ∥S̄(w0(t))− S̄(w)∥X ≤ ε/2 for some δ < ε/2. From (2.8c),

w0(t) = we−ϕ(t) + zη(t),

thus, S̄(w0(t)) = S̄(we−ϕ(t) + zη(t)). Expand this into a Taylor series about t, i.e.,
∃t̃ ∈ (0, t), such that

S̄(w0(t)) = S̄(w) + S̄′(w0(t̃))(−wϕ′(t̃)e−ϕ(t̃) + zη′(t̃)),

and thus

∥S̄(w0(t))− S̄(w)∥X ≤ ∥S̄′∥∞∥ − wϕ′(t̃)e−ϕ(t̃) + zη′(t̃)∥X
≤ ∥S̄′∥∞ sup

t̃∈[0,t]

|ϕ′(t̃)|+ ∥S̄′∥∞ sup
t̃∈[0,t]

|η′(t̃)|.

We will show that, for some δ > 0,

sup
t
|ϕ′(t)| < ε

4∥S̄′∥∞
, sup

t
|η′(t)| < ε

4∥S̄′∥∞
.

This guarantees the stability.

Lemma 8.1. ∃δ1, such that for δ < δ1,

∂2
1S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

e−ϕ − 1 < λ1/2 < 0,

where

λ1 =
S̄′′(w)

S̄′(w)

∣∣∣∣
w=1

− 1.

Proof. Let ρ = e−ϕ + η. From (2.9b),

η = e−t − e−ϕ + e−t

∫ t

0

es−ϕds,

and thus

ρ = e−t + e−t

∫ t

0

es−βϕds > 0.

In addition,

ρ ≤ e−t + e−t

∫ t

0

esds = 1.

Thus, ρ ∈ [0, 1]. Compute the following via Taylor expansion

∂2
1S0(w0, z0)

∂1S0(w0z0)
|w=z=1e

−ϕ
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=
S̄′′(w0) + ∂2

1E0(w0, z0)

S̄′(w0) + ∂1E0(w0z0)

∣∣∣∣
w=z=1

e−ϕ

= e−ϕ

(
S̄′(w0)∂

2
1E0(w0, z0)− S̄′′(w0)∂1E0(w0, z0)

S̄′(w0)2
+ . . .

)
w=z=1

+
S̄′′(ρ)

S̄′(ρ)
e−ϕ

=
S̄′′(ρ)

S̄′(ρ)
e−ϕ +O(∥∂2

1E0∥∞) +O(∥∂1E0∥∞)

≤ S̄′′(ρ)

S̄′(ρ)
ρ+O(∥∂2

1E0∥∞) +O(∥∂1E0∥∞)

≤ S̄′′(ρ)

S̄′(ρ)
ρ+O(∥∂2

1E0∥∞) +O(∥∂1E0∥∞). (8.1)

Note that both O(∥∂2
1E0∥∞) and O(∥∂1E0∥∞) are controlled by ∥E0∥Dom, e.g.

∥∂2
1E0∥∞ → 0 as ∥E0∥Dom → 0.

We will show that H(ρ) := S̄′′(ρ)
S̄′(ρ)

ρ is an increasing function of ρ ∈ [0, 1]. Let

S̄(ρ) =
∑∞

k=0 ρ
kpk with pk > 0. Then,

H(ρ) =

∑∞
k=2 k(k − 1)ρk−1pk∑∞

k=1 kρ
k−1pk

,

H ′(ρ) =

∑∞
k,j=1 k(k − 1)2jρk+j−3pkpj −

∑∞
k,j=1 k(k − 1)j(j − 1)ρk+j−3pkpj

(
∑∞

k=1 kρ
k−1pk)

2 .

Note that

∞∑
k,j=1

k(k − 1)2jρk+j−3pkpj −
∞∑

k,j=1

k(k − 1)j(j − 1)ρk+j−3pkpj

=
1

2

∞∑
k,j=1

kjpkpjρ
k+j−3[(k − 1)2 + (j − 1)2 − 2(k − 1)(j − 1)]

=
1

2

∞∑
k,j=1

kjpkpjρ
k+j−3(k − j)2

≥ 0.

Thus, H(ρ) is increasing. For q ∈ [0, 1],

H(ρ) ≤ H(1) =
S̄′′(1)

S̄′(1)
.

Thus,

∂2
1S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

e−ϕ − 1 <
S̄′′(1)

S̄′(1)
− 1 +O(∥E0∥Dom)

= λ1 +O(∥E0∥Dom).

Thus, there exists a δ1 > 0, such that, for all δ < δ1,

∂2
1S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

e−ϕ − 1 < λ1/2.
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Lemma 8.2. For η′ given by (2.10), δ2 < δ1 such that

sup
t

η′(t) <
ε

4∥S̄′(w̃)∥∞
, sup

t
ϕ(t) <

ε

4β∥S̄′(w̃)∥∞
,

for all ∥E0∥Dom < δ2.

Proof. From equation (2.10),

η′ =
∂2
12S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

βe−te−ϕ +

(
∂2
1S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

e−ϕ − 1

)
η.

Lemma 3 gives

η′ ≤
∥∥∥∥∂2

12E0(w0, z0)

∂1S0(w0z0)

∥∥∥∥
∞

e−t +
λ1

2
η. (8.2)

From the Comparison Theorem,

η ≤ eλ1t

∥∥∥∥∂2
12E0(w0, z0)

∂1S0(w0z0)

∥∥∥∥
∞

∫ t

0

e−(
λ1
2 +1)sds

=


∥∥∥∂2

12E0(w0,z0)
∂1S0(w0z0)

∥∥∥
∞

teλ1t, λ1

2 = −1∥∥∥∂2
12E0(w0,z0)
∂1S0(w0z0)

∥∥∥
∞

1
λ1
2 +1

(e
λ1
2 t − e−t), λ1

2 ̸= −1.

In both cases, there exists a θ < 0 , such that

η ≤ eθtO(∥E0∥Dom).

Thus, from (8.2),
η′ ∼ O(∥E0∥Dom).

To estimate ϕ′(t), again, from (2.10),

ϕ′ =
∂2
12S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

e−t +
∂2
1S0(w0, z0)

∂1S0(w0z0)

∣∣∣∣
w=z=1

η

≤
∥∥∥∥∂2

12E0(w0, z0)

∂1S0(w0z0)

∥∥∥∥
∞

e−t +

∥∥∥∥∂2
1S0

∂1S0

∥∥∥∥
∞

O(∥E0∥Dom).

Thus,
ϕ′(t) ∼ O(∥E0∥Dom).

9. Concluding remarks

The PDE effective degree SIR model was introduced in [6], which uses a generating
function to represent the state variables of the ODE effective degree SIR model
in [9]. The PDE model extends the ODE model to infinite degree distributions.

In this paper, we have analyzed the linear and nonlinear stability of the disease-
free steady state of the PDE effective degree model. We calculated the spectrum of
the linearized system, and showed that there exists only a point spectrum with a
zero eigenvalue, an infinite number of negative eigenvalues, and a single eigenvalue
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that may be positive or negative, whose sign is determined by the basic reproduction
numberR0 given in [9]. Specifically, the disease-free steady state is linearly unstable
if and only if R0 > 1. We also proved that the linear and nonlinear stability of the
disease-free steady state agree for this model.

Thus the basic reproduction number R0 = 1 is the disease threshold for effective
degree SIR models with both finite and infinite degree distributions.

The calculation of the basic reproduction number for the effective degree SIS
model as demonstrated in [9] is difficult to pursue for the ODE model. It is only
proved that the basic reproduction number for the SIS model is larger than the SIR
model, but the value of R0 remains elusive. Our generating function approach of
rewriting the ODE effective degree model into a PDE model provides a new tool
for the analysis of the effective degree SIS model.
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