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On Nodal Solutions of the Schrodinger-Poisson
System with a Cubic Term*

Ronghua Tang', Hui Guo®>' and Tao Wang®

Abstract In this paper, we consider the following Schrédinger-Poisson sys-
tem with a cubic term

— Au+V(|z))u+ Mpu = |u|’v  in R?,
{ (2 + Au =u] o

—A¢p=1u> inR>

where A > 0 and the radial function V (z) is an external potential. By taking
advantage of the Gersgorin disc theorem and Miranda theorem, via the vari-
ational method and blow up analysis, we prove that for each positive integer
k, problem (0.1) admits a radial nodal solution U} ; that changes sign exactly
k times. Furthermore, the energy of U,jA is strictly increasing in k and the
asymptotic behavior of U, ,?"4 as A — 04 is established. These results extend
the existing ones from the super-cubic case in [17] to the cubic case.

Keywords Schrodinger-Poisson system, nodal solutions, Gersgorin disc the-
orem, Miranda theorem, blow-up analysis
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1. Introduction
In the last decades, the following Schrodinger-Poisson system

— Au+V(z)u + Apu = |ulP 'y in R3, (L1)

—A¢p=u*> inR3 '
has attracted much research attention due to its deep physical backgrounds and
mathematical challenges. Here A > 0,1 < p < 5 and V represents external potential
function. From a physical point of view, system (1.1) comes from semiconductor
theory and is used to simulate the evolution of electronic ensemble in semiconductor
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crystals, see [4,20] for instance. In mathematical contents, the appearance of the
nonlocal term A¢u causes some mathematical difficulties and makes the study of
(1.1) interesting. As we know, there are many existence results in the literature on
the solutions of (1.1), such as ground state solutions [3,15], bound state solutions
[1,15,22], positive solutions [5,21], non-radial solutions [9], and semiclassical state
solutions [14]. For more related problems, one can refer to [6,27] and references
therein.

Recently, some researchers have shown interest in the existence and properties
of nodal solutions (or sign-changing solutions) to (1.1). When the nonlinearity
|u|P~2u satisfies the super-cubic growth condition that p € (3,5), via the Nehari
manifold method, Wang-Zhou [23] studied the existence of a least energy nodal
solution of (1.1) which changes sign only once. Later, the existence of infinitely
many radial nodal solutions of (1.1) with any prescribed number of nodal domains
was proved by Kim-Seok [17] via the variational method and gluing method for
p € (3,5), see also [13] for a dynamical method. For the more general nonlinearity
f(u) satisfying super-cubic condition, one can see [2,7,8,10,16] for instance. For
the cubic case p = 3, Zhong-Tang [28] investigated the existence and asymptotical
behaviors of a least energy nodal solution with exactly two nodal domains to (1.1)
by the Nehari manifold method. Later, Sun-Wu [22] extended this result to the sub-
cubic case p € (1,3). Furthermore, Liu-Wang-Zhang [18] obtained infinitely many
sign-changing solutions for p € (2,3] by using the perturbation method and the
invariant subsets of descending flow. In [14], Ianni-Vaira obtained infinitely many
nonradial sign-changing solutions in the semiclassical limit for p € (1, 3] by using
the Lyapunov-Schmit reduction method. For more related results and details, one
can refer to [11,25,26]. From the above discussions, we see that p = 3 is a critical
value. So a natural question arises that whether equation (1.1) with p = 3 admits
radial nodal solutions with a prescribed number of nodal domains. In this paper,
we shall give a confirmative answer to the following cubic case p = 3 of (1.1), that

is,

{ — Au+ V(|z))u + Apu = |u[*u  in R, (12)

—A¢p=u> inR?
where A > 0 and V satisfies
(V) V(|z|) € C(]0,400),R) is bounded from below by a positive constant Vj.
As is well known, equation (1.2) is equivalent to

—Au+V(|z|)u+ Apyu = |[ul*u in R® (1.3)

2
with ¢y (z) = [s JT%dy, which has a variational structure. Let

Hy = {uc H'(R® : u(z) = u(lz)), /R V(Je)u® < +o0)

1
be endowed with the norm [|ul| 7, = ([gs (|Vul? + V(|#])|u|?)dx)? . Then its energy
functional I 4 : Hy — R is

1 A 1
Iy 4(u) := 5/ (|Vul? + V(|z|)u?)dz + Z/ puudr — 1/ |u|?.
R3 RS R3
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We denote the usual Nehari manifold by NV := {u € Hy\{0} : (I} ,(u),u) = 0} and
the ground state solution of (1.2) by Up 4, which is obtained in [3] and satisfies

m = lgf I 4( ) = I)\’4(U0}4) > 0. (1.4)

Now we are ready to illustrate our main results. First we give the existence
result.

Theorem 1.1. For any positive integer k, problem (1.2) admits a radial nodal
solution Uy 4 which has ezactly k + 1 nodal domains.

We point out that the dynamical method used in [13] is not available here,
because it is difficult to analyze the number of nodes when V # constant. At
the meanwhile, all the techniques concerning the super-cubic case used in [17], are
also no longer valid, because the cubic term |u|?u has a complicated competitive
relationship with the 3—homogeneous term ¢,u in the sense that ¢, tu = t3¢,u
for any ¢t € R. Hence some novel ideas are necessary. By taking advantage of the
Gersgorin disc theorem and Miranda theorem, Theorem 1.1 is proved via variational
method together with a limit procedure.

The next result shows that the energy of Uy, 4 obtained in Theorem 1.1 increases
as the number of nodes.

Theorem 1.2. Under the assumptions of Theorem 1.1, the energy of Uy 4 is strictly
increasing with k, namely,

IA74(U]§+1,4> > I)\,4(Uk74), Vk € N+.

Moreover, I 4(Ug,a) > (k+1)Ix4(Up.4).

Obviously, Uy 4 obtained in Theorem 1.1 depends on A. We shall sometimes
denote Uy 4 by U, ,i‘ 4, to emphasize this dependence. The following result shows the

convergence property of U, ,;\ 4 a8 A — 04

Theorem 1.3. Under the assumptions of Theorem 1.1, for any sequence {Ap }n>1
with A, = 04 as n — oo, there exists a subsequence, still denoted by {\,}n>1, such
that Uk4' converges to Uk 4 strongly in Hy as n — oo, where Uk 4 18 a least energy
radial nodal solution havmg exactly k + 1 nodal domains to the followmg equation

—Au+ V(|z))u = |ul*u. (1.5)

The contribution of this paper are twofold: on one hand, our results extend and
complement the previous results in [13] via the variational method. On the other
hand, this paper partially solves the open problem proposed in [17]. We emphasize
that for the case p < 3, the existence of such sign-changing solutions of (1.1) with
any prescribed number of nodes is still open.

This paper is organized as follows. In Section 2, we give a variational framework
of problem (1.2), and in Section 3, we give some properties of the Nehari type set.
In Section 4, we prove Theorem 1.1 by the limit approach. In Section 5, the energy
comparison and asymptotic behaviors are obtained.
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2. Preliminaries

In this section, we give some notations and useful lemmas. For each k € N, , we
define

Fk:{rk = (ry, - ,Tk)E(R>0)k:0::7’o<T‘1<"‘<’I"k<7‘k+1 ::+oo}7
(2.1)
and for each ry € 'y, we denote by
Bi* :={z e R®: |z| <1},
Bt = {xeRg’:ri,l<|m|<ri}7z’:2,-~- Sk,
B, ={ze R3:|z| >y}

Clearly, Bi* is a ball, By*,---, B;* are annulus and B}, is the complement of a
ball. Moreover, R3 = Uf;Llle’“. For u € Hy, we denote by u; = ux grx, where x g«
is the characteristic function on B}*. We define the infimum level
Ccra:= inf Iy4(u 2.2
eat= inf L) (2.2

uENE 4

constrained on the Nehari set

Nia={u€ Hy :there exists ry s.t. u; #0 in Bj*, (I} 4(u),u;) =0, i =1,---  k+1}.
(2.3)
In order to study N 4, we set

H* == {ue Hy(B*) : u(z) = u(|z|),u(z) =0, z € 0B}*}

1
with the norm ||ull; := [Jul| g= = (fok (|Vul? + V(|x\)u2)dz) *, and define a prod-
uct space '

Hpr = Hy* x - x Hi% (2.4)
Next we introduce an auxiliary function E 4 : H;* — R related to Iy 4,
k+1 k+1 2 2
1 A uj(y)u; (z) 1
E = g |IP+ 2 #dd_,/ 4d
)= gl s 3 [ [ S e [ ).
= = i J T
(2.5)
which satisfies
k+1
Byalur, -y upr) = Ina(D_ wi), (2.6)
i=1

Then

k+1
(Ou; Exa(un, - s ups1), wi) = il + )\Z/rk ¢u_1“12 - /rk ug,
= Jpn BT
and the Nehari type set for F) 4 is

=y upe) €EHF rui #0, (Ou, Exa(uny - o ), ui) =0,i=1,- - k + 1}
2.7)
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Obviously, if (ui,- - ,up+1) € Hi* is a critical point of Ejy 4, then each u;
satisfies the following system

k+1
— Au; + V(|z))u; + Z)\(bujui = |ui[*u; in B*, 1<i<k+1,

=~ (2.8)

u; =0 on OB;*.

In the following, we list the Miranda theorem and a variant of the Gersgorin
disc theorem, which will play an important role in our proofs.

Lemma 2.1. (Miranda Theorem, [19]) Let
D:{x:: (x1,-- ,2n) ER3: |zy| < L, Vlgign}.
Suppose that the mapping H = (hy,-+- ,h,) : D — R3 is continuous on D satisfying
H(z)#0, VYxedD

and
(i) hi(mla"'7x75717_L7m’i+17"'3$n)20 f0r1§i§n7
(ii) hi(l‘l,"',xi_l,L,l‘i+1,"',$n)§0 fOTlSiSn,

where § := (0,---,0). Then H(x) =0 has a solution in D.

Lemma 2.2. (Lemma 2.3, a variant of the Gersgorin disc theorem, [12]) For any
aij = a;; > 0 withi # j € {1,---,n} and s;, > 0 withi = 1,--- ,n, define the
matriz B := (bij)nxn by
S1aq . .
SIS
bij = 1#4 v

Qi > 0 B
Then the real symmetric matriz (bij)nxn 15 non-positive definite.
Lemma 2.3. (Lemma 2.3, [24]) If f € C*(R™,R) is a strictly concave function and

has a critical point (s1,-+- ,8,) € R™, then (s1,--- ,8,) is the unique critical point
of f in R™.

3. Properties of the Nehari type set

In this section, we prove some properties of the Nehari type set M}*, and Nj 4.
Before the proof of Theorem 1.1, we first establish the framework of the following
equation for the super-cubic case

— Au+ V(|z))u + Apu = |ulP?u  in R3, (3.1)
— Ap=u? inR3 .

For ri, € Ty and p € (4,6), we introduce the energy functional I, : Hy — R
associated with (3.1) by

Do) =5 [ (Val + V() + 5 [ ot = [ .
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and Ep, : H;* — R by

k+1 k+1 2 2
1 A u?(y)ug () 1
Buplurs )=y | ghalt+g > [ f 28 aydo- [
P ; 2 4; Bk J BT 4|z — y| pJpx

Similarly, we define

Nip ={u € Hy : there exists rj s.t. u; # 0 in BJ*,
(I§ p(w),u;) =0, i=1,---  k+1},
MZ’TP ={(u1, - upg1) € HF 1wy #0,
(Ou, Explur, - yupg1),us) =0,i=1,--- , k+ 1}

and

Ckp =

nf I (u). (3.2)

i
ueNg p

Obviously, N, ,, M}, are consistent with N 4, M;%, at p = 4. Moreover, any
critical point of F , satisfies the following system

— Au; + V(|z|)u; —I—Ii/\qﬁwui = |w;[P"?u; in Bi*, 1<i<k+1, (3.3)
= .
u; =0 on 0B;*.
For each (u1,- - ,up41) € Hp", let G : (R>0)**! — R be defined as
Gy(s1,- s skt1) = Exp(s1un, -+ Skp1tgt1)

k+1

1 As2 KL s?
=3 (gethul + 2 30 [ o= [
i=1 j=1 /B" P JB*

7

(3.4)

Proposition 3.1. (Proposition 3.1, Lemma 3.3, [17]) For each k € N* and p €
(4,6), the following results hold true:

(1) for any r, € Ty and (u1,--- ,upq1) € H;F with u; # 0, there exists a unique
mazimum point (s1,-- , sp41) € (Rs0)*Th of GY in (Rx0)*™ such that
(s1u1, -, Sk1upt1) € MEF,,

1) equation (3.1) admits a radial nodal solution Uy, € Hy with exactly k nodes
i ti 3.1) admit dial nodal solution Uy, € H ith tly k nod
0<r < - <rg < —+o00 such that

I p(Ukp) = Chp-
By virtue of Proposition 3.1, we shall prove the following result.
Lemma 3.1. For each 1y, € Ty, the set M}*, # 0, which is defined in (2.7).

Proof. The proof is similar to Lemma 3.2 in [10] with a slight modification. For
the completeness, we give the sketch of the proof.
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For each ry, = (r1, -+ ,7p41) € Ik, we take (1, ,py1) € Mt with ¢; # 0

IVl ,
such that min {W} > 1. Then there is §; > 0 such that
v ek
1< 63 < min{vaiHiZ(B:k)/leHLqBrk)} I<i< k+1. (3~5)

We define
000 (x) = 624bi(ri—y + So(|z| — rim1)).

Clearly, supp(1;) C BF* and supp(v?) C {z € R® : riy < |z| < 71 4 (15 —
ri—1)/do} C B;*. Moreover

k+1

||v“°||2+AZ / 8,50 012 ~ / oo 4
537w 2,, rk>+6o/ v
k+1
3 2 5 |4
5] Z/ B, 07 5/B:k|wz|
hi(do).

Obviously, by (3.5) and the condition (V), h;(d) > 58||Vwi||iz(B:k)_5g fB;k [HESS
0. Then h;(d) > 0 for any 6 € (0,0p). Moreover, by virtue of the condition
fB“k (|z|)|wi? < +o0, a direct computation gives that h;(J) — —oo as § — +o0.

Thus there is d; € (09, +00) such that h;(d;) = 0. Let dmae = max{d1, -, 041}
Then hi(émax) < hz(éz) < 0.
Now, we set
wi(x) = v (z). (3.6)

Then ’U}Z(SL’) = 612naxwi(ri71 + 5max(|$| - rifl)) and

supp(w;) C {x ER3 vy < x| <rimy+ (1 — ri_l)/émax} C Bj*,

(wy,- - ,wgi1) € HpF  with w; # 0.
We claim that there exists (1.4, ,tx11.4) € (Rs0)¥T! such that
(trawe, - tpgpraweg1) € MK, (3.7)

Indeed, by Proposition 3.1 (i), there exists a unique global maximum point
(t1py s tey1p) € (Rs)" of G such that

k+1

||wz||2+)\2t27p]p/ ¢w1\w1\2—tp/ Wil =0, V1<i<k+1 (3.8)

We assert that (£1,p,- - ,tg+1,p) is bounded for p — 4. Suppose on the contrary
that there is i, € {1,---,k + 1} such that ¢;, , — 400 as p — 4. Then it follows



630 R. Tang, H. Guo & T. Wang

from (3.6) and (3.8) that

k+1 2

2—
0=t Mlws, |7, +2) sztzpp/ P, [wi, |* — / |wi, [P
j=1 lp’p
k+1
2
<t ol 423 [ sulunl = [ b
Bk
k+1
%)\Z/ ¢wj|wlp|2 / \w1p|4 asp — 44 (3.9)
k+l

- )‘(Sinaa:Z/ (b’l/JJ ip (Sgum: /Brk |wip|4

= hip((smam) - 6?naw||vwip”%2(3f"k) - 5maz/rk |¢ip‘2
ip Bk
<0,

which leads to a contradiction. Thus the assertion follows.
Then there is (t1,4, -+ ,tkt+1.4) € (R>0)**! and a sequence {p,}, such that

(tipns - sthripn) = (B4, sth1,4) as pp — 44

By the continuity of G and the fact that (t1,, - ,tr+1,) is the global maximum
point of G}, (t1,4,- -+ ,tg11,4) is also a global maximum point of G’ and thus

k+1

Gl 4030t [ bul =tls [ ' 10

Next, we prove (t14,+ - ,tr+14) € (Rso)* 1. Indeed, suppose on the contrary
that there is io S {17 R ,k + 1} such that (t174, cee ,t¢0_174, 0, ti0+1,4, ce ,tk+1,4) is
the global maximum point of G¥ in (Rsq)**!. Since

Gy (tras s tig—1,4 M tig+1,45 2 tht1,4)
=GY(t14, - ;tio 1,4,0, 80414, thyi1,4)
2
p u
B, + 2 [ gugut + 2558 [ uu, - ut [ o
J#io
X}(tl 45" )ti071747 07 ti0+1,47 e ?tk+174) + 9(1“’)7

where 0(s1) = 4 [[wiy |2, + 24 [ o, w? + 2550 824 [ Gu,wd = [ wg,|* > 0
if 41 is sufficiently small, it leads to a contradiction. Thust; 4 > 0forall1 <7 < k+1.

Therefore, the claim (3.7) follows due to (3.10) and (t174, co o tkr1a) € (Rsg)PHL
So Mi*, # 0 and the proof is completed. O

Lemma 3.2. If (u1, -+ ,uks1) € M¥,, then for any (b1, ,bry1) €
(R>)*\(1,---, 1),

Exa(biug, - bpprups1) < Exa(ur, -, upg1).
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Proof. For (uy, - ,upy1) € Mity and (br,- - ,bry1) € (Rxo)*HI\(1,--- 1), it
follows that

Exa(biug, - bpp1ups1)
k+1 b4
=Ey4(brui, -, bpyrUps1) — Z j(@mE,\ a(ur, - upg1), ug)
o k+1 4
B
b3 w2 — Lok
Z / Pu /.% 41
Bl 1

72— ||uz\|1+AZ/ buit = [
k+1 4 k+1 b2b2 _ b4 b2b2 _ b4
-3 (G —pm0+xz< TR

1,0=1

k+1 )\ k+1 k+1
<Z( ||uz|z) S 07— 1) / by u? < (|uz||2)

k+1

=3 (D + 2
; 2 !
i=1

[\D‘s%

zg 1 i=1
k1
=Exalur, - ukg1) — Y 700w Eralur, - ki), ui)
i=1
=Exa(u1, -+ ugpt1).
The proof is completed. O

By using Lemma 3.1, we prove that Ny 4 is non-empty.

Lemma 3.3. There hold N4 # 0 and 0 < ¢4 < 400, where ¢4 and Ny 4 are
defined in (2.2) and (2.3), respectively.

Proof. By Lemma 3.1, we can take (vq,---,v541) € MZ’;. Then by (2.6),

k+1 k+1
<I/\4(Z 0:),0) = (O, Exa(vi,+ ,vk41),v5) = 0. So > v; € Ng4. Moreover,
i=1

since Nk 4 C N, it follows from (1.4) that

k+1
0<m:= Jéljfvf,v;(u) < ue%i4 Ina(u) =cpa < I,\,4(; v;) < +00.
The proof is completed. O

4. Proof of Theorem 1.1

With the help of Proposition 3.1, we are going to prove Theorem 1.1 by the limit
approach and blow up analysis in this section.

Proof of Theorem 1.1. According to Theorem 1.1 in [17], for each k € NT and p €
(4,6), there exists r; € I'y and a radial nodal solution uy p = (w1 p, -, Ukt1,p) €
H*\{0} of (3.3) such that

k+1
Inp E :ui,p = Exp(uk,p) = crp-
i=1
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k1
Moreover, Uy, = ) u;, is a radial nodal solution having exactly k& nodes of
i=1
equation (3.1). Then we shall finish our proof by four steps.
Step 1. Prove

limsupcg,p < cpa < 400. (4.1)
p—4y

Indeed, for any (w14, ,Wkt1,4) € ./\/l,C 4, it follows from Proposition 3.1 (i) that
for each p € (4,6), there exists a unique k + 1 tuple (mqp, -, mii1,p) € (Rsg)*H!

such that (mq pwy 4, -+, Mpt1,pWht1,4) € MZ’TI” that is,

k+1
2 .
Zp||wz4|| +)\Zm1pm]p/ ¢w74 —mﬁp - lwia|P =0,V1<i<k+1.
(4.2)
We assert that (m1,p,- - ,Mg41,p) is bounded for p — 4. In fact, we argue it by
contradiction. Suppose on the contrary that for each p, there is i, € {1,--- ,k+ 1}
such that
My, p o= j:ﬁlfaﬁﬂ{mj’p} — 400 asp—>4..

Then it follows from (4.2) that

k+1
—4
sl 23 un el [
— ’Lp,p "D
k+1
92 —4
N I = Y (43)
1?

k+1

—>/\Z/ (éwj|wzp|2 / |w,p| <0 asp—idg,

which leads to a contradiction. Thus the assertion is proved.

By the assertion above, there exists (mj 4, - ,mitr14) € (R>0)*! and a se-
quence
{(m17pn7 e 7mk+11pn)} SuCh tha’t
(Miprs s Mpgip,) = (Mia, -, Mpy1a) as pp — 4y
Since (4.2) implies lim,, oo M7 - 2 > lim lwialf . lwiall o (i
n—00 = N0 [org |wy,alPn Sgrr lwial* ’
shows
k+1
(m1,4, T ’mk+1,4) € (Rxo) .

Then taking p, — 4, it follows from (4.2) that

k+1
ol + A3 [ Gusaida =it [ fosalt =0V S8 kot
B¥

(4.4)
Next, we prove
(M1, ,meg1a) = (1,---,1). (4.5)
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In fact, let b : (Rso)*** — R be defined by

h(ay, - ,akt1) : E>\4(a1w14,~~- ak+1wk+l4
k+1 % A
) 2,()
_ o, ——— = “dyd
Z( il + / / DD by
k+1 (x)
———————dyd
T ;a a /”k/rk 4’7T|1’ | e
E+1
Z/ |w; 4] d:c).
By some direct calculations, we get that
1 -1 7a(x)
B (ag, - - - = Za; 2 |lw4? + —————————dyd
) = gl 4 g [ / O by
) k1
) Wialhwial@) o) 1 L
T Z( B Jp 47T|96—y| yer 4 Jpre fwial"de,
J#i ‘
and
k+1
1 _s _3 1 ( )
ha-a' PR —za; ® i 2_ : 2 — o dyd ’
wa: (a1 k1) = g i [[wi,all; 3 ( rk/rk 47r\xfy| Y :z:)
J#i
A o1 _1 w? 4 (y)w? 4 (x)
Pasa. (a1, - 2q. 2 LT BT L dyde.
o (01,7, k1) = ga; tay /B.”k /Bk dmle —yl P
K J

For simplicity, we denote by

B = 2
8

Bij = O,

Then

Aij = haa, (a1, -+ apq1) =

k+1
_3 a; (N —_1 _1
2 2 _ v/l 2q.2
a; *lwiallf, Ci=—) 2 (8 /rk /k
gL
o 1 _1
== 2q. 2
K Pk r/c 47T|:L‘

B,’j + Oij

Pa(2)
47r\:v—y| “arfe—yl © d)

fa(x)

] ————— "~ dydx

if i # j.

According to Lemma 2.2, the matrix (Cjj)+1,6+1) is non-positive definite. This
together with the fact that B;; is negative definite, (A;;)k41)x (k+1) is negative defi-

nite. So h is a strictly concave function in (Rs)**1. Note from (wy 4, - -
MF, that (1,

,1) is a critical point of h, and from (4.4) that (mf 4, - -

,wk+1,4) S
4
>mk+1,4)

is a critical point of h. Then (4.5) follows from Lemma 2.3 immediately.
Thus by (3.2) and (4.5), it follows that

k+1 k+1
hmsupckp<hmsupf>\p 5 My pw; a) = Iy a( E Wi 4)-
p—44 i=1 =1
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Since the choice of (w14, -+, Wit1,4) € MZ’;I is arbitrary, it follows immediately
that

limsupcg,p < cga < +00.
p—dy

Step 2. Prove that there is U 4 € Hy such that
Uk,p = Uk.a # 0 strongly in Hy as p — 44. (4.6)

In fact, by (4.4) and Proposition 3.1, we have

1
ckp = Inp(Usp) — EU&,p(Uk,p)v Uk.p)
11 ) 11 )
= (5= Wl + (G =) [ 00,2,
11 )
> (5 = 0ol

which gives that ||Uy plla, is bounded for p — 44. Then there exists a sequence
{Ukp, }n>1 and some U4 € Hy such that Uy p, — Uga in Hy as p, — 44.
Moreover, by the compactly embedding theorem,

2 2 2
/3 qﬁan Ukypn—{/& ¢Uk‘4Uk,4 and/s (i)an Uk,ankA_)/J ¢Uk,4Uk,4 as pp —44.
R R: R R

This, combined with the fact that Uy p, is a solution of (3.1), yields immediately
that

0= lim (I3, (Ukp,) Ukp, — Usa)

n—-+o0o

= dim [ VU, VU, ~Uia)+ [ Vel s, U, ~ Ura)

n—-+oo R3 R3

+ A/’ ¢Uk,pn Uk‘zwpn - A/ ¢Uk,p" Ukvpn Uk74
R3 R3

*/ Uk, pnizUlg,pn */ ‘Ukypn|p"72Uk,ank,4
R3 R3

. 2 _
= lim ([Ukp. |7, = |Uka

%,) >0 as n— oo,

due to liminf,, o0 Uk p, 13, = [IUsall%, - Hence, Uy p, — U4 strongly in Hy as
pn — 44 Besides , it follows from ||Uyp, 17, < [zs [Ukp, [P < Cl|Ukp, |14, that
liminf,, s ||Uk,pn,||Hv > 0. Thus

Uk, # 0.

Therefore, (4.6) follows and Uy, 4 is a nontrivial weak solution of (1.3). Then by
the standard elliptic regularity theory, Uy 4 € C?(R3) and then U, k,4 can be viewed

as a radial nodal function which has at most £ 4 1 components, because Uy, has
k41
exactly k nodal domains. So we may assume that Ug 4 = > u;4 7# 0 with &k nodes
i=1
rp4 = (ri4, - ,Tka4), Where u; 4 = Xpre Uk, 4.
Step 3. Prove u;4 #0 forall 1 <i<k+1.

We prove it by contradiction. If NOT, there are two cases that occur: either
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case 1: ry, — +ooasp, — 44, or
case 2: there exists a subsequence p, — 4, as n — +oo and ig € {1, .-,k + 1}
such that

either lim inf lwig p H?O #0 and linrgioréf ||ui0+11pn||?0+1 =0,

) " ) (4.7)
or liminf [lug,p, |7, =0 and Jminf fu 1,200 # 0.

If case 1 happens, by the Strauss inequality, there exists a constant C' > 0 such
that |u(z)| < C% inR? for any u € Hy. Then

kgt < [ ey, Prde
Bl

< C’/ |k, pn||k+1d
rk Pn

|l‘|p"

:Crk,pn | whs1,p, 7 [AER

This shows that ||ug+1,p, ||k+1 — 00 as n — oo, which contradicts with the bound-
ness of {U p, }-
If case 2 happens, we consider the latter situation in (4.7), while the former

situation can be settled by similar arguments. Without loss of generality, we may

r r .
assume Ui, p, < 0 in B, """ and w41, > 0 in B, "7 . For the convenience, we

denote by QP» = B U B and set

04 := lim QP = lim B, Yren |y BLEPn

n—00 n—00 o+l *

Uig,pn

Let v, = Obviously vy, is bounded in Hy, and there exists v4 € Hy

lwig.on llig *

such that v, — v4 in Hy. Then by the compactly embedding theorem, it follows
120 + f]RS d)uio,pn ’u’z?g,pn < fRi’» ‘uiOJ)n P that

from i, p,

2
Jrs Puigon Vi s -2
1+ 2B " Torn _to.Pn §/3 ubn %2 —>/3 u?oAvZ as pp — 4.
R R

[ o

This implies that vy # 0 and thereby the set {z € R3 : vy(z) < 0} # (. Since
{z eR3:v,, <0} C{zeR: u,, <0} forall p,, we have

0 # {x € R :vy(z) <0} C {z € R® : uyy 4(w) <0} (4.8)

On the other hand, (4.7) implies that M;, 4(2) := uj,.4(2) + Usp+1.4(x) > 0 in
04, and the strong convergence Ukp, = Uk in Hy as p, — 44 shows that M; 4
satisfies

: 4
0,4y 11 7,

U2
— AM;y 4+ V(|z|) ZO,4+A</ ea)

— Dy | M, 4 = |M;
RS 47T|§C—y‘ y> 0,4 | 0,4

M;, 4 =0, on 0%,
(4.9)
By the classical elliptic regularity theory and the strong maximum principle, we

obtain
Mi074<l‘) >0 in Q4,
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which leads to {z € R? : u;, 4 < 0} = ). Obviously it contradicts with (4.8). Hence,
the claim follows immediately and thereby u; 4 # 0 for all 1 <7 <k + 1.

Step 4. Prove that Uy .4 changes sign exactly k times and cg 4 = Iy 4(Ug4).
Indeed, since Uy 4 is a solution of (1.3), by the classical regularity arguments and
the strong maximum principle, we have u;4 < 0 or w; 4 > 0 in Bj*. Thus Uy 4
changes sign exactly k times. Moreover, by (2.7) and (4.4), it follows that

Ca > limsup Iy, (Uk,p,)

n—oo

. 1 1 1 1
—timsup (5 = gl + G- o) [ 00,02, ) (1.10)

n—oo n

1 1
= Z”Uk,él”%{\, =1 a(Uk,a) — Z<I§\74(Uk,4),Uk,4> =I5 4(Uk,a) > cp.a.

Thus Iy 4(Ug,4) = cg,4 and the proof is completed. O

5. Proofs of Theorems 1.2 and 1.3

In this section, we investigate the energy comparison and the convergence properties
of the radial nodal solutions obtained in Theorem 1.1.
Proof of Theorem 1.2. According to Theorem 1.1, there exists Ty1 = (T1, * -, Tk+1)

€ I'+1 and a solution
Tit1

U S|
Upt1:=wy " + -+ w iy

of (1.2), which changes sign exactly k + 1 times.
We first prove
I 4(Uk+1) > Iy 4(Uk) vk € N;.

In fact, observe that Zk+22 n;w rk“ € N4 if and only if

k
0=n2[lwi™|? + §n2n2)\ ”“ Ol lwi*+ (z) 2 dydx
B 'k+1 47r\:c — 9

T
—nd [t e
B:IH»I

=: Ni(na, -+ ,ngy2), =2, k+2.

Note that there exists some § € (0,1) small enough such that N;(d,---,d) > 0 for
allt=2,--- ,k+ 2, and that

Ni(1,---,1) <0, Vi=2,-- k+2,
because Uj41 is a nodal solution of (1.2) satisfying

k+2 Pk+1 |2

I‘k+1 Tril 2 - ?k+1 4 _
IE+22 / / m_ ||w @ Pdyds— [ | =0

Then we deduce from (5.1) that

Ni(nQa"' 7ni—1767ni+17"' ,’I’Lk+2) > 07 vn] € [6? 1]7.] #Za
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Ni(nQ, M1, 1ani+1a o ank+2) < Ov vnj € [5, ]-]aj 7£ 1.
By Lemma 2.1,there exists some § := (3, -+, $542) € P} such that
(Ng(é), e 7N7€+2(§)) = 07

where P} = {(n2, -+ ,nps2) € (Rso)* 16 < nj < 1,Vj =2,---,k+ 2}. This
implies f+22 S;w r'““ € N4 and thus

k42
I)\,4(Z §iw:’““) > I)\74(Uk).
i=2
Note that
k+2 ~ T - Ty ~ T
D5 5wt ) = Bra(0,5w5 - Sepowph),
k+2 F F F
Da(Uisr) = Doa(Xi i wi ) = By a(wy* - L wkh).
Since Lemma 3.2 gives
E>\74(w11'k+1’ - 7w213r+21) > EAA(O, §2w;k+1’ - ’§k+2w2i+11)7

we can deduce from the above inequalities easily that I 4(Uk+1) > Ix4(Uy).
Next, we prove I 4(Uxt1) > (k + 2)1x4(Up). In fact, (I} ;(Ug41),w FY =0
gives

i+ |2 + " ()l ;" (a) |Pdyda — i [*dz < 0
i prE1 J g 4| — y| gkl " '

Note that there exists a small § > 0 such that for all i,

I‘k+1 2 _
52”wrk+1” +54 )| |w1‘k+1 (x)|2dydx—54 ) |wz!"k+1|4dx > 0.
“k+1 “‘k+1 471"9; — y| BR+1

i

Then for each 4, there exists ; € (6, 1) such that
I‘k+1 )|2 _ _
st [ B Lo ) Payo—3t [l oo,
‘"k+1 rIc-%—l 471".’13 - y| B k1

which shows &; ww’c+1 N . Hence, IAA(&-wfk“) > I 4(Up) and thus

k+2 k+2

< T < r 1 < Tri1 < Tri1
(k+2)Ia(U0) <> Lua(Gw;) = <A4(5w $) = DG, St >)
i=1 i=1
k42 4 k2 k+2
_Z 52erk+1”2 <Z I‘k+1||22 :IAA(Z'LU?H)
i=1
k+2
FURA ) i)
k+2

=D 4D wi™) = I a(Ussa)-
=1
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The proof is completed. O
Proof of Theorem 1.3. For A > 0, let U,;\A € Hy be the radial nodal solution of
(1.2) obtained in Theorem 1.1 which changes sign exactly k times. We divide the
whole proof into three steps.

Step 1. We claim that for any sequence {\,} with A, — 0L as n — oo,
{U;;\_Z}nzl is bounded in Hy .

In fact, we take ry € T'y and (31, ,¥r41) € ./\/12’7“4 with 1; # 0 such that

k+1

||1/)2H2+Z/ o, 2 / st=o.

For A € (0, 1], we define g : (Rso)**! — R by

k+1

o (on+ans) =l + 2ot / bo,07 — [ atut
Bi*

Obviously, there is 6 > 0 small enough such that for all A € (0, 1],

g0+ ,0) 2 g7 (8, ,8) > 0,
g (1,--- 1) 0.
Some direct computations give
gi)\(ala' o, Gi—1, laa/i+17' T aa/k?-i-l) < 07 Yé S aj S laj 7é i?
gz?\(alv' o 7ai—1a6aai+1; e aak-i-l) > Oa Yo S aj S 1a.] 75 i

Let D} = {(a1, -+ ,ax+1) € (Rs0)** : § < a; < 1}. Then by Lemma 2.1, there
exists (a1(A\), - ,ax+1(\)) € D} such that

gMar(N), -+ appr (V) =0, V1 <i <k 41,
which implies
(Y1, k1) = (@ (NP1, g (Neg1) € MYy, YA€ (0,1].
Thus, for any A € (0,1], we have

Doa(URy) € Exa(dr, -+ i)

_ _ 1 B ~ -
= Exa(@n, - Pka) = 7005, Exa(¥n, - Pen), ¥s)
k—i—l k+1
= Z Ipill? = Z llas (A2 (5.2)
=

I /\

72 Hd)zHQ 007

where Cy > 0 and a;(A) <1 are used. Hence

1 1
Co > I/\,4(U12\,4) = I/\,4(U12\,4) - Z<If\,4(U1c/\,4)»U12\,4> = ZHUIQ\A”%{V-
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Thus {U,i‘A} is bounded for A € (0,1] in Hy and the claim is true. Step 1 is finished.
Step 2. Up to a subsequence, there exists Uy , such that U, o~ U k.4 weakly
in Hy as n — oo. Then U}, is a weak solution of (1.5), due to the fact that U,;\’i

is a solution of (3.1). By the compactly embedding theorem Hy < L%(R3) for
2 < g < 6, we deduce that

U — UR allr,
=(I3,,. 4(U1;\Z) - 164(U184) UA" - UIS,4>
Lefs ey 0
] 24 (U2 (x) — ULy

Arle —y|
+/ (UkZ)B(UkZ_UI?AL)—/ (U124)3(U;;\Z—U;24)—>0, as n — oo.
R3 ’ ’ ’ R3 s s 5

So U,i‘4 — U,g4 strongly in Hy as n — oo. Similar arguments could give (U,;\Z)i —
(Uk 4)i strongly in Hy .
Notice from (If\m4(Uk,”i), (U,;\”’i)ﬁ = 0 that

- Aoy Il
%g_}_gg H(Uk,4)zH1 > 0.

This result, together with strong convergence, shows that (U lj:i)i # 0. Moreover,
by the standard elliptic regularity theory and strong maximum principle, we know
that (U )i has a constant sign. Thus, U}, is a radial solution of (1.5) with exactly
k + 1 nodal domains.

E+1

Step 3. Let v, = > v; be a least energy radial nodal solution of (1.5). Notice

i=1

that
k+1

=02 |jvil|? + /\b2b2// dyd b4/ i[4d
0 TLHUH Z 1n]n r) Tk47T|JU—y| Z()yx |'U| fL'
= kl (blﬂh e 7bk+l,n)7
(5.3)

if and only if 214—1 inVi € Nigax,, where Ny 4 5, is defined as in (2.3) for A = \,.
Since (I 4(V),vi) = 0, we know

k+1

n 2
0=l o /,m'm i@t [ ol
S G R
Bk

Moreover, for any A > 1,

A2 — / AoV = A2 (nvz—n? - / A%;*dx)
BTk BTk
2 (/ v} —/ A%fdx)
Bk Bk

= A%(1 - A2)/ vide < 0.
Bk

(5.4)
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Then there exists a large N > 0 such that for any n > N, there holds

k+1 2
V=
KAy A)= A2 o243 :AnA“/ / J(y)vf(x)dydx—/ Alfyi[Adz < 0.
= Bk BT 4|z — y| B

(5.5)
Let A=1+ -1 and A,,, be chosen small enough satisfying (5.5). Then by Lemma
2.1, (5.4) and (5.5), there exists

ES 1
(bl,nma to 7bk+17ﬂm) € Di—i_m = {(517' o 7Sk+l) € (R>0)k+1 1 S 8 < 14+ m}
such that
k?m (blan'ln7 e 7bk+17nm) = 0

So Zf:f bin, Vi € Nan, - Clearly, (b1, sbkt1,n,) — (1,---,1)and )\, —

0 as m — +oo.

nm

Therefore,
~ . An,
Toa(¥e) < Toa(U) = lm Iy, a(U5")
k1 k+1 (5.6)
< 3 . ) — ) — v..).
< Jdim I ,4(; bin,, i) 10,4(2 vi) = To.a(Vk)
Here U, ,S, 4 1s a least energy nodal solution of (1.2) among all the radial nodal solutions
having exactly k 4+ 1 nodal domains. The proof is completed. O
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