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Unbiased Grey Polynomial Model Based on
Precise Direct Integration Method∗
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Abstract During the conversion from difference to differential in the grey
polynomial model, the “misplaced replacement” problem will occur. A novel
unbiased grey polynomial model, i.e., HUGMP(1, 1, N) is presented to over-
come the above drawback. Meanwhile, the parameter estimation of HUGMP
(1, 1, N) is directly constructed by the equivalent relation between the param-
eter estimation and the recurrence relation of the time response function for
GMP(1, 1, N) model. The recurrence relation is deduced from the solution
of the homogenized differential equations, converted from the whitenization
equation of GMP(1, 1, N) model by introducing new variables. The simulated
values are directly calculated by the precise direct integration method in or-
der to reduce round-off error and improve fitting accuracy. Moreover, it is
proved that the proposed unbiased grey polynomial model possesses not only
complete coincidence of simulation to non-homogeneous exponential sequence
with polynomial time terms, but also multiple transformation consistency. At
last, the results of applications verify the effectiveness of the proposed model
by comparing with other conventional models.

Keywords Grey system theory, time power, GMP(1, 1, N) model, unbiased
grey model, precise direct integration method
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1. Introduction

Since Professor Deng established grey system theory for small sample and poor
information problems, grey forecasting model has been successfully applied in in-
dustry, agriculture, energy and so on [1, 2]. As a classical form of grey forecasting
model, GM(1, 1) model is proposed to fit exponential sequences, but it can’t fully
fit the sequence even if the original data completely conforms to the homogeneous
exponential law, because there exists “misplaced replacement” between parameter
estimation and time response of GM(1, 1) model. Therefore unbiased GM(1, 1) mod-
els are presented to eliminate “misplaced replacement” and simulate homogeneous
exponential sequences without any bias [3–7], which improve the fitting precision.
The study of unbiased grey models becomes an important issue for grey forecasting
models. The unbiased grey models are usually constructed by using direct modeling
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method [3–5], grey derivatives optimization, background values optimization [6, 7]
and discrete grey models. Among these, direct modeling method is considered as
the unity of grey derivative optimization and background value optimization [9],
the key of which is to seek the equivalent relation of parameter estimation and time
response function in order to overcome the inconsistence from difference to differ-
ential in grey models. Moreover, the above three methods don’t change the basic
form of GM(1, 1) model, but the discrete grey model (DGM(1, 1)) is not the precise
form of GM(1, 1) model [14], where both the parameter estimation and predicting
adopt the difference form. Here, we discuss the unbiased grey models based on
direct modeling method for the base form of grey models.

Researchers improve the structure of GM(1, 1) model to construct various grey
models to fit different structural data, non-monotonic time series, S-type data, pe-
riodic time sequence and other nonlinear data. Then for grey models with simple
model structure, non-homogeneous grey model NGM(1, 1, k) model [8, 9], Verhulst
model [10–12] and grey Bernoulli model [13], their unbiased grey models also have
been presented to overcome the “misplaced replacement” problem. The equiv-
alent relations between parameter estimation and time response function of the
Verhulst model and grey Bernoulli model are obtained after they are converted to
GM(1, 1) model by introducing transformations, and the relation of NGM(1, 1, k)
model is easily obtained because the grey action is a linear function. Correspond-
ingly, constructing unbiased grey models for complex grey actions such as, grey
Riccati model [15–17], fractional-order grey model [18–20], grey model based on
trigonometric function [21], grey model with time power terms [22–24], and grey
polynomial model [25–30], is challenging by using direct modeling methods.

Among the complex grey models, grey polynomial model (GMP(1, 1, N)) de-
signed by introducing polynomial time terms to the grey action, can describe the
original sequence in accordance with a more general trend rather than the special
homogeneous or non-homogeneous trend [25]. In order to improve the fitting accu-
racy and expand its applications for various data, researchers have proposed many
improved GMP(1, 1, N) models. Liu et al. put forward extended GMP(1, 1, N)
models by introducing the fractional accumulating generation operator and frac-
tional power time terms [26, 27]. Li et al. improved GMP(1, 1, N) model by con-
structing the tuned background coefficient using optimal methods [28]. Wei et
al. gave the simulated value of GMP(1, 1, N) model according to the connotation
method instead of the whitenization method and proved that the model simulates
non-homogeneous exponential sequences without error [29] and proposed a discrete
grey polynomial model [30]. But the unbiased GMP(1, 1, N) model based on direct
modeling method has not been given yet. Especially, when N = 1, GMP(1, 1, N)
model is simplified to NGM(1, 1, k) model, and its unbiased model has been studied.
Unfortunately, forN > 1, the complexity of polynomial grey action makes it difficult
to deduce the recurrence relation of the time response sequence, although the time
response function of GMP(1, 1, N) model is easily given. Accordingly, the equiv-
alent relation of parameter estimation and time response sequence can’t be built.
Thus we propose a novel way to gain the recurrence relation of time response se-
quence of GMP(1, 1, N) model. The whitenization equation of GMP(1, 1, N) model
is firstly transformed to a first order homogeneous differential equations by intro-
ducing new variables, then the recurrence relation is deduced by the solution of the
homogenized differential equations by the exponential matrix form. Therefore, we
obtain the equivalent relation between the parameter estimation formula and the
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time response recurrence formula to construct the parameter estimation of the un-
biased GMP(1, 1, N) model. Moreover, the formula of the time response sequence
becomes more complicated and round-off error in computation becomes bigger as
N increases. So we introduce a highly precise integration method [31] to directly
solve the above transformed homogenized differential equations, and to improve the
fitting accuracy of unbiased GMP(1, 1, N) model.

The remaining paper is organized as follows. In Section 2, an unbiased GMP
(1, 1, N) model is constructed with direct modeling method, in which parameter
estimation and prediction are discussed. In Section 3, the properties of the proposed
model are studied. In Section 4, the modeling process of the proposed model is
described. In Section 5, we build an unbiased GMP(1, 1, N) model to simulate non-
homogeneous exponential sequences and nuclear energy consumption, then compare
their errors to those of other models. Finally, conclusions are summarized in Section
6.

2. Construction of unbiased GMP(1,1,N) model

Assume that the original sequence is X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)), its first-
order accumulated generating sequence is

X(1) = (x(1)(1), x(1)(2), · · · , x(1)(n)),

where x(1)(k) =
k∑

i=1

x(0)(i), k = 1, 2, · · · , n.

Definition 2.1. (Definition 2, [25]) The basic form of GMP(1, 1, N) model is de-
fined as

x(0)(k) + a
x(1)(k − 1) + x(1)(k)

2
= b0 +

2k − 1

2
b1 + · · ·+ kN+1 − (k − 1)N+1

N + 1
bN

and the whitenization equation of GMP(1, 1, N) is expressed as

dx(1)(t)

dt
+ ax(1)(t) = b0 + b1t+ b2t

2 + · · ·+ bN tN , (2.1)

where a and b0 denote the real development coefficient and grey action respectively,
b1, · · · , bN are called the time correction terms.

In GMP(1, 1, N) model, a, b0, b1, · · · , bN are estimated from the basic form and
play roles as the coefficients of the whitenization equation. Taking the “misplaced
replacement” problem into account, we construct the parameter estimation of the
unbiased GMP(1, 1, N) model using direct modeling method. It is crucial to con-
struct the equivalence relation generated by the exact recurrence relation of time
response sequence and the formula of parameter estimation.

2.1. Recurrence relation of the time response sequence

Introducing a new variable y(t) = (x(1)(t), 1, t, t2, · · · , tN )T , Eq.(2.1) can be trans-
formed into

dy

dt
= Ay, (2.2)
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where A =



−a b0 b1 · · · bN−1 bN

0 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · N 0


.

Lemma 2.1. Assume that tk = k(k = 1, 2, · · · , n), and the initial value is y(t1),
the discrete solution y of Eq.(2.2) at tk+1 is

y(tk+1) = y(k + 1) = eAky(1) (2.3)

if and only if

y(k + 1) = eAy(k). (2.4)

Proof. See Appendix A.

Theorem 2.1. The recurrence relation of the time response function for GMP
(1, 1, N) model is

x(1)(k + 1) = vx(1)(k) + u0 + u1k + u2k
2 + · · ·+ uNkN , (2.5)

where v is non-negative, v = e−a, ut =
N∑
s=t

P s−t
s δs−tbs(t = 0, 1, · · · , N) with P s−t

s =

s!
t! , and δi =

(−1)i+1

ai+1 [e−a +
i∑

s=0
(−1)s+1 1

s!a
s], i = 0, 1, · · · , N.

Proof. Let b = (b0, b1, b2, · · · , bN ), D =



0 0 · · · 0 0

1 0 · · · 0 0

0 2 · · · 0 0
...
...
. . .

...
...

0 0 · · · N 0


, A =

−a b

0 D

 .

With operational properties of matrices, it is derived that

An =

 (−a)n b
n−1∑
i=0

(−a)n−1−iDi

0 Dn

 , n ≥ 2,

and

Dn =


0n×(N+1−n) 0n×n

T(N+1−n)×(N+1−n) 0(N+1−n)×n

 , n ≤ N,

0, n > N,
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where TN+1−n =


Pn
n

Pn
n+1

. . .

Pn
N

 .

So

bDn =

 (Pn
n bn, P

n
n+1bn+1, · · · , Pn

NbN , 0, · · · , 0), n ≤ N,

0, n > N.

Substituting them into Taylor series expansion of eA gives

eA = E+A+
1

2!
A2 + · · ·+ 1

n!
An + · · ·

=

 e−a b+ 1
2!b(−a+ aD) +· · ·+ 1

n!b[(−a)n−1 + (−a)n−2D+· · ·+Dn−1]

0 E+D+ 1
2!D

2 + · · ·+ 1
n!D

n + · · ·

 .

Here

E+D+
1

2!
D2 + · · ·+ 1

n!
Dn + · · · =



1

C1
1 1

C2
2 C1

2 1
...

. . .
. . .

. . .

CN
N · · · C2

N C1
N 1


. (2.6)

For convenience, let δi = (−1)i+1 1
ai+1 [e

−a +
i∑

s=0
(−1)s+1 1

s!a
s]. Then

b+
1

2!
b(−a+ aD) + · · ·+ 1

n!
b[−a)n−1 + (−a)n−2D+ · · ·+Dn−1]

=− b

a
(e−a − 1) +

bD

a2
(e−a − 1 + a) + · · ·

+ (−1)n+1bD
n

an+1
[e−a − 1 + · · ·+ (−1)n+1 1

n!
an] + · · ·

=δ0(b0, b1, · · · , bN ) + δ1(b1, 2b2, · · · , NbN , 0) + · · ·
+ δN−1(P

N−1
N−1 bN−1, P

N−1
N bN , · · · , 0) + δN (PN

N bN , 0, · · · , 0)
=(δ0b0 + δ1b1 + · · ·+ δNPN

N bN , δ0b1 + Pδ1b2 + · · ·+ PN−1
N bN , · · · , δ0bN ) (2.7)

≜(u0, u1, · · · , uN ).

So substituting Eq.(2.6) and Eq.(2.7) into eA and using Lemma 2.1, the recurrence
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relation of Eq.(2.2) is given by

x(1)(k + 1)

1

k + 1

(k + 1)2

...

(k + 1)N


=



v u0 u1 u2 · · · uN

0 1 0 0 · · · 0

0 C1
1 1 0 · · · 0

0 C2
2 C1

2 1 · · · 0
...

...
. . .

. . .
. . .

0 CN
N · · · C2

N C1
N 1





x(1)(k)

1

k

k2

...

kN


,

where v = e−a,

ut =

N∑
s=t

P s−t
s δs−tbs, t = 0, 1, · · · , N,

δi =
(−1)i+1

ai+1
[e−a +

i∑
s=0

(−1)s+1 1

s!
as], i = 0, 1, · · · , N.

Moreover, it is clear that the last N + 1 algebra equations are identity by the
binomial theorem and the first equation is written as Eq.(2.5). So the theorem is
proved.

2.2. Parameter estimation

Theorem 2.2. The parameter vector u = (v, u0, u1, · · · , uN )T of GMP(1, 1, N)
model can be directly estimated by ordinary least square method

û = (BTB)−1BTY, (2.8)

where B =


x(1)(1) 1 1 1 · · · 1

x(1)(2) 1 2 4 · · · 2N

...
...

...
...

...
...

x(1)(n− 1) 1 n− 1 (n− 1)2 · · · (n− 1)N

, Y =


x(1)(2)

x(1)(3)
...

x(1)(n)

 .

Subsequently, by Theorem 2.1, we get the parameter estimation

â = −lnv̂, (2.9)


b̂0

b̂1
...

b̂N

 =



δ0 P 1
1 δ1 P 2

2 δ2 · · · PN−1
N−1 δN−1 PN

N δN

δ0 P 1
2 δ1 · · · PN−2

N−1 δN−2 PN−1
N δN−1

δ0 P 1
3 δ1 · · · PN−1

N δN−2

. . .
. . .

...

δ0 P 1
Nδ1

δ0



−1 
û0

û1

...

ûN

 (2.10)

of unbiased GMP(1, 1, N) model to solve the “misplaced replacement” problem
illustrated.
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2.3. Prediction

The prediction of grey models is usually given by the formula of the time response
sequence, but the formula becomes more complicated and round-off error in com-
putation becomes bigger as the power N increases. In this subsection, we introduce
a numerical approach (highly precise integration method [31], abbreviated as HPD)
to obtain the predicted value with high precision.

Theorem 2.3. The time response sequence ŷ(k + 1) of Eq.(2.2) with initial value
ŷ(1) = (x(1)(1), 1, 1, · · · , 1) is obtained by HPD method. Accordingly, x̂(1)(k + 1) is
derived from the first element of ŷ(k + 1), then the predicted value is

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k), k = 1, 2, · · · , n− 1.

Next, the HPD method is introduced in the following, in which it is crucial to
compute the transfer matrix T(τ) = eAτ with high precision.

Algorithm 1 The prediction process of GMP(1, 1, N) model.

Input: 1-AGO sequence X(1), polynomial order N , parameter m and matrix

A =



−â b̂0 b̂1 · · · b̂N−1 b̂N

0 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · N 0


.

1: Give the initial value ŷ(1) = (x(1)(1), 1, 1, · · · , 1), time-step dτ = 1
2m and matrix

S = dτ ∗A;
2: for i=1 to m do
3: Calculate S = 2S+ S ∗ S;
4: end for
5: Compute T = I+ S;
6: for j=1 to n− 1 do
7: Calculate ŷ(k + 1) = A ∗ ŷ(k);
8: end for
9: Pick the first row of ŷ and denote it as x̂(1), then calculate x̂(0) by Theorem

2.5;
Output: x̂(0).

Using the above approach, if only the parameter m is chosen properly, the
truncation error of T(τ),

T(τ) ≈ (I+
Aτ

2m
)2

m

≜ (I+S0)
2m = [[(I+S0)

2]2 · · · ]2 = [(I+S1)
2 · · · ]2 = · · · = I+Sm

is generally negligibly small [32], the same order as the round-off error of computers.
Moreover, all small amounts are firstly added up, then finally added to the identity
matrix I, that can effectively avoid the round-off error and improve computational
accuracy.

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.643 | Generated on 2025-03-11 05:36:12



650 X. Liu & M. Gao

The parameters â, b̂0, b̂1, · · · , b̂N of GMP(1, 1, N) model are estimated by direct
modelling method, and x̂(1)(k) is calculated by HPD, which is called the unbiased
grey polynomial model based on highly precise direct integration method(noted as
HUGMP(1, 1, N) model). If x̂(1)(k) is computed by the solution formula of the whit-
enization equation, that is called unbiased GMP(1, 1, N) model (UGMP(1, 1, N)).

3. The properties of unbiased GMP(1,1,N) model

In order to verify the validity of the GMP(1, 1, N) model, we give the proof of the
proposed unbiased GMP(1, 1, N) model completely fitting the non-homogeneous
exponential sequence with polynomial time terms in Theorem 3.1.

Theorem 3.1. The unbiased GMP(1, 1, N) model fits the following nonhomoge-
neous sequence completely,

x(0)(k) = αqk + β0 + β1k + · · ·+ βN−1k
N−1, k = 1, 2, · · · , n,

where α, q, β0, β1, · · · , βN−1 are all constants.

Proof. This proof is completed by the following three steps.
Step 1. Parameter estimation v̂, û.
The accumulated sequence of the original sequence is

x(1)(k + 1) =qx(1)(k) +

N−1∑
i=0

βik
i + αq

+ (1− q)[β0k + β1

k∑
i=1

i+ β2

k∑
i=1

i2 + · · ·+ βN−1

k∑
i=1

iN−1].

By Lemma 6.3 in Appendix B, it is further simplified to

x(1)(k + 1) = qx(1)(k) + αq +

N∑
t=0

Ftk
t,

where F0 =
N−1∑
i=0

βi, FN = (1− q) 1
N βN−1θ0,

Ft =

N−1∑
i=t

βiC
t
i + (1− q)

N−1∑
i=t−1

Ci+1−t
i+1

i+ 1
βiθi+1−t, t = 1, 2, · · · , N − 1.

By Crammer’s rule, we have

v̂ = q,

û0 = αq + F0 = αq +
N−1∑
i=0

βi,

ût = Ft =
∑N−1

i=t βiC
t
i + (1− q)

∑N−t
s=0

Cs
s+t

s+t βs+t−1θs, t = 1, 2, · · · , N − 1,

ûN = FN = (1− q) 1
N βN−1θ0.

(3.1)

Step 2. Parameter estimation â, b̂0, b̂1, · · · , b̂N of UGMP(1, 1, N) model.
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Using Eq.(3.1), we get

e−â = q, (3.2)

N∑
i=0

P i
i δib̂i = αq +

N−1∑
i=0

βi, (3.3)

N∑
i=t

P i−t
i δi−tb̂i =

N−1∑
i=t

βiC
t
i + (1− q)

N−t∑
s=0

Cs
s+t

s+ t
βs+t−1θs, (3.4)

P 0
Nδ0b̂N = (1− q)

1

N
βN−1θ0. (3.5)

From Eq.(3.5), it follows that b̂N
â = 1

N βN−1θ0.
From Eq.(3.4), the left is simplified to

N∑
i=t

P i−t
i δi−tb̂i =

N∑
i=t

P i−t
i (−1)i−t+1 1

âi−t+1
[e−â +

i−t∑
s=0

(−1)s+1 â
s

s!
]b̂i

=(1− e−â)[

N∑
i=t

P i−t
i (−1)i−t b̂i

âi−t+1
]

+

N∑
i=t+1

P i−t
i (−1)i−t+1 b̂i

âi−t+1

i−t∑
s=1

(−1)s+1 â
s

s!
.

Let ∆̂t =
N∑
i=t

(−1)i−tP i−t
i

b̂i
âi−t+1 , then the above is written as

N∑
i=t

P i−t
i δi−tb̂i =(1− q)∆̂t +

N∑
i=t+1

P i−t
i (−1)i−t+1 b̂i

âi−t+1

i−t∑
s=1

(−1)s+1 â
s

s!

=(1− q)∆̂t +

N−t∑
s=1

N∑
i=s+t

(−1)i−t+sP i−t
i

b̂i
s!âi−t−s+1

=(1− q)∆̂t +

N−t∑
s=1

∆̂s+t

P i
i−t

P i
i−t−ss!

= (1− q)∆̂t +

N−t∑
s=1

∆̂s+tC
t
s+t

=(1− q)∆̂t +

N∑
i=t+1

∆̂iC
t
i .

So Eq.(3.4) is expressed as

(1− q)∆̂t +

N∑
i=t+1

∆̂iC
t
i =

N−1∑
i=t

βiC
t
i + (1− q)

N−t∑
s=0

Cs
s+t

s+ t
βs+t−1θs.

Firstly, if it is considered as a polynomial of q, we have

∆̂t =

N−t∑
s=0

βs+t−1θs
Cs

s+t

s+ t
, (3.6)
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N∑
i=t+1

Ct
i∆i =

N−1∑
i=t

βiC
t
i . (3.7)

Next, if Eq.(3.6) is true and Eq.(3.7) can also be certified by Eq.(3.6), both
Eq.(3.6) and Eq.(3.7) are right. The details are as follows,

N∑
i=t+1

Ct
i ∆̂i =

N∑
i=t+1

Ct
i

N−i∑
s=0

βs+i−1θs
Cs

s+i

s+ i

=

N∑
i=t+1

Ct
i

N−1∑
h=i−1

βhθh+1−i
h+ 1− i

h+ 1
Ch+1

=

N−1∑
h=t

βh

h+ 1

h+1∑
i=t+1

Ct
iθh+1−iC

h+1−i
h+1

=

N−1∑
h=t

βh

h+ 1

h−t∑
s=0

Ct
s+t+1θh−s−tC

h−s−t
h+1

=

N−1∑
h=t

βhC
t
h

h− t+ 1

h−t∑
s=0

Ch−s−t
h−t+1θh−s−t

=

N−1∑
h=t

βhC
t
h

h− t+ 1
(h− t+ 1)

=

N−1∑
h=t

βhC
t
h.

Therefore, by Lemma 6.3 in Appendix B, Eq.(3.6) follows that

N∑
t=1

∆̂t =

N∑
t=1

N−t∑
s=0

Cs
s+t

s+ t
βs+t−1θs =

N−1∑
s=0

N−s∑
t=1

βs+t−1θs
Cs

s+t

s+ t

=

N−1∑
s=0

N−1∑
j=s

βjθs
Cs

j+1

j + 1
=

N−1∑
j=0

βj

j + 1

j∑
s=0

Cs
j+1θs

=

N−1∑
j=0

βj

j + 1
(j + 1) =

N−1∑
j=0

βj .

From Eq.(3.3), the left is

N∑
i=0

P i
i (−1)i+1 1

ai+1
[e−a +

i∑
s=0

(−1)s+1 1

s!
as]b̂i

=(1− q)

N∑
i=0

P i
i (−1)i+1 b̂i

ai+1
+

N∑
i=1

P i
i (−1)i+1 b̂i

ai+1

i∑
s=1

(−1)s+1 1

s!
as

=(1− q)∆0 +

N∑
s=1

N∑
i=s

P i
i (−1)i+s b̂i

ai−s+1

1

s!
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=(1− q)∆0 +

N∑
s=1

N−s∑
t=0

(−1)t
b̂s+t

at+1
P t
s+t

P s+t
s+t

P t
s+t

1

s!

=(1− q)∆0 +

N∑
s=1

∆s.

Substituting Eq.(3.6) and Eq.(3.7) to Eq.(3.3), we get

∆̂0 =
αq

1− q
. (3.8)

Step 3. Solve x(0)(k + 1).

By Lemma 6.2 in Appendix B, we have

x(0)(k + 1) = x(1)(k + 1)− x(1)(k)

= [x(1)(1)− β0 − β1 − · · · − βN−1 −
αq

1− q
]e−(k−1)(q − 1)

+

N∑
t=0

∆t[(k + 1)t − kt]

= αqk+1 +

N∑
t=1

∆t[(k + 1)t − kt] = αqk+1 +

N∑
t=1

∆t

t−1∑
i=0

Ci
tk

i

= αqk+1 +

N−1∑
i=0

N∑
t=i+1

∆tC
i
tk

i = αqk+1 +

N−1∑
i=0

N−1∑
t=i

βtC
i
tk

i

= αqk+1 +

N−1∑
i=0

βi(k + 1)i.

So the theorem is proven.

Theorem 3.2. Assume Z(0) = (ρx(0)(1), ρx(0)(2), · · · , ρx(0)(n)) is the multiple

transformation of X(0), where z(0)(k) = ρx(0)(k), ρ ̸= 0. â, b̂0, b̂1, b̂2, · · · , b̂N and
ā, b̄0, b̄1, b̄2, · · · , b̄N are the parameter estimations of UGMP(1, 1, N) models for X(0)

and Z(0) respectively, then

â = a, b̂i = ρbi, i = 0, 1, 2, · · · , N.

Proof. By Theorem 2.2, the parameter estimation of GMP(1, 1, N) model for
X(0) is given

û = (BTB)−1BTY =
1

|BTB|
(BTB)∗BTY, (3.9)

and the parameter estimation of Z(0) is

û = (B
T
B)−1B

T
Z =

1

ρ|BT
B|

(B
T
B)∗B

T
ρY, (3.10)
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where B =



ρx(1)(1) ρx(1)(2) · · · ρx(1)(n− 1)

1 1 · · · 1

1 2 · · · n− 1
...

... · · ·
...

1 2N · · · (n− 1)N


. With the properties of determi-

nants, we have the relation

|BT
B| = ρ2|BTB|. (3.11)

For convenience, the adjoint matrix (BTB)∗ is noted as (Bij)(N+2)×(N+2), then

(B
T
B)∗ =


B11 ρB12 · · · ρB1,N+2

ρB21 ρ2B22 · · · ρ2B2,N+2

...
...

...
...

ρBN+2,1 ρ2BN+2,2 · · · ρ2BN+2,N+2

 . (3.12)

Substituting Eq.(3.11) and Eq.(3.12) to Eq.(3.10), and contrasting with Eq.(3.9),
we have

v̂ = v̂, ûi = ûi, i = 0, 1, · · · , N.

Accordingly, by Eq.(2.9) and Eq.(2.10), we obtain

â = â, b̂i = ρb̂i, i = 0, 1, · · · , N.

Theorem 3.3. Suppose that Z(0) = (z(0)(1), z(0)(2)), · · · , z(0)(n)) is the multiple
transformation of X(0), where z(0)(k) = ρx(0)(k), k = 1, 2, · · · , n, ρ ̸= 0. The
predicted values x̂(0)(k) and ẑ(0)(k) of UGMP(1, 1, N) models for X(0) and Z(0)

satisfy
ẑ(0)(k + 1) = ρx̂(0)(k + 1), k = 1, 2, · · · , n− 1.

Proof. By Lemma 6.2 in Appendix B, we get

x̂(1)(k+1) = [x(1)(1)−
N∑
t=0

N−t∑
s=0

(−1)sP s
s+t

b̂s+t

âs+1
]e−âk+

N∑
t=0

N−t∑
s=0

(−1)sP s
s+t

b̂s+t

âs+1
(k+1)t

and

ẑ(1)(k+1) = [z(1)(1)−
N∑
t=0

N−t∑
s=0

(−1)sP s
s+t

b̂s+t

â
s+1 ]e

−âk+

N∑
t=0

N−t∑
s=0

(−1)sP s
s+t

b̂s+t

â
s+1 (k+1)t.

By Theorem 3.2, we have

ẑ(1)(k + 1) = ρx̂(1)(k + 1).

So the predict value is

ẑ(0)(k+ 1) = ẑ(1)(k+ 1)− ẑ(1)(k) = ρx̂(1)(k+ 1)− ρx̂(1)(k) = ρx̂(0)(k+ 1), (3.13)
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where k = 1, 2, · · · , n− 1.
Theorem 3.2 and Theorem 3.3 indicate that the multiple transformation of the

original sequence has no influence on modeling performance. Then a suitable num-
ber ρ can be selected to reduce the condition number in Eq.(2.8) without changing
accuracy.

4. Modeling procedure

As described in the properties of UGMP(1, 1, N) model, the grey polynomial models
with different polynomial order N describe different data patterns. Thus, it is
important to give a feasible way to select the polynomial order N . In addition,
in order to avoid overfitting and ill condition problems, the alternative polynomial
orders are always suggested as E = {0, 1, 2, 3} in Ref [25].

4.1. The criterion for determining the polynomial order

The following empirical criterion is given based on the sequence x(0)(k) = αqk +
β0 + β1k + · · ·+ βN−1k

N−1.

Definition 4.1. (Definition 3, [25]) Assume that the r order difference sequence of
the original sequence is D(r) = (d(r)(r + 1), d(r)(r + 2), · · · , d(r)(n)), r ≥ 1. Then
the r order stepwise ratio sequence is defined as

δ(r) = (δ(r)(r + 2), δ(r)(r + 3), · · · , δ(r)(n)),

where δ(r)(k) = d(r)(k)
d(r)(k−1)

, k = r + 2, r + 3, · · · , n.

Especially, when r = 0, δ(0)(k) = x(0)(k)
x(0)(k−1)

.

Definition 4.2. (Definition 4, [25]) Assume

δ(r)max = max
r+2<k<n

δ
(r)
k , δ

(r)
min = min

r+2<k<n
δ
(r)
k .

Then the degree of grey index law is defined as ζ(r) = δ
(r)
max − δ

(r)
min for any non-

negative integer r.

From the above definition, if ζ(r) = 0, then ζ(r+1) = 0. The sufficient and
necessary condition for the original sequence to be r order homogeneous is δ(r) =
constant. Therefore, the previous criterion determines the alternative polynomial
orders based on N = argmax ζ(r)

r∈E
. But the sequence usually does not satisfy the

form x(0)(k) = αqk +β0+β1k+ · · ·+βN−1k
N−1 completely in practice, so the first

criterion of selecting polynomial order is usually set according to ζ(r) < 10.
Taking both the fitting performance and the predicting ability into account, the

original sequence is divided into two parts, the training data and the testing data.
The training set is used to construct the parameter estimations of the proposed
model and determine the optimal polynomial order according to the minimal mean
absolute percentage error (MAPE),

MAPE =
1

l

l∑
k=1

∣∣∣∣x(0)(k)− x̂(0)(k)

x(0)(k)

∣∣∣∣× 100%.
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The testing set is used to test the predicting performance of the proposed model.

4.2. Modeling process

According to the above modeling process, the computational steps of HUGMP
(1, 1, N) can be described in Fig.1.

5. Numerical example and application

To test the performance of HUGMP(1, 1, N) model, exponential sequences with
polynomial time terms, nuclear energy consumption forecasting and electricity con-
sumption forecasting are considered as case studies.

5.1. Exponential sequences with polynomial time terms

Consider the sequences x(0)(k) = 2qk + 8 + 15k − 2k2, q = 0.5, 1.5, 3, 6, 9, 12, k =
1, 2, · · · , 6. Firstly, we choose the polynomial order N = 3 according to the step-
wise ratio sequences of the raw data with different orders 0 = ζ(3) < ζ(2) < ζ(1)

in Table 1, then we fit the sequences using the proposed UGMP(1, 1, 3) model
and HUGMP(1, 1, 3) model. Secondly, Figure 2 shows that the log of MAPE
(log10MAPE) of all sequences become stable when the highly precise parameter
m ≥ 40, so we choose m = 40 in the following models. Thirdly, Table 2 in-
dicates that the MAPE of HUGMP(1, 1, 3) model is much lower than that of
UGMP(1, 1, 3) model. It also verifies that HUGMP(1, 1, 3) model can avoid round-
off error and achieve high accuracy. From the listed results in Table 2, we observe
that HUGMP(1, 1, 3) model can break the restriction of q in traditional grey mod-
els. Finally, the unbiasedness of the proposed model is verified by highly precise
parameter estimation of α, q, β0, β1, β2 in Table 3.

Table 1. The stepwise ratio of different sequences.

k q = 0.5 q = 1.5 q = 3 q = 6 q = 9 q = 12

1 22 24 27 33 39 45

2 30.5 34.5 48 102 192 318

3 35.25 41.75 89 467 1493 3491

4 36.125 46.125 198 2628 13158 41508

5 33.0625 48.1875 519 15585 118131 497697

6 26.03125 48.78125 1484 93338 1062908 5971994

ζ(0) 0.599029 0.425178 1.081567 2.898055 4.074629 4.93259

ζ(1) 5.7959 0.4026 1.0539 0.7110 0.4969 0.3774

ζ(2) 0.0254 0.2495 0.3623 0.0657 0.0275 0.0151

ζ(3) 0 0 0 0 0 0

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.643 | Generated on 2025-03-11 05:36:12



Unbiased Grey Polynomial Model Based on Precise Direct Integration Method 657

Figure 1. The overall process of the proposed model.
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Figure 2. The errors of HUGMP(1,1,3) model with different high precise parameter m.

Table 2. The MAPE errors with different models.

q GMP(1,1,3) UGMP(1,1,3) HUGMP(1,1,3)

0.5 0.54 2.67e-5 6.36e-6

1.5 47.79 1.34e-6 3.67e-7

3 21.84 2.92e-9 2.63e-9

6 52.55 1.25e-7 1.92e-8

9 64.76 5.15e-7 5.34e-9

12 70.47 6.79e-7 1.60e-7

Table 3. The parameter estimations of different series (m = 40).

q
α q β0 β1 β2

α̂ APE(%) q̂ APE(%) β̂0 APE(%) β̂1 APE(%) β̂2 APE(%)

0.5 2.0000 1.1806e-4 0.5000 2.4323e-5 8.0000 1.1357e-6 15.0000 5.8676e-6 -2.0000 3.0836e-6

1.5 2.0000 1.4740e-6 1.5000 1.7546e-7 8.0000 1.7352e-7 15.0000 2.7510e-7 -2.0000 3.2188e-7

3 2.0000 3.1176e-9 3.0000 5.0567e-11 8.0000 1.5050e-8 15.0000 7.7616e-9 -2.0000 3.5688e-10

6 2.0000 1.1395e-7 6.0000 2.9902e-12 8.0000 6.8366e-9 15.0000 7.4959e-9 -2.0000 1.6213e-7

9 2.0000 1.8691e-7 9.0000 1.8632e-11 8.0000 9.2949e-7 15.0000 4.4054e-8 -2.0000 1.5079e-7

12 2.0000 2.4723e-6 12.0000 1.6342e-11 8.0000 4.1828e-6 15.0000 1.9735e-6 -2.0000 3.1410e-6

5.2. Nuclear energy consumption

The nuclear energy consumption of China has been discussed with grey Riccati
model (GRM) [17]. The data is divided into two groups: the first 15 data from
2001 to 2015 are used to construct models, and the rest from 2016 to 2018 are
applied to test the forecasting accuracy of models.

From Table 4, by the previous criterion ζ(r) < 10 , the alternative set of polyno-
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mial orders is {0,1,3}. Moreover, in order to illustrate the effectiveness of the cri-
terion, we also construct GMP(1, 1, N) models and HUGMP(1, 1, N) models with
N = 0, 1, 2, 3, then the results and errors are listed in Table 5 and Table 6, re-
spectively. On the modeling sequence, the MAPE error of HUGMP(1, 1, 3) model
is the smallest, close to that of GMP(1, 1, 3) model and much smaller than that
of other GMP(1, 1, N) models, HUGMP(1, 1, N) models and GRM model. So we
select N = 3 as the optimal polynomial order and HUGMP(1, 1, 3) as the optimal
model. Meanwhile, the MAPE of GMP(1, 1, 2) and HUGMP(1, 1, 2) are 559.174%
and 354.870% respectively, which shows the criterion is effective.

Table 4. The stepwise ratio of the nuclear energy consumption series.

r 0 1 2 3

ζ(r) 0.69 3.96 11.50 6.17

In addition, the MAPE of HUGMP(1, 1, N) model is smaller than the MAPE
of the GMP(1, 1, N) model at the same polynomial order in fitting and prediction.
That shows the validity of our proposed unbiased grey model, improving the ac-
curacy of fitting and strengthening the ability of prediction. On the performance
of simulation, HUGMP(1, 1, 3) model is superior to the other models, as shown in
Table 6. On the testing sequence, the MAPE of HUGMP(1, 1, 3) model is a lit-
tle bigger than HUGMP(1, 1, 1) model and much less than other models. What is
more, all the MAPE of HUGMP(1, 1, 3) model are below 5% which reveals that the
proposed model obtains excellent results and also successfully catches the trend of
the nuclear energy consumption of China.

5.3. Electricity consumption

Considering the annual electricity consumption of India, the raw data are collected
from BP Statistical Review of World Energy 2019, which was predicted in [26] by
fractional grey prediction model (FPGM(1,1,α)). The first 7 data from 2008 to
2014 as the training set are to build the models, and the next 4 data from 2015 to
2018 are used as the testing set to evaluate the predicting performance of models.

Table 7 shows that ζ(0) < ζ(1) < ζ(3) < 10 < ζ(2), so the alternative polynomial
order set is {0, 1, 3}. But the parameter v in HUGMP(1,1,3) is negative, which isn’t
satisfied with Theorem 2.5. Therefore, we construct HUGMP(1,1,N) models with
N = 1, 2. In order to illustrate the applicability and good forecasting performances
of HUGMP(1,1,N) model, two benchmark models, including the grey polynomial
model (GMP(1,1,N)) and fractional grey prediction model (FGPM(1,1,α)) [26] are
established to fit and forecast the electricity in India. Moreover, we list the whit-
enization equation of these models in Table 8.

The competitive results are listed in Table 9. It is evidently that MAPE of
HUGMP(1,1,1) is lower than other benchmark models either in simulation or in
prediction, and the changing range of APE is smaller than others. All above indi-
cated the validity of the proposed unbiased polynomial grey models. At the same
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Table 5. The results of the nuclear energy consumption of China in different models.

Year Data GRM
GMP HUGMP GMP HUGMP GMP HUGMP GMP HUGMP

(1,1,0) (1,1,0) (1,1,1) (1,1,1) (1,1,2) (1,1,2) (1,1,3) (1,1,3)

2001 4.0 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000

2002 5.7 8.8675 7.0893 7.1365 2.5280 9.4390 8.5348 8.7335 6.3341 6.1517

2003 9.8 9.4171 7.9914 8.0425 4.2110 9.9176 10.0455 10.1708 8.8629 8.9858

2004 11.4 10.1195 9.0084 9.0636 5.9672 10.5075 11.8773 11.8872 10.7982 11.0184

2005 12.0 10.9320 10.1547 10.2143 7.7998 11.2347 14.2973 14.0868 12.2451 12.4291

2006 12.4 11.8505 11.4470 11.5112 9.7120 12.1311 17.7949 17.1235 13.3243 13.4052

2007 14.1 12.9924 12.9037 12.9726 11.7075 13.2362 23.2673 21.6100 14.1746 14.1425

2008 15.5 14.3672 14.5457 14.6197 13.7897 14.5985 32.3579 28.6076 14.9555 14.8451

2009 15.9 15.9077 16.3967 16.4758 15.9625 16.2778 48.0781 39.9544 15.8506 15.7265

2010 16.7 17.6676 18.4833 18.5676 18.2297 18.3480 75.9455 58.8343 17.0709 17.0092

2011 19.5 19.9067 20.8354 20.9250 20.5956 20.9000 126.070 90.7616 18.8590 18.9256

2012 22.0 22.6708 23.4868 23.5817 23.0644 24.0458 216.977 145.287 21.4940 21.7184

2013 25.3 26.1616 26.4757 26.5756 25.6405 27.9239 382.607 238.954 25.2965 25.6409

2014 30.0 30.7334 29.8448 29.9497 28.3286 32.7046 685.152 400.415 30.6356 30.9574

2015 38.6 37.3061 33.6427 33.7522 31.1337 38.5978 1238.57 679.295 37.9354 37.9442

2016 48.3 46.6249 37.9240 38.0374 34.0608 45.8627 2251.64 1161.55 47.6836 46.8893

2017 56.1 58.9755 42.7500 42.8667 37.1151 54.8184 4106.94 1996.05 60.4411 58.0937

2018 66.6 75.7683 48.1901 48.3091 40.3023 65.8584 7505.45 3440.66 76.8528 71.8714
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Table 6. The errors of the nuclear energy consumption of China in different models.

Year GRM
GMP HUGMP GMP HUGMP GMP HUGMP GMP HUGMP

(1,1,0) (1,1,0) (1,1,1) (1,1,1) (1,1,2) (1,1,2) (1,1,3) (1,1,3)

2001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2002 55.5705 24.3731 25.2011 55.6495 65.5970 49.7327 53.2193 11.1254 7.9243

2003 3.9068 18.4550 17.9335 57.0307 1.1996 2.5053 3.7840 9.5626 8.3081

2004 11.2326 20.9793 20.4947 47.6562 7.8292 4.1868 4.2736 5.2790 3.3472

2005 8.8998 15.3773 14.8805 35.0019 6.3778 19.1438 17.3903 2.0426 3.5756

2006 4.4313 7.6857 7.1680 21.6770 2.1685 43.5075 38.0929 7.4542 8.1064

2007 7.8556 8.4847 7.9954 16.9682 6.1263 65.0164 53.2625 0.5290 0.3011

2008 7.3084 6.1567 5.6795 11.0342 5.8163 108.761 84.5651 3.5127 4.2249

2009 0.0483 3.1242 3.6215 0.3929 2.3761 202.378 151.286 0.3104 1.0912

2010 5.7941 10.6785 16.1833 9.1601 9.8680 354.764 252.301 2.2212 1.8514

2011 2.0854 6.8483 7.3076 5.6185 7.1791 546.514 365.444 3.2870 2.9456

2012 3.0491 6.7583 7.1894 4.8380 9.2993 886.258 560.397 2.3002 1.2800

2013 3.4054 4.6469 5.0420 1.3458 10.3712 1412.28 844.483 0.0138 1.3473

2014 2.4445 0.5172 0.1676 5.5712 9.0152 2183.84 1234.72 2.1186 3.1915

2015 3.3521 12.8426 12.5591 19.3427 0.0056 3108.72 1659.83 1.7219 1.6990

MAPEsimu(%) 8.5274 10.4948 9.7615 20.8062 9.5486 599.174 354.870 3.4319 3.2796

2016 3.4682 21.4825 21.2476 29.4808 5.0461 4561.78 2304.86 1.2763 2.9207

2017 5.1256 23.7968 23.5887 33.8412 2.2845 7220.75 3458.02 7.7381 3.5538

2018 13.7662 27.6424 27.4637 39.4860 1.1136 11169.4 5066.15 15.3946 7.9150

MAPEpred(%) 7.4534 24.3072 24.1000 34.2693 2.8147 7650.65 3609.68 8.1363 4.7965

MAPEover(%) 8.3379 12.9323 12.1513 23.1821 8.4263 1774.42 897.338 4.2160 3.5324

Table 7. The stepwise ratio of the electricity consumption sequence.

δ(r) r=0 r=1 r=2 r=3

ζ(r) 0.0532 1.5392 23.6110 4.2588

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.643 | Generated on 2025-03-11 05:36:12



662 X. Liu & M. Gao

time, this illustrates that the proposed model is more suitable for forecasting elec-
tricity consumption.

Table 8. The whitenization differential equation of different models.

Model Whitenization differential equation

FPGM(1,1,α)
dx0.9642(t)

dt
− 0.0678x0.9642(t) = −90.9816t0.1596 + 861.5374

GMP(1,1,0)
dx(t)
dt

− 0.0702x(t) = 792.6196

HUGMP(1,1,0)
dx(t)
dt

− 0.0702x(t) = 821.5505

GMP(1,1,1)
dx(t)
dt

− 0.0630x(t) = 7.6630t+ 789.3804

HUGMP(1,1,1)
dx(t)
dt

− 0.0521x(t) = 19.1447t+ 784.8909

Table 9. Comparisons of different models in the simulation and prediction of electricity consumption
in India.

Year Actual FPGM GMP(1,1,0) HUGMP(1,1,0) GMP(1,1,1) HUGMP(1,1,1)

values values APE(%) values APE(%) values APE(%) values APE(%) values APE(%)

2008 828.40 828.40 0.0000 828.40 0.0000 828.40 0.0000 828.40 0.0000 828.40 0.0000

2009 879.70 879.69 0.0012 881.36 0.1887 881.80 0.2391 880.43 0.0830 879.42 0.0323

2010 937.50 946.37 0.9466 945.46 0.8491 945.94 0.9003 945.56 0.8602 946.12 0.9190

2011 1034.00 1016.01 1.7399 1014.23 1.9120 1014.74 1.8624 1014.93 1.8441 1016.38 1.7037

2012 1091.80 1089.57 0.2046 1087.99 0.3490 1088.55 0.2977 1088.81 0.2740 1090.41 0.1272

2013 1146.10 1167.70 1.8847 1167.13 1.8349 1167.72 1.8868 1167.49 1.8661 1168.40 1.9457

2014 1262.20 1250.93 0.8926 1252.01 0.8073 1252.66 0.7560 1251.28 0.8652 1250.56 0.9222

MAPEsimu(%) 0.9448 0.9902 0.9904 0.9654 0.9417

2015 1317.30.0 1339.74 1.7034 1343.07 1.9563 1343.77 2.0093 1340.52 1.7625 1337.12 1.5042

2016 1401.70 1434.58 2.3456 1440.76 2.7866 1441.51 2.8399 1435.56 2.4153 1428.30 1.8978

2017 1470.30 1535.92 4.4631 1545.55 5.1180 1546.35 5.1727 1536.77 4.5209 1524.37 3.6772

2018 1561.10 1644.26 5.3268 1657.96 6.2046 1658.83 6.2601 1644.56 5.3465 1625.57 4.1298

MAPEpred(%) 3.4598 4.0164 4.0705 3.5114 2.8023

6. Conclusion

HUGMP(1, 1, N) model is proposed for solving the “misplaced replacement” prob-
lem of GMP(1, 1, N) model. The main conclusions are summarized as follows.

(1) A novel way to obtain the parameter estimation with direct modeling method
is proposed, in which the recurrence relation is deduced by the solution of homog-
enized differential equations transformed from the whitenization equation.

(2) HPD method is used to give the simulated value of unbiased GMP(1, 1, N)
model, getting high accuracy and avoiding round-off error in computation.
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(3) The properties of UGMP(1,1,N) model and the perfect fitting of nonhomo-
geneous exponential sequences with polynomial time terms show the unbiasedness
of the proposed model and higher accuracy compared with GMP(1, 1, N) model.

(4) Two cases, including nuclear energy consumption of China and electric-
ity consumption of India, are illustrated that our proposed model is superior to
other benchmark models, GMP(1,1,N) model, fractional grey prediction model
(FPGM(1,1,α)) and grey Riccati model (GRM).

The proposed unbiased grey polynomial model based on precise integration
method can be applied to other time sequences with nonlinearity and fluctuations.
The proposed method for deducing the recurrence relation of the whitenization
equation gives a new way to solve the parameter estimation of the unbiased grey
model with nonlinear grey action. The high accuracy numerical method (HPD) is
used to directly compute the time response function of grey models with complex
structures, of which the time response function formula is hard to express. More-
over, the selection of polynomial forms should be explored in order to simplify the
structure of grey polynomial model and improve the simulation accuracy.
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Appendix A:

By the solution theory of differential equation, Eq.(2.2) has a unique analytic solu-
tion y(t) = eA(t−t1)y(t1). Then the discrete solution y at tk+1 is

y(tk+1) = y(k + 1) = eAky(1).

Consequently,

y(k + 1) = eAky(1) = eA(eA(k−1)y(1)) = eAy(k).

This implies the necessity of the condition (2.3) for (2.4).

Conversely, assuming that condition (2.3) is satisfied, we have

y(k + 1) = eAy(k) = eAeAy(k − 1) = · · · = eAky(1).

The proof is complete.

Appendix B:

Lemma 6.1. The discrete time response function of whitening equation is

x(1)(k + 1) = e−ax(1)(k) +

N∑
t=0

[−∆te
−a +

N∑
i=t

Ct
i∆i]k

t.
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Proof. By Theorem 2.1,

x(1)(k + 1) = e−ax(1)(k) +

N∑
t=0

utk
t

= e−ax(1)(k) +

N∑
t=0

N∑
s=t

δsP
s−t
s−t bsk

t.

The coefficient ut is

ut =

N∑
t=0

N∑
s=t

δsP
s−t
s−t bs =

N−t∑
s=0

δsP
s
s+tbs+t

=

N−t∑
s=0

[(−1)s+1P s
s+t

bs+t

as+1
(e−a +

s∑
i=0

(−1)i+1 a
i

i!
)]

=

N−t∑
s=0

(−1)s+1P s
s+t

bs+t

as+1
e−a +

N−t∑
s=0

s∑
i=0

(−1)i+s ai

i!as+1
P s
s+tbs+t.

Assume that ∆t =
N−t∑
s=0

(−1)sP s
s+t

bs+t

as+1 , ut is expressed as

ut =

N∑
t=0

[−∆te
−a +

N−t∑
s=0

s∑
i=0

(−1)i+s a
i−s−1

i!
P s
s+tbs+t]

= −e−a
N∑
t=0

∆t +

N−t∑
i=0

N−t∑
s=i

(−1)i+s a
i−s−1

i!
P s
s+tbs+t]

= −e−a
N∑
t=0

∆t +

N−t∑
i=0

N−t−i∑
h=0

(−1)h
a−h−1

i!
Ph+i
h+i+tbh+i+t]

= −e−a
N∑
t=0

∆t +

N−t∑
i=0

∆t+i
1

i!

Ph+i
h+t+i

Ph
h+t+i

= −e−a
N∑
t=0

∆t +

N−t∑
i=0

∆t+iC
t
t+i

= −e−a
N∑
t=0

∆t +

N∑
i=t

∆iC
t
i .

Hence, the discrete time response function of whitenization equation is

x(1)(k + 1) = e−ax(1)(k) +

N∑
t=0

[−∆te
−a +

N∑
i=t

Ct
i∆i]k

t.

Lemma 6.2. Discrete time response function of whitenization equation (2.1) is

x(1)(k + 1) = e−ax(1)(k) +

N∑
t=0

[−∆te
−a +

N∑
i=t

Ct
i∆i]k

t (6.1)
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if and only if

x(1)(k + 1) = [x(1)(1)−
N∑
t=0

∆t]e
−ak +

N∑
t=0

∆t(k + 1)t, (6.2)

where ∆t =
N−t∑
s=0

(−1)sP s
s+t

bs+t

as+1 .

Proof.

x(1)(k + 1) = [x(1)(1)−
N∑
t=0

∆t]e
−ak +

N∑
t=0

∆t(k + 1)t

= e−ax(1)(k)− e−a
N∑
t=0

∆tk
t +

N∑
t=0

∆t(k + 1)t

= e−ax(1)(k)− e−a
N∑
t=0

∆tk
t +

N∑
t=0

∆t

t∑
i=0

Ci
tk

i

= e−ax(1)(k)− e−a
N∑
t=0

∆tk
t +

N∑
t=0

N∑
i=t

∆iC
t
ik

t

= e−ax(1)(k) +

N∑
t=0

[−∆te
−a +

N∑
i=t

Ct
i∆i]k

t,

this implies the necessity of the condition (6.2) for (6.1).
Conversely, when k = 2, the conclusion is right

x(1)(2) = e−ax(1)(1) +

N∑
t=0

[−∆te
−a +

N∑
i=t

Ct
i∆i]

= [x(1)(1)−
N∑
t=0

∆t]e
−a +

N∑
t=0

N∑
i=t

∆iC
t
i

= [x(1)(1)−
N∑
t=0

∆t]e
−a +

N∑
t=0

∆t2
t.

If k ≤ s, the conclusion (6.2) is right. When k = s+ 1,

x(1)(s+ 2) = e−ax(1)(s+ 1) +

N∑
t=0

[−∆te
−a +

N∑
i=t

Ct
i∆i](s+ 1)t

= e−a[x(1)(1)−
N∑
t=0

∆t]e
−as − e−a

N∑
t=0

∆t(s+ 1)t

+

N∑
t=0

N∑
i=t

∆iC
t
i (s+ 1)t + e−a

N∑
t=0

∆t(s+ 1)t

= [x(1)(1)−
N∑
t=0

∆t]e
−a(s+1) +

N∑
t=0

∆t(s+ 2)t.
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The proof is complete.

Lemma 6.3. For arbitrary t,

k∑
i=1

it =
1

t+ 1

t∑
s=0

Cs
t+1θsk

t+1−s,

where θi, i = 0, 1, · · · , t are absolute constants.

Especially, when k = 1, by Lemma 6.3, we get

1∑
i=1

it =
1

t+ 1

t∑
s=0

Cs
t+1θs1

t+1−s,

that is
t∑

s=0

Cs
t+1θs = t+ 1. (6.3)
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