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Limit Cycles for a Class of
Continuous-Discontinuous Piecewise Differential

Systems

Bilal Ghermoul1,† and Jaume Llibre2

Abstract During this century, an increasing interest appeared in studying
the planar piecewise differential systems. This is due to their numerous ap-
plications for modelling many natural phenomena. For understanding the
dynamics of the planar differential systems we must control the existence or
non-existence of periodic orbits and limit cycles. So many papers have been
published studying the existence or non-existence of periodic orbits and limit
cycles for continuous or discontinuous piecewise differential systems. But un-
til now very few papers have studied the periodic orbits and limit cycles of
piecewise differential systems where two differential systems of the piecewise
differential system are continuous and discontinuous respectively. We study
the periodic orbits and limit cycles of the planar continuous–discontinuous
piecewise differential systems separated by two parallel straight lines, such
that either in one of these straight lines the piecewise differential system is
continuous and in the other one discontinuous. In two pieces of these piece-
wise differential systems there are arbitrary Hamiltonian systems of degree
two and in the third piece there is an arbitrary Hamiltonian system of degree
one forming the continuous-discontinuous piecewise differential systems. We
determine the limit cycles of these piecewise differential systems by consider-
ing two cases. In the first the Hamiltonian system of degree one can be in
the middle of the three zones, and in the second it is on one side of the three
zones.

Keywords Limit cycles, Hamiltonian system, continuous-discontinuous piece-
wise linear differential systems, first integrals
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1. Introduction

Poincaré’s works started the qualitative study of the differential systems instead of
finding exact or approximative solutions of themselves. With him also appeared
the notion of the limit cycles which became one of the most important objects for
understanding the dynamics of the differential systems in the plane, see [27].

†the corresponding author.
Email address: bilal.ghermoul@univ-bba.dz(B. Ghermoul),
jaume.llibre@uab.cat(J. Llibre)

1Departement of Mathematics, University Mohamed El Bachir El-Ibrahimi,
Bordj Bou Arreridj 34265, El-Anasser, Algeria.
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The concept of a limit cycle is a concept whose importance is not hidden from
any researcher in the area of the differential systems in dimension two and related
fields. But in general, to determine the existence or absence of a limit cycle is not
an easy task. See for instance the Hilbert’s 16th problem [10,12,14].

At the beginning of the 1930s the limit cycles started to be studied in the
continuous and discontinuous piecewise differential systems due to their importance
in many mechanical and electrical applications. For more information on their past
and present applications, see the books [1,6,28] and the survey [24]. The continuous
piecewise differential systems have been studied for several authors, see for instance
[4,9,17,22,23], and for the discontinuous ones see without being exhaustive [2,3,5,
9, 11,13,15,16,18–21,25,26].

In this paper we consider continuous-discontinuous piecewise differential systems
separated by two parallel straight lines. These systems have quadratic Hamiltonian
systems in two different regions and a linear Hamiltonian system in the third region,
and we want to study the existence and non–existence of limit cycles, and in the
case of the existence of limit cycles, we also want to find their maximum number of
limit cycles that these continuous-discontinuous piecewise differential systems can
exhibit. See a previous paper on continuous-discontinuous piecewise differential
systems separated by two parallel straight lines in [19]. Now we need to take into
account two cases: the Hamiltonian system of degree one may be located either in
the center of the three zones, or in a lateral zone.

Here we shall study the periodic orbits and the limit cycles which intersect
exactly at two points, both parallel straight lines of the continuous-discontinuous
piecewise differential systems.

Doing a rescaling of the plane variables and a rotation of themselves, if necessary,
we can assume without loss of generality that the two parallel straight lines are
x = −1 and x = 1. Thus we shall study the continuous-discontinuous piecewise
differential systems of the form

(ẋ, ẏ) =



(
−∂Hi

∂y
,
∂Hi

∂x

)
if x ≥ 1,(

−∂Hj

∂y
,
∂Hj

∂x

)
if − 1 ≤ x ≤ 1,(

−∂H2

∂y
,
∂H2

∂x

)
if x ≤ −1,

(1.1)

where H2 = H2(x, y) is an arbitrary polynomial of degree 3, Hi = Hi(x, y), Hj =
Hj(x, y) are arbitrary polynomials of degree 3 and 2 for i = 3, j = 1, or Hi =
Hi(x, y), Hj = Hj(x, y) are arbitrary polynomials of degree 2 or 3 for i = 1, j = 3.
In the straight line x = −1 the piecewise differential system is continuous and in
x = 1 discontinuous.

This paper studies the existence or non-existence of periodic orbits and limit
cycles that such kinds of continuous-discontinuous piecewise differential systems
can exhibit. And in the case of the existence of limit cycles we determine their
maximum numbers.

In what follows we give explicitly the Hamiltonian systems which form the
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continuous-discontinuous piecewise differential systems (1.1)

ẋ = −α2 − α4x− 2α5y,

ẏ = α1 + 2α3x+ α4y,
(1.2)

ẋ = −β2 − β7x
2 − β4x− 2β8xy − 3β9y

2 − 2β5y,

ẏ = β1 + 3β6x
2 + 2β3x+ 2β7xy + β8y

2 + β4y,
(1.3)

ẋ = −γ2 − γ7x
2 − γ4x− 2γ8xy − 3γ9y

2 − 2γ5y,

ẏ = γ1 + 3γ6x
2 + 2γ3x+ 2γ7xy + γ8y

2 + γ4y.
(1.4)

Of course, the Hamiltonians of the Hamiltonian systems (1.2), (1.3) and (1.4) are

H1(x, y) = α1x+ α2y + α3x
2 + α4xy + α5y

2,

H2(x, y) = β1x+ β2y + β3x
2 + β4xy + β5y

2 + β6x
3 + β7x

2y + β8xy
2 + β9y

3,

H3(x, y) = γ1x+ γ2y + γ3x
2 + γ4xy + γ5y

2 + γ6x
3 + γ7x

2y + γ8xy
2 + γ9y

3,

respectively.
Our main result when the Hamiltonian system of degree one is in the middle of

the three zones is the following.

Theorem 1.1. A continuous–discontinuous piecewise differential system (1.1) such
that in the straight line x = −1 the system is continuous and in the straight line
x = 1 discontinuous, formed by the Hamiltonian systems (1.3) in the region x ≤ −1,
(1.2) in the region −1 ≤ x ≤ 1 and (1.4) in the region x ≥ 1, can have at most
one limit cycle. And there are such piecewise differential systems having one limit
cycle, see Figure 1.

Theorem 1.1 is proved in section 2.
Our main result when the Hamiltonian system of degree one is not in the middle

of the three zones is the following.

Theorem 1.2. A continuous–discontinuous piecewise differential system (1.1) such
that in the straight line x = −1 the system is continuous and in the straight line
x = 1 discontinuous, formed by the Hamiltonian systems (1.3) in the region x ≤ −1,
(1.4) in the region −1 ≤ x ≤ 1 and (1.2) in the region x ≥ 1, can have at most
one limit cycle. And there are such piecewise differential systems having one limit
cycle, see Figure 2.

Theorem 1.2 is proved in section 3.

2. Proof of Theorem 1.1

Under the assumptions of Theorem 1.1 the Hamiltonian system of degree one is in
the middle of the three regions. If a continuous-discontinuous piecewise differential
system (1.1) has a periodic orbit intersecting the two straight lines of separation in
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the points (−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 > y2 and y3 > y4, these four
points must satisfy the following polynomial system of 8 equations and 8 unknowns

H2(−1, y1) = H2(−1, y2) = k1, H1(−1, y1) = H1(1, y3) = k2,

H1(−1, y2) = H1(1, y4) = k3, H3(1, y3) = H3(1, y4) = k4,

(2.1)

where ki, i ∈ {1, 2, 3, 4} are constants.
Proof. [Proof of Theorem 1.1] In order that the piecewise differential system (1.1)
is continuous on the straight line x = −1, the Hamiltonian systems (1.3) and (1.2)
must coincide on x = −1. This implies that β2 = (2α2 − α4 + β4) /2, β5 =
α5, β6 = (α1 − 2α3 − β1 + 2β3) /3, β7 = (β4 − α4) /2, β8 = 0, and β9 = 0. Then
the polynomial system (2.1) becomes

(−α1 + 2α3 − 2β1 + β3 − 3k1 + 3y1(α2 − α4 + α5y1))/3 = 0,

(−α1 + 2α3 − 2β1 + β3 − 3k1 + 3y2(α2 − α4 + α5y2))/3 = 0,

−α1 + α3 − k2 + y1(α2 − α4 + α5y1) = 0,

α1 + α3 − k2 + y3(α2 + α4 + α5y3) = 0,

−α1 + α3 − k3 + y2(α2 − α4 + α5y2) = 0,

α1 + α3 − k3 + y4(α2 + α4 + α5y4) = 0,

γ1 + γ3 + γ6 − k4 + y3(γ2 + γ4 + γ7 + y3(γ5 + γ8 + γ9y3)) = 0,

γ1 + γ3 + γ6 − k4 + y4(γ2 + γ4 + γ7 + y4(γ5 + γ8 + γ9y4)) = 0.

(2.2)

From these equations we get eliminating the constants ki for i = 1, 2, 3, 4 the next
four equations

(y1 − y2)(α2 − α4 + α5(y1 + y2)) = 0,

−2α1 + α5y
2
1 + (α2 − α4)y1 − y3(α2 + α4 + α5y3) = 0,

−2α1 + α5y
2
2 + (α2 − α4)y2 − y4(α2 + α4 + α5y4) = 0,

(y3 − y4)(γ2 + γ4 + γ7 + (γ5 + γ8)(y3 + y4)) + γ9(y
3
3 − y34) = 0.

(2.3)

Note that if y1 = y2 or y3 = y4. Then the solutions of system (2.2) cannot
provide the periodic orbits of the piecewise differential systems that we are studying.
Now the rest of the proof is divided into four cases.
Case 1: α5 ̸= 0 and γ9 ̸= 0. We solve (2.2) and (2.3) with respect to y1, y2, y3,
y4, k1, k2, k3 and k4, and taking into account that y1 > y2 and y3 > y4 the unique
solution is

k1 = − (α2+α4)
2

α5
+ (γ5+γ8)(α2+α4)

γ9
+ 5α1+2α3−2β1+β3

3 − α5(γ2+γ4+γ7)
γ9

,

k2 = − (α2+α4)
2

α5
+ α1 + α3 +

(α2+α4)(γ5+γ8)−α5(γ2+γ4+γ7)
γ9

,

k3 = − (α2+α4)
2

α5
+ α1 + α3 +

(α2+α4)(γ5+γ8)−α5(γ2+γ4+γ7)
γ9

, k4 = T
α3

5γ9
,

y1 =
√
−γ9R−α2γ9+α4γ9

2α5γ9
, y2 = −

√
−γ9R+α2γ9−α4γ9

2α5γ9
,

y3 =
√
S−(α2+α4)α5γ9

2α2
5γ9

, y4 = −
√
S+(α2+α4)α5γ9

2α2
5γ9

,
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if −γ9R ≥ 0 and S ≥ 0, where
R = 4(γ2+γ4+γ7)α

2
5−4(α2+α4)(γ5+γ8)α5−8α1γ9α5+(3α2+α4)(α2+3α4)γ9,

S = α2
5γ9(−3γ9(α2 + α4)

2 + 4α5(γ5 + γ8)(α2 + α4)− 4α2
5(γ2 + γ4 + γ7)), and

T = γ2
9(α2+α4)

3−2α5(γ5+γ8)γ9(α2+α4)
2+α2

5((γ5+γ8)
2+(γ2+γ4+γ7)γ9)(α2+

α4) + α3
5((γ1 + γ3 + γ6)γ9 − (γ2 + γ4 + γ7)(γ5 + γ8)).

Hence in this case the piecewise differential systems have at most one limit cycle.
Case 2: α5 = 0 and γ9 ̸= 0. From system (2.1) we obtain

H2(−1, y1)−H2(−1, y2) = α2 − α4 = 0,

H1(−1, y1)−H1(1, y3) = −2α1 + α2y1 − α2y3 − α4y1 − α4y3 = 0,

H1(−1, y2)−H1(1, y4) = −2α1 + α2y2 − α2y4 − α4y2 − α4y4 = 0,

H3(1, y3)−H3(1, y4) = γ2 + γ4 + γ7 + γ9y
2
3 + γ5y3 + γ8y3 + γ9y4y3 + γ5y4 + γ8y4

+γ9y
2
4 = 0.

Since α2 = α4, from the second and third equation we get that y3 = y4 = −α1/α4.
Then in the piecewise differential systems there are no periodic orbits, and conse-
quently no limit cycles.
Case 3: γ9 = 0 and α5 ̸= 0. Therefore system (2.1) becomes

H2(−1, y1)−H2(−1, y2) = α2 − α4 + α5y1 + α5y2 = 0,

H1(−1, y1)−H1(1, y3) = −2α1 + α5y
2
1 + α2y1 − α4y1 − α2y3 − α4y3 − α5y

2
3 = 0,

H1(−1, y2)−H1(1, y4) = −2α1 + α5y
2
2 + α2y2 − α4y2 − α2y4 − α4y4 − α5y

2
4 = 0,

H3(1, y3)−H3(1, y4) = γ2 + γ4 + γ7 + γ5y3 + γ5y4 + γ8y3 + γ8y4 = 0.

So y3 = y4 = −(γ2 + γ4 + γ7)/(2(γ5 + γ8)), and consequently no periodic orbits if
γ5 ̸= −γ8.
If γ5 = −γ8, the last system becomes

α2 − α4 + α5y1 + α5y2 = 0,

− 2α1 + α5y
2
1 + α2y1 − α4y1 − α2y3 − α4y3 − α5y

2
3 = 0,

− 2α1 + α5y
2
2 + α2y2 − α4y2 − α2y4 − α4y4 − α5y

2
4 = 0,

γ2 + γ4 + γ7 = 0.

Therefore γ2 = −γ4 − γ7. Now replacing the parameters γ9, γ5 and γ2 into system
(2.2) we obtain the following two solutions

k1 = ± 1
3 (−α1 + 2α3 − 2β1 + β3 + 3y1 (α2 − α4 + α5y1)) ,

k2 = −α1 + α3 + y1 (α2 − α4 + α5y1) , y2 = −α2−α4+α5y1

α5
,

k3 = −α1 + α3 + y1 (α2 − α4 + α5y1) , y3 = −α2+α4+
√
R1

2α5
,

k4 = γ1 + γ3 + γ6, y4 = −α2+α4−
√
R1

2α5
,

if R1 and R2 > 0, where
R1 = (α2 + α4)

2 − 8α1α5 + 4α5y1(α2 − α4 + α5y1), and
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R2 = α2
2 − 8α1α5 + 2α2(α4 + 2α5y1) + (α4 − 2α5y1)

2.

So in this case if piecewise differential systems have a solution, they have a con-
tinuum of solutions, which would produce a continuum of periodic orbits, then no
limit cycle can exhibit.
Case 4: γ9 = 0 and α5 = 0. From system (2.1) we obtain

H2(−1, y1)−H2(−1, y2) = α2 − α4 = 0,

H1(−1, y1)−H1(1, y3) = −2α1 + α2y1 − α2y3 − α4y1 − α4y3 = 0,

H1(−1, y2)−H1(1, y4) = −2α1 + α2y2 − α2y4 − α4y2 − α4y4 = 0,

H3(1, y3)−H3(1, y4) = γ2 + γ4 + γ7 + γ5y3 + γ8y3 + γ5y4 + γ8y4 = 0.

Since α2 = α4, from the second and third equations we get that y3 = y4 = −α1/α4.
Then in the piecewise differential systems there are no periodic orbits, and conse-
quently no limit cycles.

In order to complete the proof of Theorem 1.1, we provide a piecewise differential
system having the Hamiltonian system of degree one in the middle of the three
zones exhibiting one limit cycle. In the previous case 1 we choose the piecewise
differential system formed by

ẋ = −2x− 2y + 1, ẏ = 6x+ 2y, in − 1 < x < 1,

ẋ = −x2 − 4x− 2y, ẏ = −3x2 + 2xy + 4x+ 4y + 1, in x < −1,

ẋ = 2xy + 3y2, ẏ = 3x2 + 2x− y2 + 1, in x > 1,

with first integrals

H1(x, y) = 3x2 + 2xy + y2 − y,

H2(x, y) = −x3 + x2y + 2x2 + 4xy + x+ y2,

H3(x, y) = x3 + x2 − xy2 + x− y3,

respectively. Then the corresponding piecewise differential system satisfies that the
points of intersection with the straight line x = −1 have y1 = 3 and y2 = 0, while
the points of intersection with the straight line x = 1 have y3 = 0 and y4 = −1.
Therefore the limit cycle of this piecewise differential system is drawn in Figure 1.

3. Proof of Theorem 1.2

In this case the Hamiltonian system of degree one is on the right of the region. The
four points (−1, y1), (−1, y2), (1, y3) and (1, y4), with y1 > y2 and y3 > y4, must
satisfy the following polynomial system

H2(−1, y1) = H2(−1, y2) = k1, H3(−1, y1) = H3(1, y3) = k2,

H3(−1, y2) = H3(1, y4) = k3, H1(1, y3) = H1(1, y4) = k4,

(3.1)

where ki, i ∈ {1, 2, 3, 4} are constants.

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.669 | Generated on 2024-12-22 20:49:47



Limit Cycles for Piecewise Differential Systems 675

-1.5 -1.0 -0.5 0.5 1.0
x

-2

-1

1

2

3

4

y

Figure 1. A limit cycle under the assumptions of Theorem 1.1.

Proof. [Proof of Theorem 1.2] The Hamiltonian systems (1.3) and (1.4) must
coincide on x = −1 for the piecewise differential system (1.1) to be continu-
ous on that line. This implies that β2 = (2α2 − α4 + β4) /2, β5 = α5, β6 =
(α1 − 2α3 − β1 + 2β3) /3, β7 = (β4 − α4) /2, β8 = 0, β9 = 0. Then the polyno-
mial system (3.1) becomes

−k1 − β1 + β3 − β6 + y1(β2 − β4 + β7 + y1(β5 − β8 + y1β9)) = 0,

−k1 − β1 + β3 − β6 + y2(β2 − β4 + β7 + y2(β5 − β8 + y2β9)) = 0,

(−3k2 − β1 + 2β3 − 3β6 + 3y1(β2 − β4 + β7 + y1(β5 − β8 + y1β9))

−2γ1 + γ3)/3 = 0,

(−3k2 + β1 − 2β3 + 3β6 + 2γ1 + 5γ3 + 3y3(β2 − β4 + β7 + y3(β5 + β8

+y3β9) + 2γ4))/3 = 0,

(−3k3 − β1 + 2β3 − 3β6 + 3y2(β2 − β4 + β7 + y2(β5 − β8 + y2β9))

−2γ1 + γ3)/3 = 0,

(−3k3 + β1 − 2β3 + 3β6 + 2γ1 + 5γ3 + 3y4(β2 − β4 + β7 + y4(β5 + β8

+y4β9) + 2γ4))/3 = 0,

−k4 + α1 + α3 + y3(α2 + α4 + y3α5) = 0,

−k4 + α1 + α3 + y4(α2 + α4 + y4α5) = 0.

(3.2)

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.669 | Generated on 2024-12-22 20:49:47



676 B. Ghermoul & J. Llibre

Eliminating the constants ki for i = 1, 2, 3, 4 yields the following four equations.

(y1 − y2)(β2 − β4 + β7 + (y1 + y2)(β5 − β8)) + (y31 − y32)β9 = 0,

β9y
3
1 + (β5 − β8)y

2
1 + (β2 − β4 + β7)y1 + 4β3/3− 2β6 − 4(γ1 + γ3)/3− y3(β2 − β4

+β7 + y3(β5 + β8 + y3β9) + 2γ4)− 2β1/3 = 0,

β9y
3
2 + (β5 − β8)y

2
2 + (β2 − β4 + β7)y2 + 4β3/3− 2β6 − 4(γ1 + γ3)/3− y4(β2 − β4

+β7 + y4(β5 + β8 + y4β9) + 2γ4)− 2β1/3 = 0,

(y3 − y4)(α2 + α4 + (y3 + y4)α5) = 0.

The periodic orbits we are considering cannot be provided if y1 = y2 and y3 = y4.
The study of the solutions of system (3.2) is divided into five cases.
Case 1: α5 ̸= 0, β9 ̸= 0 and A0 ̸= 0. Here A0 = R0 +

√
S0, where

R0 = 486β1β
5
9α

9
5−972β3β

5
9α

9
5+1458β6β

5
9α

9
5−486β2β5β

4
9α

9
5+486β4β5β

4
9α

9
5−486β5β7β

4
9α

9
5−

972β2β8β
4
9α

9
5 + 972β4β8β

4
9α

9
5 − 972β7β8β

4
9α

9
5 − 54β3

5β
3
9α

9
5 + 54β3

8β
3
9α

9
5 − 162β5β

2
8β

3
9α

9
5 +

162β2
5β8β

3
9α

9
5+972β5

9γ1α
9
5+972β5

9γ3α
9
5−1458β5β

4
9γ4α

9
5−1458β8β

4
9γ4α

9
5+729α2β2β

5
9α

8
5+

729α4β2β
5
9α

8
5−729α2β4β

5
9α

8
5−729α4β4β

5
9α

8
5+729α2β7β

5
9α

8
5+729α4β7β

5
9α

8
5+729α2β

2
5β

4
9α

8
5+

729α4β
2
5β

4
9α

8
5 + 729α2β

2
8β

4
9α

8
5 + 729α4β

2
8β

4
9α

8
5 + 1458α2β5β8β

4
9α

8
5 + 1458α4β5β8β

4
9α

8
5 +

1458α2β
5
9γ4α

8
5 + 1458α4β

5
9γ4α

8
5 − 1458α2

2β5β
5
9α

7
5 − 1458α2

4β5β
5
9α

7
5 − 2916α2α4β5β

5
9α

7
5 −

1458α2
2β8β

5
9α

7
5 − 1458α2

4β8β
5
9α

7
5 − 2916α2α4β8β

5
9α

7
5 + 729α3

2β
6
9α

6
5 + 729α3

4β
6
9α

6
5 +

2187α2α
2
4β

6
9α

6
5 + 2187α2

2α4β
6
9α

6
5, and

S0 = 4(27α3
5β

2
9(β2β9α

3
5 − β4β9α

3
5 + β7β9α

3
5) − 9(α3

5β5β9 − α3
5β8β9)

2)3 + (486β1β
5
9α

9
5 −

972β3β
5
9α

9
5 +1458β6β

5
9α

9
5 − 486β2β5β

4
9α

9
5 +486β4β5β

4
9α

9
5 − 486β5β7β

4
9α

9
5 − 972β2β8β

4
9α

9
5 +

972β4β8β
4
9α

9
5 − 972β7β8β

4
9α

9
5 − 54β3

5β
3
9α

9
5 + 54β3

8β
3
9α

9
5 − 162β5β

2
8β

3
9α

9
5 + 162β2

5β8β
3
9α

9
5 +

972β5
9γ1α

9
5+972β5

9γ3α
9
5−1458β5β

4
9γ4α

9
5−1458β8β

4
9γ4α

9
5+729α2β2β

5
9α

8
5+729α4β2β

5
9α

8
5−

729α2β4β
5
9α

8
5−729α4β4β

5
9α

8
5+729α2β7β

5
9α

8
5+729α4β7β

5
9α

8
5+729α2β

2
5β

4
9α

8
5+729α4β

2
5β

4
9α

8
5+

729α2β
2
8β

4
9α

8
5 + 729α4β

2
8β

4
9α

8
5 + 1458α2β5β8β

4
9α

8
5 + 1458α4β5β8β

4
9α

8
5 + 1458α2β

5
9γ4α

8
5 +

1458α4β
5
9γ4α

8
5 − 1458α2

2β5β
5
9α

7
5 − 1458α2

4β5β
5
9α

7
5 − 2916α2α4β5β

5
9α

7
5 − 1458α2

2β8β
5
9α

7
5 −

1458α2
4β8β

5
9α

7
5 − 2916α2α4β8β

5
9α

7
5 + 729α3

2β
6
9α

6
5 + 729α3

4β
6
9α

6
5 + 2187α2α

2
4β

6
9α

6
5 +

2187α2
2α4β

6
9α

6
5)

2.

If A0 = 0 then R0 = −
√
S0, squaring both sides, we obtain

R0
2 − S0 = −2916α18

5 β6
9

(
−β2

5 + 2β8β5 − β2
8 + 3β2β9 − 3β4β9 + 3β7β9

)
3,

which is equivalent to

α5 = 0, β9 = 0 or β7 = (β2
5 − 2β8β5 + β2

8 − 3β2β9 + 3β4β9)/(3β9).

Then in this case we have that

α5 ̸= 0, β9 ̸= 0 and β7 ̸= (β2
5 − 2β8β5 + β2

8 − 3β2β9 + 3β4β9)/(3β9).

Now we solve system (3.2) with respect to y1, y2, y3, y4, k1, k2, k3 and k4, and
taking into account that y1 > y2 and y3 > y4, we get at most 4 real solutions, which
all have one of the two following pairs for (y3, y4)

(y31, y41) =

(
− (α2 + α4)α5β9 +

√
B1

2α2
5β9

,

√
B0 − (α2 + α4)α5β9

2α2
5β9

)
,

or

(y32, y42) =

(√
B1 − (α2 + α4)α5β9

2α2
5β9

,− (α2 + α4)α5β9 +
√
B0

2α2
5β9

)
,
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if B0 and B1 are positive, where
B0 = −α2

5β9(3α
2
2β9 − 4α5α2β5 − 4α5α2β8 +6α4α2β9 +4α2

5β2 − 4α2
5β4 − 4α4α5β5 +

4α2
5β7 − 4α4α5β8 + 3α2

4β9 + 8α2
5γ4), and

B1 = (α2α5β9 + α4α5β9)
2 − 4α2

5β9(α
2
2β9 − α5α2β5 − α5α2β8 + 2α4α2β9 + α2

5β2 −
α2
5β4 − α4α5β5 + α2

5β7 − α4α5β8 + α2
4β9 + 2α2

5γ4).
Note that all the pairs (y1, y2) are functions of A0, A1, α5, β2, β4, β5, β7, β8,

and β9. Then the 4 real solutions of system (3.2) are

s1,2 =



y1 =
3
√
A0

9 3√2α3
5β

2
9

+
3√2α3

5(β
2
5−2β8β5+β2

8−3(β2−β4+β7)β9)
3
√
A0

+ β8−β5

3β9
,

y2 = 1
36

(
− 22/3 3

√
A0

α3
5β

2
9

− 18 3√2α3
5(β

2
5−2β8β5+β2

8−3(β2−β4+β7)β9)
3
√
A0

− 6(3
√
A1+2β5−2β8)

β9

)
,

either (y3, y4) = (y31, y41), or (y3, y4) = (y32, y42),

s3,4 =



y1 =
3
√
A0

9 3√2α3
5β

2
9

+
3√2α3

5(β
2
5−2β8β5+β2

8−3(β2−β4+β7)β9)
3
√
A0

+ β8−β5

3β9
,

y2 = 1
36

(
− 22/3 3

√
A0

α3
5β

2
9

− 18 3√2α3
5(β

2
5−2β8β5+β2

8−3(β2−β4+β7)β9)
3
√
A0

+
6(3

√
A1−2β5+2β8)

β9

)
,

either (y3, y4) = (y31, y41), or (y3, y4) = (y32, y42),

if A0 and A1 are positive, where A1 is equal to(
β5 − β8 + β9

(
3
√
A0

9 3√2α3
5β

2
9

− α3
5β5β9−α3

5β8β9

3α3
5β

2
9

−Θ
))2

−4β9

(
β9

(
3
√
A0

9 3√2α3
5β

2
9

− α3
5β5β9−α3

5β8β9

3α3
5β

2
9

−Θ
)2

+β5

(
3
√
A0

9 3√2α3
5β

2
9

− α3
5β5β9−α3

5β8β9

3α3
5β

2
9

−Θ
)

−β8

(
3
√
A0

9 3√2α3
5β

2
9

− α3
5β5β9−α3

5β8β9

3α3
5β

2
9

−Θ
)
+ β2 − β4 + β7

)
,

where

Θ =

3
√
2
(
27α3

5β
2
9

(
β2β9α

3
5 − β4β9α

3
5 + β7β9α

3
5

)
− 9

(
α3
5β5β9 − α3

5β8β9

)2)
9 3
√
A0α3

5β
2
9

.

Since the expressions of y1 in the four solutions of sk for k = 1, 2, 3, 4 are the
same, these four solutions can produce at most one limit cycle.
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Case 2: α5 = 0 and β9 ̸= 0. From system (3.1) we obtain

H2(−1, y1)−H2(−1, y2) = β2 − β4 + β7 + (β5 − β8)(y1 + y2) + β9(y
2
1 + y2y1

+y22) = 0,

H3(−1, y1)−H3(1, y3) = −2β1 + 4β3 − 6β6 − 4(γ1 + γ3)− 3y3(β2 − β4 + β7

+2γ4 + y3(β5 + β8 + β9y3)) + 3β9y
3
1 + 3(β5 − β8)y

2
1

+3(β2 − β4 + β7)y1 = 0,

H3(−1, y2)−H3(1, y4) = −2β1 + 4β3 − 6β6 − 4(γ1 + γ3)− 3y4(β2 − β4 + β7

+2γ4 + y4(β5 + β8 + β9y4)) + 3β9y
3
2 + 3(β5 − β8)y

2
2

+3(β2 − β4 + β7)y2 = 0,

H1(1, y3)−H1(1, y4) = α2 + α4 = 0.

From the fourth equation we obtain α2+α4 = 0. Then Taking α2 = −α4 it remains
a polynomial system with three equations and four unknowns, yk for k = 1, . . . , 4,
so if this system has a solution it has a continuum of solutions, which can produce
a continuum of periodic orbits and then no limit cycles.
Case 3: β9 = 0 and α5 ̸= 0. Therefore system (3.1) gives

H2(−1, y1)−H2(−1, y2) = β2 − β4 + β7 + (β5 − β8)(y1 + y2) = 0,

H1(−1, y1)−H1(1, y3) = −2β1 + 4β3 − 6β6 − 4(γ1 + γ3)− 3y3(β2 − β4 + β7 + 2γ4

+(β5 + β8)y3) + 3(β5 − β8)y
2
1 + 3(β2 − β4 + β7)y1 = 0,

H1(−1, y2)−H1(1, y4) = −2β1 + 4β3 − 6β6 − 4(γ1 + γ3)− 3y4(β2 − β4 + β7 + 2γ4

+(β5 + β8)y4) + 3(β5 − β8)y
2
2 + 3(β2 − β4 + β7)y2 = 0,

H3(1, y3)−H3(1, y4) = α2 + α4 + α5(y3 + y4) = 0.

All solutions of this polynomial system give y3 = y4 = (−α2 − α4)/(2α5). Then no
limit cycles can be produced.
Case 4: α5 = 0 and β9 = 0. From system (3.1) we obtain

H2(−1, y1)−H2(−1, y2) = β2 − β4 + β7 + (β5 − β8)(y1 + y2) = 0,

H3(−1, y1)−H3(1, y3) = −2β1 + 4β3 − 6β6 − 4(γ1 + γ3)− 3y3(β2 − β4 + β7

+2γ4 + y3(β5 + β8)) + 3(β5 − β8)y
2
1 + 3(β2 − β4

+β7)y1 = 0,

H3(−1, y2)−H3(1, y4) = −2β1 + 4β3 − 6β6 − 4(γ1 + γ3)− 3y4(β2 − β4 + β7

+2γ4 + y4(β5 + β8)) + 3(β5 − β8)y
2
2 + 3(β2 − β4

+β7)y2 = 0,

H1(1, y3)−H1(1, y4) = α2 + α4 = 0.

The fourth equation yields the result α2 + α4 = 0. After substituting α2 = −α4,
the polynomial system has three equations and four unknowns, yk for k = 1, . . . , 4,
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therefore if it has a solution, it has an infinite number of solutions that might result
in an infinite number of periodic orbits and no limit cycles.
Case 5: β7 = (β2

5 − 2β8β5 + β2
8 − 3β2β9 + 3β4β9)/(3β9), β9 ̸= 0 and α5 ̸= 0. We

solve system (3.1) with respect to y1, y2, y3, y4, k1, k2, k3 and k4, and we obtain
that all the solutions have the pair (y3, y4) equal to either

(y31, y41) =

(
−3 (α2 + α4)α5β

2
9 +

√
3
√
A0

6α2
5β

2
9

,

√
3
√
A0 − 3 (α2 + α4)α5β

2
9

6α2
5β

2
9

)
,

or

(y32, y42) =

(√
3
√
A0 − 3 (α2 + α4)α5β

2
9

6α2
5β

2
9

,−3 (α2 + α4)α5β
2
9 +

√
3
√
A0

6α2
5β

2
9

)
,

if A0 = −α2
5β

2
9(4((β5−β8)

2+6β9γ4)α
2
5−12(α2+α4)(β5+β8)β9α5+9(α2+α4)

2β2
9) is

positive. Since (y31, y41) = (y42, y32), all the solutions of system (3.1) can produce
at most one limit cycle. Then for this class of piecewise differential systems, the
calculations show that there is only one allowed solution, which implies that there
is only one limit cycle.

As the final step under the assumptions of Theorem 1.2 we provide the following
piecewise differential system with exactly one crossing limit cycle

ẋ = x+ 2y − 1, ẏ = −2x− y + 1, in x > 1,

ẋ = x2 − 2xy − 3y2 + 200y, ẏ = 30x2 − 2xy + 2x+ y2 − 1, in x < −1,

ẋ = x2 − 2xy − 3y2 + 200y, ẏ = 30x2 − 2xy + 2x+ y2 − 1, in − 1 < x < 1,

with first integrals

H1(x, y) = −x2 − xy + x− y2 + y,

H2(x, y) = 10x3 − x2y + x2 + xy2 − x+ y3 − 100y2,

H3(x, y) = 10x3 − x2y + x2 + xy2 − x+ y3 − 100y2,

respectively. Figure 2 shows the crossing limit cycle in this case. Here the points of
intersection with the straight line x = −1 are

y1 = 1
3

(
101− 2

√
7653 sin

(
1
3 tan

−1
(

3
√
62587095
514831

))
− 2

√
2551 cos

(
1
3 tan

−1
(

3
√
62587095
514831

)))
≈ 0.896506,

and

y2 = 1
3

(
101 + 2

√
7653 sin

(
1
3 tan

−1
(

3
√
62587095
514831

))
− 2

√
2551 cos

(
1
3 tan

−1
(

3
√
62587095
514831

)))
≈ −0.896506,

while the points of intersection with the straight line x = 1 are y3 = 1 and y4 = −1.
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Figure 2. A limit cycle under the assumptions of Theorem 1.2.
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