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Limit Cycles for a Class of
Continuous-Discontinuous Piecewise Differential
Systems

Bilal Ghermoul®t and Jaume Llibre?

Abstract During this century, an increasing interest appeared in studying
the planar piecewise differential systems. This is due to their numerous ap-
plications for modelling many natural phenomena. For understanding the
dynamics of the planar differential systems we must control the existence or
non-existence of periodic orbits and limit cycles. So many papers have been
published studying the existence or non-existence of periodic orbits and limit
cycles for continuous or discontinuous piecewise differential systems. But un-
til now very few papers have studied the periodic orbits and limit cycles of
piecewise differential systems where two differential systems of the piecewise
differential system are continuous and discontinuous respectively. We study
the periodic orbits and limit cycles of the planar continuous—discontinuous
piecewise differential systems separated by two parallel straight lines, such
that either in one of these straight lines the piecewise differential system is
continuous and in the other one discontinuous. In two pieces of these piece-
wise differential systems there are arbitrary Hamiltonian systems of degree
two and in the third piece there is an arbitrary Hamiltonian system of degree
one forming the continuous-discontinuous piecewise differential systems. We
determine the limit cycles of these piecewise differential systems by consider-
ing two cases. In the first the Hamiltonian system of degree one can be in
the middle of the three zones, and in the second it is on one side of the three
zones.

Keywords Limit cycles, Hamiltonian system, continuous-discontinuous piece-
wise linear differential systems, first integrals
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1. Introduction

Poincaré’s works started the qualitative study of the differential systems instead of
finding exact or approximative solutions of themselves. With him also appeared
the notion of the limit cycles which became one of the most important objects for
understanding the dynamics of the differential systems in the plane, see [27].
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The concept of a limit cycle is a concept whose importance is not hidden from
any researcher in the area of the differential systems in dimension two and related
fields. But in general, to determine the existence or absence of a limit cycle is not
an easy task. See for instance the Hilbert’s 16th problem [10,12, 14].

At the beginning of the 1930s the limit cycles started to be studied in the
continuous and discontinuous piecewise differential systems due to their importance
in many mechanical and electrical applications. For more information on their past
and present applications, see the books [1,6,28] and the survey [24]. The continuous
piecewise differential systems have been studied for several authors, see for instance
[4,9,17,22,23], and for the discontinuous ones see without being exhaustive [2,3,5,
9,11,13,15,16,18-21, 25, 26].

In this paper we consider continuous-discontinuous piecewise differential systems
separated by two parallel straight lines. These systems have quadratic Hamiltonian
systems in two different regions and a linear Hamiltonian system in the third region,
and we want to study the existence and non—existence of limit cycles, and in the
case of the existence of limit cycles, we also want to find their maximum number of
limit cycles that these continuous-discontinuous piecewise differential systems can
exhibit. See a previous paper on continuous-discontinuous piecewise differential
systems separated by two parallel straight lines in [19]. Now we need to take into
account two cases: the Hamiltonian system of degree one may be located either in
the center of the three zones, or in a lateral zone.

Here we shall study the periodic orbits and the limit cycles which intersect
exactly at two points, both parallel straight lines of the continuous-discontinuous
piecewise differential systems.

Doing a rescaling of the plane variables and a rotation of themselves, if necessary,
we can assume without loss of generality that the two parallel straight lines are
rz = —1 and x = 1. Thus we shall study the continuous-discontinuous piecewise
differential systems of the form

< OH,; 8H¢) oo
— 1I *
Oy Ox -
(2,9) = <_8£J’,8£j> if —1<a<1, (1.1)
(—aaHz,a@Hz> if v < —1,
Y X

where Hy = Hy(z,y) is an arbitrary polynomial of degree 3, H; = H;(z,y), H; =
Hj;(z,y) are arbitrary polynomials of degree 3 and 2 for i = 3,5 = 1, or H; =
H;(x,y), H; = Hj(x,y) are arbitrary polynomials of degree 2 or 3 for i =1, j = 3.
In the straight line x = —1 the piecewise differential system is continuous and in
x = 1 discontinuous.

This paper studies the existence or non-existence of periodic orbits and limit
cycles that such kinds of continuous-discontinuous piecewise differential systems
can exhibit. And in the case of the existence of limit cycles we determine their
maximum numbers.

In what follows we give explicitly the Hamiltonian systems which form the
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continuous-discontinuous piecewise differential systems (1.1)

T = —ag —aqx — 205y, (12)
Y= a1+ 203z + gy,
&= —Py — Bra? — Bax — 2Bsxy — 3Poy* — 265y, (13)
y = B1 + 3Bsx? + 2Bsx + 2Brxy + Bsy* + Bay,
&=~y — 7 — yax — 2982y — 39y° — 2759, (1.4)

U =71 + 37622 + 2v3% + 2v72y + Y8y? + Y4y

Of course, the Hamiltonians of the Hamiltonian systems (1.2), (1.3) and (1.4) are
Hi(z,y) = anz + agy + azz® + auzy + asy?,
Hy(z,y) = fro + By + B32® + Bazy + Bsy? + fea’® + Bra’y + Bsay® + Poy®,

Hs(z,y) = 1@ + Y2y + v322 + vazy + v59° + ¥62” + 172%y + vs2y® + Y04,

respectively.
Our main result when the Hamiltonian system of degree one is in the middle of
the three zones is the following.

Theorem 1.1. A continuous—discontinuous piecewise differential system (1.1) such
that in the straight line x = —1 the system is continuous and in the straight line
x = 1 discontinuous, formed by the Hamiltonian systems (1.3) in the region x < —1,
(1.2) in the region —1 < x < 1 and (1.4) in the region x > 1, can have at most
one limit cycle. And there are such piecewise differential systems having one limit
cycle, see Figure 1.

Theorem 1.1 is proved in section 2.
Our main result when the Hamiltonian system of degree one is not in the middle
of the three zones is the following.

Theorem 1.2. A continuous—discontinuous piecewise differential system (1.1) such
that in the straight line x = —1 the system is continuous and in the straight line
x = 1 discontinuous, formed by the Hamiltonian systems (1.3) in the region x < —1,
(1.4) in the region —1 < x < 1 and (1.2) in the region x > 1, can have at most
one limit cycle. And there are such piecewise differential systems having one limit
cycle, see Figure 2.

Theorem 1.2 is proved in section 3.

2. Proof of Theorem 1.1

Under the assumptions of Theorem 1.1 the Hamiltonian system of degree one is in
the middle of the three regions. If a continuous-discontinuous piecewise differential
system (1.1) has a periodic orbit intersecting the two straight lines of separation in
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the points (—1,y1), (—1,92), (1,y3) and (1, y4) with y; > y2 and y3 > y4, these four
points must satisfy the following polynomial system of 8 equations and 8 unknowns

Hy(—1,31) = Ha(—1,y2) = k1, Hi(—1,y1) = Hi(1,y3) = ko, 21
2.1

Hi(—1,y2) = Hi(1,y4) = ks, Hs(1,y3) = H3(1,y4) = ku,

where k;, i € {1,2,3,4} are constants.
Proof. [Proof of Theorem 1.1] In order that the piecewise differential system (1.1)
is continuous on the straight line z = —1, the Hamiltonian systems (1.3) and (1.2)
must coincide on = —1. This implies that 83 = (200 — g+ B4) /2, B5 =
as, fBs= (o1 —2a3—p1+203)/3, Br=(B1s—as)/2, fs =0, and g = 0. Then
the polynomial system (2.1) becomes
(=1 +2a3 — 261 + B3 — 3ky + 3y1 (a2 — au + asy1))/3 =0,
(= + 203 — 201 + B3 — k1 + 3y2 (2 — au + a512))/3 =0,
—a1 +az — ke +yi(ae —ag +asy;) =0,
a1 +az — ko + yg(ag —+ oy + a5y3) =0,
—ay +az — k3 +y2(ae — ag +asy2) =0,
ar +az — k3 +ya(ae + ag + asys) = 0,
Y1473+ % — ks +ys(v2 + 74 + 77 + ys(9s + 8 +Y0y3)) =0,
Y1+ 73 +v6 — ka + ya(y2 + 71 + 77 + ya(ys + 78 + Y9va)) = 0.

From these equations we get eliminating the constants k; for ¢ = 1,2, 3,4 the next
four equations

(Y1 — y2) (a2 — aq + as(y1 +y2)) =0,

=201 + a5y} + (2 — as)yr — ys(ae + s + asys) =0,

=201 + o535 + (2 — aa)ya — yalan + oy + asys) =0,

(y3 = ya) (2 + 74+ 77 + (95 +78) (Y3 + ya)) + 0 (y3 — vi) = 0.

Note that if y1 = y2 or ys = ys4. Then the solutions of system (2.2) cannot
provide the periodic orbits of the piecewise differential systems that we are studying.
Now the rest of the proof is divided into four cases.

Case 1: a5 # 0 and 79 # 0. We solve (2.2) and (2.3) with respect to y1, y2, ¥3,
Ya, k1, k2, k3 and k4, and taking into account that y; > y» and y3 > y4 the unique
solution is

b — _ (oo+as)? + (vst+78) (2 taa) 4+ Saut2a3=201+8; _ as(y2+va+77)
1= as Yo 3 Yo ’
ky = _ (aatas)® +ag+as+ (a2t0a4)(¥5+v8) =05 (Ya+ya+7)
as 9 ’
__ (oatou)? (ca+aa) (v5+78) —as (Y2 +va+77) _ T
kg— s + oy + a3+ 7o y k4— ayo

_ V=Y R—azy9+asvo _ V=79 R+azv9—ayvye
Y1 = 20579 y Y2 = 20570 )
VS—(aztas)asye _ VS+(aztas)asye
Yys = 204%’)’9 y Y4 = 2a§’yg )
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if =R >0 and S > 0, where
R =4(y2 471 +77)ad —4(az+ as)(v5 +78)as — 8aryoars + (B + o) (2 + 3as) v,
S = a2y9(—3y9(az + as)? + das(v5 +98) (e + o) — 4a2(y2 + 71 + 7)), and

T =5 (a2 4 aa)® =205 (5 +78) vo (2 + a)® + 3 (75 +78)* + (Y2 + 74 +77)70) (a2 +
ag) + 0B (71 473 +96)7 — (V2 + 7 +97) (5 +78))-

Hence in this case the piecewise differential systems have at most one limit cycle.
Case 2: a5 =0 and 79 # 0. From system (2.1) we obtain

Hy(=1,y1) — Ha(—1,2) = a2 —ag =0,

Hy(=1,y1) — Hi(1,y3) = =21 + aay1 — azys — auy1 — aqys = 0,

Hyi(=1,y2) — Hi(1,y4) = =201 + aoyz — aoys — agyz — agys = 0,

H3(1,y3) — H3(1,9a) = v2 + 74 + 77 + %03 + 153 + 8y + Yoyays + V594 + Y8Ya
+Y9y3 = 0.

Since ag = ay, from the second and third equation we get that y5 = y4s = —ay1/ay.

Then in the piecewise differential systems there are no periodic orbits, and conse-
quently no limit cycles.
Case 3: 79 = 0 and a5 # 0. Therefore system (2.1) becomes

Ha(=1,y1) — Ha(=1,y2) = aa — aq + asy1 + asy2 = 0,

Hi(=1,51) — Hi(1,y3) = =201 + asyi + agys — aayn — aays — aayz — azy3 = 0,
Hy(=1,y2) — H1(1,y1) = =201 + a5y3 + qoy2 — quaya — qays — ays — sy = 0,
H3(1,y3) — H3(1,y1) =72 + 72 + 77 + 5Y3 + Y5Ya + Ys8y3 + ysy1 = 0.

Soys = ys = —(v2+v1+v7)/(2(75 +8)), and consequently no periodic orbits if
V5 #F —7s-

If 45 = —~s, the last system becomes
ay — g+ asyr + asyz = 0,
— 201 + a5yf + a2y — qy1 — doYs — Y3 — 0453/?2, =0,
— 201 + a5y + QoY — QuYs — Qoys — Qs — asy; =0,

Y2 +y4 + 77 = 0.

Therefore v5 = —v4 — 7. Now replacing the parameters g, 75 and 72 into system
(2.2) we obtain the following two solutions

k= %3 (—o1 +2a3 — 261 + B3 + 3y1 (a2 — au + asy)

ko = —a1+asz +y1 (a2 — as + asy1) , R
ks = —a1 + a3z +y1 (a2 — as + asy1) , Y3 = —7a2+a2§:\/ﬁ,
ks =1+ 73+, Ya = 77@%325\/72*1’

if R1 and Ry > 0, where
R1 = (ag + a4)? — 8aas + dasyr (e — ag + asyr), and
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Ro = a3 — 8anas + 2as (s + 2a5y1) + (s — 2a5y1)?.

So in this case if piecewise differential systems have a solution, they have a con-
tinuum of solutions, which would produce a continuum of periodic orbits, then no
limit cycle can exhibit.

Case 4: 79 =0 and a5 = 0. From system (2.1) we obtain

Liy) — Ha(=1,2) =g —ag =0,

Liyi) — Hi(1,y3) = —2a1 + agyr — aoyz — agyr — agyz = 0,
1Ly2) — Hi(1,ya) = =201 + oy — aoys — aalys — auys = 0,
Lys) — H3(1,y4) = v2 + 71 + 77 + 75Y3 + V8Y3 + Y5ya + 1894 = 0.

FEEE

(
(
(
(

Since ae = g, from the second and third equations we get that y3 = ys = —a1 /4.
Then in the piecewise differential systems there are no periodic orbits, and conse-
quently no limit cycles.

In order to complete the proof of Theorem 1.1, we provide a piecewise differential
system having the Hamiltonian system of degree one in the middle of the three
zones exhibiting one limit cycle. In the previous case 1 we choose the piecewise
differential system formed by

T=-2x—-2y+1, y=06z+2y, in —1<zx<l1,

&= —2? -4 -2y, =322+ 2y +4r+4y+1, inz < —1,
i = 2zy + 312, y=3x%+2x —y? +1, inx>1,

with first integrals

Hi(z,y) = 32° + 2zy +y° —y,

Hy(x,y) = —2° + 2%y + 22° + day + x + 7,

Hg(fﬂ,y) - 1'3 + x2 - xy2 +T— ySa
respectively. Then the corresponding piecewise differential system satisfies that the
points of intersection with the straight line z = —1 have y; = 3 and y» = 0, while
the points of intersection with the straight line x = 1 have y3 = 0 and y4 = —1.

Therefore the limit cycle of this piecewise differential system is drawn in Figure 1.
O

3. Proof of Theorem 1.2

In this case the Hamiltonian system of degree one is on the right of the region. The
four points (—1,y1), (—=1,92), (1,y3) and (1,y4), with y1 > yo and y3 > ya, must
satisfy the following polynomial system

Hy(—1,31) = Ha(—1,y2) = k1, H3(—1,y1) = H3(1,y3) = ko, 51)
3.1

H3(—1,y2) = H3(1,y4) = k3, Hi(1,y3) = Hi(1,y4) = kq,

where k;, i € {1,2,3,4} are constants.
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Figure 1. A limit cycle under the assumptions of Theorem 1.1.

Proof. [Proof of Theorem 1.2] The Hamiltonian systems (1.3) and (1.4) must
coincide on x = —1 for the piecewise differential system (1.1) to be continu-
ous on that line. This implies that 8 = (200 — s+ B4) /2, B5 = a5, Ps =
(a1 —2a3 — B1+2B3) /3, Br = (Bs—o0a4)/2, Bg =0, Pg=0.Then the polyno-

mial system (3.1) becomes

—k1 — B1+ B3 — B + y1(B2 — Ba+ Br + y1(Bs — Bs +y1B9)) = 0,

—k1 — B1+ B3 — Bs +y2(B2 — Ba + Br + y2(Bs — Bs + y259)) = 0,

(=3kg — B1+ 283 — 366 + 3y1(B2 — Ba + Br + y1(Bs — Bs + y159))
=271 +73)/3 =0,

(=3k2 + B1 — 283 + 386 + 271 + 573 + 3ys(B2 — Ba + Br + y3(B5 + Bs
+y3PB9) +274))/3 = 0,

(=3ks — B1 + 283 — 366 + 3y2(B2 — Ba + Br + y2(Bs — Bs + y29))
=271 +73)/3 =0,

(=3ks + B1 — 283 + 386 + 271 + 573 + 3ya(B2 — Ba + B + ya(Bs + Bs
+yaB9) +274))/3 = 0,

—ka+ a1+ ag+ys(az + as +yzas) =0,

—ks 4+ a1 + a3 + ya(az + ag + ysas) = 0.
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Eliminating the constants k; for i = 1,2, 3, 4 yields the following four equations.

(y1 — y2) (B2 — Ba + Br + (y1 + y2)(Bs — Bs)) + (3 — ¥3)Bo = 0,

Boyt + (Bs — Bs)yi + (B2 — Ba+ Br)yr +4PB3/3 — 286 — 4(v1 + 73)/3 — y3(B2 — Ba
+B7 + y3(Bs + Bs + y3Po) + 274) — 281/3 =0,

Boys + (85 — Bs)y3 + (B2 — Ba+ Br)ya + 483/3 — 266 — 4(71 +73)/3 — ya(B2 — ba
+B7 + ya(Bs + Bs + yaPo) + 2v4) — 261/3 =0,

(y3 — ya) (o2 + ag + (y3 + ya)as) = 0.

The periodic orbits we are considering cannot be provided if y; = y2 and y3 = yg4.
The study of the solutions of system (3.2) is divided into five cases.
Case 1: a5 #0, B9 # 0 and Ay # 0. Here Ag = Ry + /Sy, where
Ro = 48661850 —97283355 a‘g+14585659a5 — 4863285 85 02 +48684 85 Bt —486 85 87 B ad —
972832838802 + 97284838508 — 972B7BsBaas — 5483 B5a8 + 5463 B3l — 1625558/39a,
162033 Bs B3 08 + 972857108 +9726973a5 — 1458035 85743 — 145885 B3 74 + 7292 B2 Bg s +
729004 B2 55 8 — 72902 8485 a8 — 729004 B4 85 02+ 729 02 B7 B S + 729004 B7 55 a8 + 729002 52 B b +
72904 B2 808 + 72902828508 + 729082 Baod + 1458085 8s 508 + 1458485 PsBa0s +
145802 85v408 + 14580485408 — 14580265850 — 1458a32Bs85aL — 29160085850 —
145803 8s 850t — 145803 Bs B0l — 2916a2a4BsB5al  +  729a385ad + 729038508 +
2187 BSal + 2187a3aupSal, and
So = 4(27a8p3(B2Boal — BaBocid + BrPoad) — 9(0455559 — a3BsB0)?)® + (486B1 8503 —
9728385 3 + 145836 B3 o3 — 4863235 85 3 + 4863435 85 a3 — 48635 8785 a2 — 97262 8s B33 +
97284 BsB5a8 — 9725758&;&5 — 548338308 + 5483503 — 1628583 5503 + 1625?58536@ +
97265108 +97265v302 — 14585 Bavacs — 1458 Bs favacs + 7292 B850 + 72904 B2 8508 —
729002 8435 a8 — 729004 B4 85 o8 +729¢u2 B7 B85 af +72904 B7 B5 a5+ 729002 B2 Ba b +7294 B2 B oS+
7290282 8508 + T29cu B2 408 + 14580358850 + 1458485 8s 8508 + 14580 85v40d +
145804 B3v108 — 14580385850l — 14580385850t — 2916a0uBs 8508 — 1458028850 —
145802 BsB5at — 2916caasBsBeal + 729038508 + 729038508  +  2187azalBSal +
21870304 85a8)?.

If Ay =0 then Ry = —/Sy, squaring both sides, we obtain

Ro® — So = —29160:°85 (—B2 + 26385 — B3 + 35289 — 3B1Bo + 38759 °,

which is equivalent to

a5 =0, Bg=0or B = (B2 —2BsPs + Bs — 38289 + 3B4B9)/(3Bs).

Then in this case we have that

as # 0, By # 0 and Br # (B2 — 2BsB5 + B3 — 3B280 + 3B1B9)/(3B0).

Now we solve system (3.2) with respect to y1, y2, ¥3, Y1, k1, k2, k3 and k4, and
taking into account that y; > ys and ys > y4, we get at most 4 real solutions, which
all have one of the two following pairs for (ys3,vs)

(2 4+ ) 589 + vVB1 v/Bo — (a2 + aa) CY559>

QOzgﬁg 20(%69

(Y31, Y41) = (

or

204§ﬂ9 ’ 20[%59

(y327 y42) =

(\/E — (a2 +as)asfy (o2 + ) 5P + \/E))
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if By and B; are positive, where
By = —aiBy(3a3 By — dasaafBs — dasazfs + 6agas By + 4ai B — 4ad By — dagas B5 +
407 — dagasfs + 3a3 By + 8adys), and
By = (a9 + asasBy)? — 402 Bo(a3 By — asanfls — asanfs + 2000 fy + a2 fs —
0 Ba — auasBs + aifr — auasfBs + aify + 20E74).

Note that all the pairs (y1,y2) are functions of Ay, A1, as, B2, Ba, Bs, Bz, Bs,
and fg. Then the 4 real solutions of system (3.2) are

YA V203 (82 —28s8B5+53—3(B2—Ba+B7)Bs)
1= 9¥m0352 VA

1 22/3 Y A5 18V203(B2—2BsBs+B3—3(B2—PBa+P7)Bo)

Bs—
+ 359’

Y2 =36 \ " 7agsz VAo
51,2 =
_6(3\/A1+2/352/38))
Bo ’

either (y3,v4) = (Y31, Y1), or (¥3,91) = (Y32, Ya2),

_ VA V203 (B2 —2BsBs+85 —3(B2—P1+B7)Bo) 4 Bs=
Y1= 9320282 VAo 359 ’
_ o1 _22ryA;  18V2a3(B3-2BsP5+B: —3(B2—Batpr)Bo)
V2736 \ T ads Zn
S =
o 6(3vA1—2B5+28s)
+ Bo ’

either (93a114) = (9317941)a or (y3ay4) = (y32ay42)a

if Ag and A; are positive, where A; is equal to

3 _ .3 2
(85 - Bs + 8o (9 e O}
3 2
_ _ ol BsBe — ok BsBo -
46y <Bg (2 Ve e 0)

VA 285 80— Bs B
+Ps (9\\/;?62 - 5332255 = *@)

YA, 3 _ .3
s 5yt — N — ©) + B — u+ )

where
V2 (27a§B§ (B2Bocid — BaBocid + BrBoad) — 9 (adB589 — 0425859)2)
S Al '

Since the expressions of y; in the four solutions of si for k = 1,2,3,4 are the
same, these four solutions can produce at most one limit cycle.

@:
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Case 2: a5 =0 and fg # 0. From system (3.1) we obtain

Hy(=1,41) — Ha(=1,92) = B2 — Ba + Br + (85 — Be)(y1 + y2) + Bo(yi + y2mn
+13) =0,

H3(=1,y1) — H3(1,y3) = —2B1 +483 — 685 —4(71 +73) — 3ys(B2 — Ba + Br
+274 + y3(Bs + Bs + Boys)) + 3Boyi + 3(Bs — Bs)yi
+3(B2 — B+ Br)yr = 0,

H3(=1,y2) — H3(1,ya) = =201+ 483 — 686 — 4(y1 +73) — 3ya(B2 — s + B7
+274 + ya(Bs + Bs + Boya)) + 3Boy3 + 3(Bs — Bs)y3
+3(B2 — Ba + Br)y2 = 0,

H1(17y3)7H1(]—7y4) :a2+a4:0~
From the fourth equation we obtain ay + a4 = 0. Then Taking ay = —ay it remains
a polynomial system with three equations and four unknowns, y; for Kk =1,...,4,

so if this system has a solution it has a continuum of solutions, which can produce
a continuum of periodic orbits and then no limit cycles.
Case 3: B9 =0 and a5 # 0. Therefore system (3.1) gives

Hy(=1,y1) — Ho(=1,y2) = B2 — Ba + 7+ (Bs — Bs)(y1 +y2) =0,

Hy(=1,p1) — Hi(L,y3) = —2B1 +485 — 685 —4(n1 +73) — 3y3(B2 — Ba + Br + 2ma
+(Bs + Bs)ys) + 3(Bs — Bs)yi + 3(B2 — Ba+ Br)y1 = 0,
Hy(=1,y2) — Hi(1,ys) = —2B1 +483 — 686 —4(v1 +73) — 3ya(B2 — Ba + Br + 27
+(B5 + Bs)ya) +3(Bs — Bs)ys + 3(B2 — Ba+ Br)y2 = 0,
H3(1,y3) — H3(1,ya) = aa+as+as(ys +ya) =0.

All solutions of this polynomial system give ys = ys = (—a2 — a4)/(2a5). Then no
limit cycles can be produced.
Case 4: a5 =0 and 89 = 0. From system (3.1) we obtain

Hoy(—1,y1) — Ha(—1,y2) = B2 — Ba+ Br + (Bs — Bs)(y1 +y2) = 0,

Hs(=1,y1) — H3(1,y3) = —2B1+ 483 — 686 — 4(n1 +73) — 3ys3(B2 — Ba + Br
+274 + y3(B5 + Bs)) + 3(Bs — Bs)yi +3(B2 — Ba
+B7)y1 =0,

H3(=1,y2) — H3(1,54) = =201 +4P3 — 666 — 4(71 +3) — 3ya(B2 — Ba + b7
+274 + ya(Bs + Bs)) + 3(Bs — Bs)ys + 3(B2 — Ba
+B7)y2 = 0,

Hi(l,y3) — Hi(1,ya) =aa+as=0.

The fourth equation yields the result as + a4 = 0. After substituting as = —ay,
the polynomial system has three equations and four unknowns, yi for k =1,....,4,
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therefore if it has a solution, it has an infinite number of solutions that might result
in an infinite number of periodic orbits and no limit cycles.

Case 5: (7 = (02 — 2835 + 53 — 36280 + 36409)/(3B9), Bg # 0 and a5 # 0. We
solve system (3.1) with respect to y1, y2, ys, ya, k1, k2, k3 and k4, and we obtain
that all the solutions have the pair (y3,y4) equal to either

_ 3 (a2 + au) asf3 + V3V Ay V3V Ag — 3 (az + ay) as B2
(y31a y41) — |\ 604%53 ) 60‘%63 )

or

( ) = V3VAG — 3 (e + ay) as 3 _3(a2+a4)a5ﬁ§+\/§\/1470
Y3g,Yao) = 60[%,33 ) 60é§ﬂg )

if Ag = —a3f3(4((8s—Ps)*+68974) a3 —12(a+0aa)(Bs+Bs) Bocrs +9(az+aua)?B3) is
positive. Since (y3q,¥ya1) = (Yaq, Y32), all the solutions of system (3.1) can produce
at most one limit cycle. Then for this class of piecewise differential systems, the
calculations show that there is only one allowed solution, which implies that there
is only one limit cycle.

As the final step under the assumptions of Theorem 1.2 we provide the following
piecewise differential system with exactly one crossing limit cycle

T=x4+2y—1, y=—-2x—-y+1, inx>1,

& =22 — 22y — 3y® + 200y, ¥ = 3022 — 2xy + 22 + 4% — 1, inx < —1,
=122 - 22y — 3y® + 200y, y = 3022 — 22y +2x+3> -1, in — 1<z <1,

with first integrals

Hy(z,y) = —a® —ay+x—y° +y,
Ho(z,y) = 102® — 2%y 4 2 + 29® — . + 3> — 1002,
Hs(x,y) = 102° — 2%y + 22 + 2y® — 2 + 3> — 10092,

respectively. Figure 2 shows the crossing limit cycle in this case. Here the points of
intersection with the straight line x = —1 are

yr = 4 (101~ 297653 sin (§ tan~t (2/EEE0 ) )

~ 2v/2551 cos (4 tan (2EZT ) ) ) ~ 0.896506,

and

yo =1 (101 + 24/7653 sin (%tan_l (W%W))

— 2255 cos (4 tan ™! (S/EEST8) ) ) ~ —0.896506,

while the points of intersection with the straight line z = 1 are y3 = 1 and y4 = —1.
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Figure 2. A limit cycle under the assumptions of Theorem 1.2.
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