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Unique Solution for a General Coupled System of
Fractional Differential Equations∗
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Abstract This paper discusses a new coupled system of Riemann-Liouville
fractional differential equations, in which the nonlinear terms include the
Riemann-Liouville fractional integrals and the boundary value problems in-
volve three-points. We seek also for the existence and uniqueness of solutions
for this new system. We first get some useful properties of the Green’s func-
tion generated by the system, and then we apply a fixed point theorem of
increasing φ-(h, e)-concave operators to this new coupled system. Finally, we
gain the existence and uniqueness results of the solution for this problem. In
the end, a concrete example is structured to illustrate the main result.
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1. Introduction

This paper considers the existence and uniqueness of solutions for a new coupled
system of fractional differential equations:

Dαu(t) + f(t, v(t), Iγv(t)) = a, t ∈ (0, 1),

Dβv(t) + g(t, u(t), Iδu(t)) = b, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = µu′(ξ),

v(0) = v′(0) = 0, v′(1) = µv′(ξ),

(1.1)

where 2 < α, β ≤ 3, 1 < γ, δ ≤ 2, and α−δ ≥ 1, β−γ ≥ 1, 0 < ξ < 1, 0 < µξα−2 < 1,
0 < µξβ−2 < 1, a, b are nonnegative constants. Dα and Dβ are the standard
Riemann-Liouville fractional derivatives, and f, g : [0, 1] × [0,+∞) × [0,+∞) →
[0,+∞) are continuous functions. We employ a fixed point theorem of increasing
φ-(h, e)-concave operators by Zhai and Wang to study the system (1.1).

In recent decades, fractional calculus has been widely used as a tool to study
many problems in different research fields, such as engineering, biology, physics,

†the corresponding author.
E-mail address:cbzhai@sxu.edu.cn.(C. Zhai)

1School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi,
China

2Key Laboratory of Complex Systems and Data Science of Ministry of Educa-
tion, Shanxi University, Taiyuan 030006, Shanxi, China

∗This paper is supported by Fundamental Research Program of Shanxi
Province (202303021221068).

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2024.746 | Generated on 2024-11-19 23:16:29

http://dx.doi.org/10.12150/jnma.2024.746


A General Coupled System of Fractional Differential Equations 747

and so on. Because the extensive development and application of fractional cal-
culus equation theory, the theme of fractional differential equation system has
developed into a crucial research field. Based on it, the theoretical research on
the existence of solutions for fractional problems has attracted widespread atten-
tion. For some gained studies on fractional differential equations, we can refer
to [3, 7–13, 19–23, 27–39] and others. Many problems of coupled systems involving
fractional differential equations have been investigated extensively, see [9,15,22,24]
and others. From literature, we know that the mathematical definition of the differ-
integral operator of fractional order has been the subject of different approaches,
and the most used are the Riemann-Liouville (RL), the Grünwald-Letnikov (GL),
and the Caputo’s (C) definitions. Although they are different in differential equa-
tions, some fixed methods can be used to study these problems and some similar
results under different conditions are also obtained. Based upon this reason, here
we consider (1.1) only involving Riemann-Liouville fractional derivative rather than
other derivatives.

Nowadays, many researchers devoted themselves to determining the solvability
of system of fractional differential equations with different boundary conditions,
specifically to the study of existence of solutions to some systems of fractional dif-
ferential equations, see [4–6,9–14,16–21,23] for example and the references therein.
The usual methods used are Schauder’s fixed point theorem, Banach’s fixed point
theorem, Guo-Krasnoselskii’s fixed point theorem on cone, monotone iterative tech-
nique, the method of lower and upper solutions, nonlinear differentiation of Leray-
Schauder type and others. In [10], the authors considered a system of fractional
differential equations:

Dαu(t) + f(t, v(t), Dγv(t)) = 0, 0 < t < 1,

Dβv(t) + g(t, u(t), Dδu(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = µu′(ξ),

v(0) = v′(0) = 0, v′(1) = µv′(ξ),

where, 2 < α, β ≤ 3, 1 < γ, δ ≤ 2, and α−δ ≥ 1, β−γ ≥ 1, 0 < ξ < 1, 0 < µξα−2 <
1, 0 < µξβ−2 < 1. Dα and Dβ are the Riemann-Liouville fractional derivatives,
and f, g : [0, 1] × [0,+∞) × (−∞,+∞) → [0,+∞) are continuous functions and
depend on the unknown functions as well as their lower order fractional derivatives.
The authors got the existence and uniqueness of positive solutions for the system
by utilizing fixed point theorems due to Schauder and Banach.

This paper considers the existence and uniqueness of solutions for system (1.1).
As is well known, no papers have considered the solutions of system (1.1) from
literatures. So it is worthwhile to investigate (1.1).

2. Preliminaries and previous results

Definition 2.1. [1, 2] The Riemann-Liouville fractional integral of order α > 0,
for a function f : (0,+∞) → (−∞,+∞), is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

provided the integral exists.
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Definition 2.2. [1, 2] For a function f : (0,+∞) → (−∞,+∞), the Riemann-
Liouville fractional derivative of order α > 0 is defined by

Dαf(t) = (
d

dt
)n(In−αf)(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

0

(t− s)n−α−1f(s)ds, t > 0,

where n = [α] + 1, in which [α] denotes the integer part of the number α.

Lemma 2.1. [1] If u ∈ C(0, 1)∩L(0, 1) with a fractional derivative of order α > 0
belongs to C(0, 1) ∩ L(0, 1), then

IαDαu(t) = u(t) + C1t
α−1 + C2t

α−2 + · · ·+ Cnt
α−N ,

for some Ci ∈ (−∞,+∞), i = 1, 2, . . . , N , where N = [α] + 1.

Lemma 2.2. [10] Let y1 ∈ C[0, 1] and α ∈ (2, 3], then the problemDαu(t) + y1(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = µu′(ξ),

has a unique solution u(t) =
∫ t

0
G1(t, s)y1(s)ds, where

G1(t, s) =



(1−s)α−2tα−1−µ(ξ−s)α−2tα−1−(t−s)α−1(1−µξα−2)
(1−µξα−2)Γ(α) , 0 ≤ s ≤ t ≤ 1, s ≤ ξ,

(1−s)α−2tα−1−(t−s)α−1(1−µξα−2)
(1−µξα−2)Γ(α) , 0 < ξ ≤ s ≤ t ≤ 1,

(1−s)α−2tα−1−µ(ξ−s)α−2tα−1

(1−µξα−2)Γ(α) , 0 ≤ t ≤ s ≤ ξ < 1,

(1−s)α−2tα−1

(1−µξα−2)Γ(α) , 0 ≤ t ≤ s ≤ 1, ξ ≤ s.

(2.1)

Lemma 2.3. The above Green’s function G1(t, s) defined by (2.1) has some prop-
erties:

(i) G1(t, s) > 0, for t, s ∈ (0, 1);

(ii) tα−1G1(1, s) ≤ G1(t, s) ≤ tα−1(1−s)α−2

Γ(α)(1−µξα−2) , t, s ∈ (0, 1).

Proof. From Lemma 4 in Reference [10], we know that the condition (i) is true.
In addition, when 0 < s ≤ t < 1, s ≤ ξ, there is

G1(t, s) =
tα−1

(1− µξα−2)Γ(α)
[(1− s)α−2 − µ(ξ − s)α−2 − (1− s

t
)α−1(1− µξα−2)]

≥ tα−1

(1− µξα−2)Γ(α)
[(1− s)α−2 − µ(ξ − s)α−2 − (1− s)α−1(1− µξα−2)]

= tα−1G1(1, s).

When 0 < ξ ≤ s ≤ t < 1, we have

G1(t, s) =
tα−1

(1− µξα−2)Γ(α)
[(1− s)α−2 − µ(ξ − s)α−2 − (1− s

t
)α−1(1− µξα−2)]

≥ tα−1

(1− µξα−2)Γ(α)
[(1− s)α−2 − (1− s)α−1(1− µξα−2)]

= tα−1G1(1, s).
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Therefore, G1(t, s) ≥ tα−1G1(1, s), where

G1(1, s) =
1

(1− µξα−2)Γ(α)


(1− s)α−2 − µ(ξ − s)α−2 − (1− s)α−1(1− µξα−2)

for 0 ≤ s ≤ ξ,

(1− s)α−2 − (1− s)α−1(1− µξα−2) for ξ ≤ s ≤ 1.

Obviously, by le2.2, there is G1(t, s) ≤ tα−1(1−s)α−2

Γ(α)(1−µξα−2) , t, s ∈ (0, 1).

That is, the condition (ii) is true.

Remark 2.1. [10] The Green’s functionG2(t, s) has the same properties asG1(t, s),
where

G2(t, s) =



(1−s)β−2tβ−1−µ(ξ−s)β−2tβ−1−(t−s)β−1(1−µξβ−2)
(1−µξβ−2)Γ(β)

, 0 ≤ s ≤ t ≤ 1, s ≤ ξ,

(1−s)β−2tβ−1−(t−s)β−1(1−µξβ−2)
(1−µξβ−2)Γ(β)

, 0 < ξ ≤ s ≤ t ≤ 1,

(1−s)β−2tβ−1−µ(ξ−s)β−2tβ−1

(1−µξβ−2)Γ(β)
, 0 ≤ t ≤ s ≤ ξ < 1,

(1−s)β−2tβ−1

(1−µξβ−2)Γ(β)
, 0 ≤ t ≤ s ≤ 1, ξ ≤ s.

(2.2)

Let (E, ∥ · ∥E) be a real Banach space, and it is partially ordered by a cone
P ⊂ E. By θ it denotes the zero element of E. For ∀x, y ∈ E, θ ≤ x ≤ y and
∃N > 0, such that ∥x∥E ≤ N∥y∥E , then P is called normal. For h > θ, we define
a set Ph = {x ∈ E | λh ≤ x ≤ µh, λ, µ > 0}. Obviously, Ph ⊂ P . Take e ∈ P with
θ ≤ e ≤ h, we define Ph,e = {x ∈ E|x + e ∈ Ph}. Let a vector h = (h1, h2), and

h1, h2 ∈ P with h1, h2 ̸= θ, then h ∈ P̃ := P × P . Obviously, if P is normal, then
P̃ is also normal. Take θ ≤ e1 ≤ h1, θ ≤ e2 ≤ h2, and let θ = (θ, θ), e = (e1, e2),
then θ = (θ, θ) ≤ (e1, e2) ≤ (h1, h2) = h. That is, θ ≤ e ≤ h.

Definition 2.3. [26] Suppose that T : Ph,e → E is an operator and it satisfies:
for x ∈ Ph,e and 0 < τ < 1, there exists φ(τ) > τ , such that T (τx + (τ − 1)e) ≥
φ(τ)Tx+ (φ(τ)− 1)e. Then T is called a φ-(h, e)-concave operator.

Lemma 2.4. [26] Let P be normal and T be an increasing φ − (h, e)−concave
operator satisfying Th ∈ Ph,e,then T has a unique fixed point x∗ ∈ Ph,e. For ω0 ∈
Ph,e, defining a sequence ωn = Tωn−1, n = 1, 2, . . ., then ∥ωn − x∗∥ → 0(n → ∞).

Lemma 2.5. [25] P̃h = {(x, y) : x ∈ Ph1
, y ∈ Ph2

}, P̃h = Ph1
× Ph2

.

Lemma 2.6. [3] P̃h,e = Ph1,e1 × Ph2,e2 .

3. Main results

We consider a Banach space E = C[0, 1], equipped with the norm

∥u∥ = max{| u(t) |: t ∈ [0, 1]}.

Let ∥(u, v)∥E = max{∥u∥, ∥v∥}, for (u, v) ∈ E×E, so (E×E, ∥(·, ·)∥E) is a Banach
space. Let P be the cone in E given by

P = {u ∈ E|u(t) ≥ 0, t ∈ [0, 1]},
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then
P̃ = {(u, v) ∈ E × E|u(t), v(t) ≥ 0, t ∈ [0, 1]},

is also a cone. Obviously, P̃ = P × P ⊂ E × E is normal, and we get

(u1, v1) ≤ (u2, v2) ⇐⇒ u1(t) ≤ u2(t) and v1(t) ≤ v2(t), t ∈ [0, 1].

By Lemma 2.2 and the reference [10], we can obtain the following results.

Lemma 3.1. Assume that f, g are continuous, then (u, v) ∈ E×E is a solution of
system (1.1) if and only if (u, v) ∈ E × E is a solution of the following equations:{

u(t) =
∫ 1

0
G1(t, s)f(s, v(s), I

γv(s))ds− a
∫ 1

0
G1(t, s)ds,

v(t) =
∫ 1

0
G2(t, s)g(s, u(s), I

δu(s))ds− b
∫ 1

0
G2(t, s)ds.

For (u, v) ∈ E × E, define operators T1 : E → E, T2 : E → E and T : E × E →
E × E as follows:

T1u(t) =

∫ 1

0

G1(t, s)f(s, v(s), I
γv(s))ds− a

∫ 1

0

G1(t, s)ds,

T2v(t) =

∫ 1

0

G2(t, s)g(s, u(s), I
δu(s))ds− b

∫ 1

0

G2(t, s)ds,

T (u, v)(t) = (T1u(t), T2v(t)).

Thus, from le3.1, the solution of (1.1) is a fixed point of the operator T . Let

e1(t) = a

∫ 1

0

G1(t, s)ds, e2(t) = b

∫ 1

0

G2(t, s)ds,

h1(t) = L1t
α−1, h2(t) = L2t

β−1,

(3.1)

with L1 ≥ a
(1−µξα−2)Γ(α)(α−1) , L2 ≥ b

(1−µξβ−2)Γ(β)(β−1)
.

Theorem 3.1. Let 2 < α, β ≤ 3, a, b > 0 and e1, e2, h1, h2 be given as in (3.1).
Suppose that the following assumptions holds:
(H1) f : [0, 1] × [−e∗2,+∞) × [−e∗2,+∞) → [0,+∞), g : [0, 1] × [−e∗1,+∞) ×
[−e∗1,+∞) → [0,+∞) are increasing with respect to the second and third variables
and continuous, where e∗2 = max{e2(t) : t ∈ [0, 1]}, e∗1 = max{e1(t) : t ∈ [0, 1]};
(H2) for 0 < τ < 1, there exists φ(τ) > τ such that

f(t, τx1 + (τ − 1)y1, τx2 + (τ − 1)y1) ≥ φ(τ)f(t, x1, x2),

g(t, τx1 + (τ − 1)y2, τx2 + (τ − 1)y2) ≥ φ(τ)g(t, x1, x2),

t ∈ [0, 1], x1, x2 ∈ (−∞,+∞), y1 ∈ [0, e∗2], y2 ∈ [0, e∗1];
(H3) for t ∈ [0, 1], f(t, 0, 0) ≥ 0, g(t, 0, 0) ≥ 0 with f(t, 0, 0) ̸≡ 0, g(t, 0, 0) ̸≡ 0.
Then
(1) system (1.1) has a unique solution (u∗, v∗) ∈ P̃h,e, where

e(t) = (e1(t), e2(t)), h(t) = (h1(t), h2(t)), t ∈ [0, 1];
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(2) for any point (u0, v0) ∈ P̃h,e, construct the following sequences:

un+1(t) =

∫ 1

0

G1(t, s)f(s, vn(s), I
γvn(s))ds− a

∫ 1

0

G1(t, s)ds, n = 0, 1, 2 · · · ,

vn+1(t) =

∫ 1

0

G2(t, s)g(s, un(s), I
δun(s))ds− b

∫ 1

0

G2(t, s)ds, n = 0, 1, 2 · · · ,

we have
∥un+1 − u∗∥ → 0, ∥vn+1 − v∗∥ → 0, n → ∞.

Proof. By le2.3, for t ∈ [0, 1], we have

e1(t) = a

∫ 1

0

G1(t, s)ds ≥ 0, e2(t) = b

∫ 1

0

G2(t, s)ds ≥ 0,

and

e1(t) = a

∫ 1

0

G1(t, s)ds ≤ a

∫ 1

0

(1− s)α−2tα−1

(1− µξα−2)Γ(α)
ds

=
atα−1

(1− µξα−2)Γ(α)

∫ 1

0

(1− s)α−2ds =
atα−1

(1− µξα−2)Γ(α)(α− 1)

≤ L1t
α−1 = h1(t);

e2(t) = b

∫ 1

0

G2(t, s)ds ≤ b

∫ 1

0

(1− s)β−2tβ−1

(1− µξβ−2)Γ(β)
ds

=
btβ−1

(1− µξβ−2)Γ(β)

∫ 1

0

(1− s)β−2ds =
btβ−1

(1− µξβ−2)Γ(β)(β − 1)

≤ L2t
β−1 = h2(t);

So, 0 ≤ e1 ≤ h1, 0 ≤ e2 ≤ h2.
Firstly, we prove that T : P̃h,e → E × E is a φ-(h, e)-concave operator.

For (u, v) ∈ P̃h,e, 0 < τ < 1, we have

T (τ(u, v) + (τ − 1)e)(t) = T (τ(u, v) + (τ − 1)(e1, e2))(t)

= T (τu+ (τ − 1)e1, τv + (τ − 1)e2)(t)

= (T1(τu+ (τ − 1)e1), T2(τv + (τ − 1)e2))(t).

By (H2) and the continuity of Riemann-Liouville fractional integral Iγ and Iδ,

T1(τu+ (τ − 1)e1)(t) =

∫ 1

0

G1(t, s)f(s, τv(s) + (τ − 1)e2, I
γ(τv(s)

+ (τ − 1)e2))ds− e1(t)

≥ φ(τ)

∫ 1

0

G1(t, s)f(s, v(s), I
γv(s))ds− e1(t)

= φ(τ)[

∫ 1

0

G1(t, s)f(s, v(s), I
γv(s))ds− e1(t)]

+ [φ(τ)− 1]e1(t)

= φ(τ)T1u(t) + [φ(τ)− 1]e1(t),
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T2(τv + (τ − 1)e2)(t) =

∫ 1

0

G2(t, s)g(s, τu(s) + (τ − 1)e1, I
δ(τu(s)

+ (τ − 1)e1))ds− e2(t)

≥ φ(τ)

∫ 1

0

G2(t, s)g(s, u(s), I
δu(s))ds− e2(t)

= φ(τ)[

∫ 1

0

G2(t, s)g(s, u(s), I
δu(s))ds− e2(t)]

+ [φ(τ)− 1]e2(t)

= φ(τ)T2v(t) + [φ(τ)− 1]e2(t).

So,

T (τ(u, v) + (τ − 1)e)(t) ≥ (φ(τ)T1u(t) + [φ(τ)− 1]e1(t), φ(τ)T2v(t)

+ [φ(τ)− 1]e2(t))

= (φ(τ)T1u(t), φ(τ)T2v(t))

+ ([φ(τ)− 1]e1(t), [φ(τ)− 1]e2(t))

= φ(τ)(T1u(t), T2v(t)) + (φ(τ)− 1)(e1(t), e2(t))

= φ(τ)T (u, v)(t) + (φ(τ)− 1)e(t).

That is,

T (τ(u, v) + (τ − 1)e) ≥ φ(τ)T (u, v) + (φ(τ)− 1)e, (u, v) ∈ P̃h,e, τ ∈ (0, 1).

Therefore, T : P̃h,e → E × E is a φ-(h, e)-concave operator.

Secondly, we prove that T : P̃h,e → E × E is increasing.

For (u, v) ∈ P̃h,e, we have (u, v) + e ∈ P̃h. From le2.5, (u+ e1, u+ e2) ∈ Ph1
×Ph2

.
So, there exists τ1, τ2 > 0 such that

u(t) + e1(t) ≥ τ1h1(t), v(t) + e2(t) ≥ τ2h2(t), t ∈ [0, 1].

Thus, u(t) ≥ τ1h1(t)−e1(t) ≥ −e1(t) ≥ −e∗1, v(t) ≥ τ2h2(t)−e2(t) ≥ −e2(t) ≥ −e∗2.
By (H1) and the monotonicities of Iγ and Iδ, operator T is increasing.

Next, we show that Th ∈ P̃h,e, that is Th+ e ∈ P̃h. For t ∈ [0, 1],

Th(t) + e(t) = T (h1, h2)(t) + e(t)

= (T1h1(t), T2h2(t)) + (e1(t), e2(t))

= (T1h1(t) + e1(t), T2h2(t) + e2(t)).

By le2.3 and (H1), (H3),

T1h1(t) + e1(t) =

∫ 1

0

G1(t, s)f(s, h2(s), I
γh2(s))ds

≥
∫ 1

0

G1(1, s)t
α−1f(s, h2(s), I

γh2(s))ds

≥ tα−1

∫ 1

0

G1(1, s)f(s, L2t
β−1, IγL2t

β−1)ds

≥ tα−1

∫ 1

0

G1(1, s)f(s, 0, 0)ds

=
1

L1
h1(t)

∫ 1

0

G1(1, s)f(s, 0, 0)ds,
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T1h1(t) + e1(t) =

∫ 1

0

G1(t, s)f(s, h2(s), I
γh2(s))ds

≤
∫ 1

0

tα−1(1− s)α−2

Γ(α)(1− µξα−2)
f(s, L2t

β−1, IγL2t
β−1)ds

≤
∫ 1

0

tα−1(1− s)α−2

Γ(α)(1− µξα−2)
f(s, L2, I

γL2)ds

≤
∫ 1

0

tα−1(1− s)α−2

Γ(α)(1− µξα−2)
f(s, L2, L2)ds

=
1

Γ(α)(1− µξα−2)L1
h1(t)

∫ 1

0

(1− s)α−2f(s, L2, L2)ds.

By (H1), (H3) and le2.3,∫ 1

0

(1− s)α−2

Γ(α)(1− µξα−2)
f(s, L2, L2)ds ≥

∫ 1

0

G1(1, s)f(s, 0, 0)ds > 0.

Let

l1 :=
1

L1

∫ 1

0

G1(1, s)f(s, 0, 0)ds,

l2 :=
1

Γ(α)(1− µξα−2)L1

∫ 1

0

(1− s)α−2f(s, L2, L2)ds,

and from le2.3 and (H3), 0 < l1 ≤ l2. That is, l1h1(t) ≤ T1h1(t) + e1(t) ≤ l2h1(t).
So, T1h1 + e1 ∈ Ph1

. Similarly, we have T2h2 + e2 ∈ Ph2
.

Therefore, by le2.6,

Th+ e = (T1h1 + e1, T2h2 + e2) ∈ P̃h.

Finally, by le2.4, T has a unique fixed point (u∗, v∗) ∈ P̃h,e. That is, (1.1) has a

unique solution (u∗, v∗) ∈ P̃h,e. In addition, taking any point (u0, v0) ∈ P̃h,e, define
the sequences:

un+1(t) =

∫ 1

0

G1(t, s)f(s, vn(s), I
γvn(s))ds− a

∫ 1

0

G1(t, s)ds, n = 0, 1, 2, . . . ,

vn+1(t) =

∫ 1

0

G2(t, s)g(s, un(s), I
δun(s))ds− b

∫ 1

0

G2(t, s)ds, n = 0, 1, 2, . . . ,

we must have
∥un+1 − u∗∥ → 0, ∥vn+1 − v∗∥ → 0, n → ∞.

Example 3.1. We consider the following system:

D
5
2u(t) + f(t, v(t), I

7
6 v(t)) = 1, t ∈ (0, 1),

D
7
3 v(t) + g(t, u(t), I

5
4u(t)) = 1, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = 1
3u

′( 12 )dt,

v(0) = v′(0) = 0, v′(1) = 1
3v

′( 12 )dt,

(3.2)
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where, α = 5
2 , β = 7

3 , γ = 7
6 , δ = 5

4 , a = b = 1, µ = 1
3 , ξ = 1

2 and

f(t, x1, x2) = { 1

Γ( 103 )
(−Ax1 − 1)t

7
3 +

18 3
√
2− 3

(24 3
√
2− 8)Γ( 73 )

(Ax1 + 1)t
4
3 } 1

3

+ { 1

Γ( 103 )
(−Ax2 − 1)t

7
3 +

1

Γ( 73 )

18 3
√
2− 3

24 3
√
2− 8

(Ax2 + 1)t
4
3 } 1

3 ,

g(t, x1, x2) = { 1

Γ( 72 )
(−A1x1 − 1)t

5
2 +

6
√
2− 1

(9
√
2− 3)Γ( 52 )

(A1x1 + 1)t
3
2 } 1

3

+ { 1

Γ( 72 )
(−A1x2 − 1)t

5
2 +

6
√
2− 1

(9
√
2− 3)Γ( 52 )

(A1x2 + 1)t
3
2 } 1

3 ,

A = 1
18 3√2−3

Γ( 7
3
)(24 3√2−8)

− 1

Γ( 10
3

)

, A1 = 1
6
√

2−1

Γ( 5
2
)(9

√
2−3)

− 1

Γ( 7
2
)

.

e1(t) =

∫ 1

0

G1(t, s)ds

= − 1

Γ( 72 )
t
5
2 +

6
√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 > 0,

e2(t) =

∫ 1

0

G2(t, s)ds

= − 1

Γ( 103 )
t
7
3 +

18 3
√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 > 0,

e∗1 = max{e1(t), t ∈ [0, 1]} = − 1

Γ( 72 )
+

6
√
2− 1

Γ( 52 )(9
√
2− 3)

,

e∗2 = max{e2(t), t ∈ [0, 1]} = − 1

Γ( 103 )
+

18 3
√
2− 3

Γ( 73 )(24
3
√
2− 8)

.

Set h1(t) = L1t
3
2 , h2(t) = L2t

4
3 , where

L1 ≥ 2
√
2

Γ( 52 )(3
√
2− 1)

, L2 ≥ 9 3
√
2

Γ( 73 )(12
3
√
2− 4)

.

So,

e1(t) =
6
√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 − 1

Γ( 72 )
t
5
2 <

6
√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 <

2
√
2

Γ( 52 )(3
√
2− 1)

= L1t
3
2 = h1(t),

e2(t) =
18 3

√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 − 1

Γ( 103 )
t
7
3 <

18 3
√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 <

9
√
2− 3

Γ( 73 )(12
3
√
2− 4)

t
4
3

= L2t
4
3 = h2(t),

and

f(t, 0, 0) = {− 1

Γ( 103 )
t
7
3 +

18 3
√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 } 1

3

+ {− 1

Γ( 103 )
t
7
3 +

18 3
√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 } 1

3 = 2(e2(t))
1
3 ≥ 0,
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g(t, 0, 0) = {− 1

Γ( 72 )
t
5
2 +

6
√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 } 1

3

+ {− 1

Γ( 72 )
t
5
2 +

6
√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 } 1

3 = 2(e1(t))
1
3 ≥ 0,

with f(t, 0, 0) ̸≡ 0, g(t, 0, 0) ̸≡ 0. Obviously,

f(t, x1, x2) = {Ae2(t)x1 + e2(t)}
1
3 + {Ae2(t)x2 + e2(t)}

1
3 ,

g(t, x1, x2) = {A1e1(t)x1 + e1(t)}
1
3 + {A1e1(t)x2 + e1(t)}

1
3 .

For τ ∈ (0, 1), x1, x2 ∈ (−∞,+∞), y1 ∈ [0, e∗2], y2 ∈ [0, e∗1], taking φ(τ) = τ
1
3 , we

have

f(t, τx1 + (τ − 1)y1, τx2 + (τ − 1)y1)

= {Ae2(t)(τx1 + (τ − 1)y1) + e2(t)}
1
3 + {Ae2(t)(τx2 + (τ − 1)y1) + e2(t)}

1
3

= τ
1
3 {Ae2(t)(x1 + (1− 1

τ
)y1) +

1

τ
e2(t)}

1
3 + τ

1
3 {Ae2(t)(x2 + (1− 1

τ
)y1) +

1

τ
e2(t)}

1
3

= τ
1
3 {Ae2(t)x1 +Ae2(t)(τ − 1)y1 +

1

τ
e2(t)}

1
3 + τ

1
3 {Ae2(t)x2

+Ae2(t)(τ − 1)y1 +
1

τ
e2(t)}

1
3

≥ τ
1
3 {Ae2(t)x1 + (1− 1

τ
)y1 +

1

τ
e2(t)}

1
3 + τ

1
3 {Ae2(t)x2 + (1− 1

τ
)y1 +

1

τ
e2(t)}

1
3

= τ
1
3 f(t, x1, x2) = φ(τ)f(t, x1, x2),

Similarly, g(t, τx1 + (τ − 1)y2, τx2 + (τ − 1)y2) ≥ φ(τ)g(t, x1, x2).

By th3.1, problem (3.2) has a unique solution (u∗, v∗) ∈ P̃h,e, where

e(t) = (e1(t), e2(t)) = (− 1

Γ( 72 )
t
5
2+

6
√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 ,− 1

Γ( 103 )
t
7
3+

18 3
√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 ),

h(t) = (h1(t), h2(t)) = (L1t
3
2 , L2t

4
3 ), t ∈ [0, 1].

For ∀(u0, v0) ∈ P̃h,e, construct the following two sequences:

un+1(t) =

∫ 1

0

G1(t, s)f(s, vn(s), I
7
6 vn(s))ds+

1

Γ( 72 )
t
5
2 − 6

√
2− 1

Γ( 52 )(9
√
2− 3)

t
3
2 ,

vn+1(t) =

∫ 1

0

G2(t, s)f(s, un(s), I
5
4un(s))ds+

1

Γ( 103 )
t
7
3 − 18 3

√
2− 3

Γ( 73 )(24
3
√
2− 8)

t
4
3 ,

n = 0, 1, 2, . . . . Then,

∥un+1 − u∗∥ → 0, ∥vn+1 − v∗∥ → 0, n → ∞.
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