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Copper Contamination Effects on
Phytoplankton-Zooplankton System within
Deterministic and Stochastic Environments
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Abstract Since the aquatic organisms are very sensitive to the increasing
copper contamination in water, this paper focuses on investigating the effects
of copper contamination on the interaction between phytoplankton and zoo-
plankton species within both deterministic and stochastic environments. We
first construct a deterministic phytoplankton-zooplankton interaction model
coupled with the copper concentration and analyze its dynamics, including
existence and stability of equilibria, as well as the existence of Hopf bifurca-
tion. A new stochastic model is derived in the form of continuous-time Markov
chain (CTMC), and branching process theory is applied to the CTMC model
to estimate the extinction probability of zooplankton species. Analytical and
numerical findings show that the destiny of species is closely related to the
copper concentration, and the predictions of the deterministic and stochastic
models may be different in some cases.
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1. Introduction

Almost all aquatic life is based upon plankton, which is the most abundant form
of life floating freely near the surfaces of all aquatic environments, namely, lakes,
rivers, estuaries and oceans [1, 37]. The plant forms of plankton community are
known as phytoplankton, which is a vital role in ecological systems since nearly
half of the world’s carbon dioxide is absorbed by them, and they also provide
valuable oxygen resources and are important nutrients for a large number of aquatic
species [31]. The animals in the plankton community are known as zooplankton.
They consume the phytoplankton and can be a highly favourable food source for
fish and other aquatic animals [37]. In past years, numerous works have been done
towards analyzing the dynamics of phytoplankton-zooplankton system, see Refs. [7,
18–20,24,33,38] and the references therein. Besides, some researchers used Daphnia
as the test organism on plankton ecosystem [27, 28, 34], because it constitutes a
central component in aquatic food web structure and is sensitive to a multitude of
xenobiotics (organophosphates, heavy metals, organochlorines, pyrethroids etc.) [5].

As a receptor of urban wastewater, industrial and mine effluents, agricultural
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runoff, and atmospheric pollution, aquatic ecosystems are prone to copper pollu-
tion. As an unusual micronutrient, copper is involved in many cellular reactions
such as oxygen and iron acquisition [26] as well as denitrification [15], which results
in bacteria and phytoplankton having an essential copper requirement. However, a
high concentration of copper in water can also induce toxic effects with a deleteri-
ous impact on growth [8, 35]. The copper with high concentration can inhibit the
photosynthesis of phytoplankton (algae) [16], and then decrease the concentrations
of glucides, proteins, amino-acids, chlorophyll and alkaline phosphatase activity in
the algal cells [11, 12, 44]. The direct effects of copper on zooplankton (such as,
Daphnia) include a decrease in fecundity, survival, body length, weight, and carbon
uptake, as well as a delay in maturation [4, 21,22]. Moreover, the Daphnia’s swim-
ming velocity, filtration rate, and ingestion rate are optimal for an intermediate
copper range [14,41].

Mathematical modeling has already proved a useful tool to help predict the
effects of pollutant (including copper) on aquatic ecosystems [5,6,10,32,40,42]. For
example, in order to predict the effects of copper on a plant-herbivore interaction in a
freshwater ecosystem Prosnier et al. [32] built a model that focuses on the interaction
between algas and herbivores. Theoretical and numerical results showed that the
herbivore may be more affected by copper pollution when community interactions
are taken into account, and the copper pollution may stabilize the alga-herbivore
interaction at the community level. More recently, based on the deterministic model
in Ref. [32], Camara et al. [6] considered the environmental stochastic effects on
the phytoplankton-zooplankton dynamics and proposed a stochastic alga-Daphnia
model with white noises in Itô’s sense. They supposed that the species lives in
an environment subject to random fluctuations which affect the growth rate. The
growth rate can be rewritten as an average growth plus an error term which can be
approximated by a white noise (see Ref. [6] for more details).

We should point out that, except for the white noise, there are other tools which
can be used to describe the environmental fluctuations. Specifically, some scholars
formulated stochastic population or epidemic systems by using the continuous-time
Markov chain (CTMC) [2,9,17,25,45]. For example, a CTMC model was developed
for the dynamics of a viral infection and an immune response during the early
stages of infection in Ref. [45]. It was found that the CTMC model can provide
new insights, distinct from the basic deterministic model. In the case of R0 > 1,
the deterministic model predicts that the viral infection persists in the host, but
for the CTMC model, there is a positive probability of viral extinction. Hu et
al. [17] formulated a CTMC model for a predator-prey species system with disease
in the predator. By applying the branching process theory to the CTMC model,
the authors estimated the probabilities for disease outbreaks or successful invasions
of prey species when the basic reproduction number is greater than the threshold
value.

Motivated by the above works, we will devote ourself to investigating the cop-
per contamination effects on phytoplankton-zooplankton system in deterministic
and stochastic environments respectively. In Section 2, by considering that the
maximum uptake rate of zooplankton is influenced by the copper contamination,
we first construct and analyze a deterministic copper-dependence Scenedesmus-
Daphnia model. In Section 3, we formulate a CTMC model based on the determin-
istic model and estimate the extinction probability of Daphnia species by applying
the branching process theory. Our results are briefly summarized and discussed in
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Section 4.

2. Formulation of copper-dependence model

The model considered in our analysis is based on a simple freshwater ecosystem
consisting of two compartments, phytoplankton and zooplankton, with the general
Scenedesmus and Daphnia chosen as model organisms for these compartments. The
Scenedesmus-Daphnia interaction is described through the Rosenzweig-MacArthur
model [36] based on logistic growth for Scenedesmus and on a type II functional
response for Daphnia [29,30]:{

dS
dt = rS

(
1− S

K

)
− ISD

S+h ,
dD
dt =

(
eIS
S+h −m

)
D,

(2.1)

where S = S(t) and D = D(t) represent Scenedesmus and Daphnia densities at time
t, respectively. Parameters r is the Scenedesmus intrinsic rate of natural increase,
K is the Scenedesmus carrying capacity, I is the maximum take rate of Daphnia, h
is the half-saturation constant of Daphnia, e is the conversion efficiency and m is
the mortality rate of Daphnia.

To explore the effect of copper on the dynamic behavior of plankton system, we
consider copper dependent parameters. We first determine the internal concentra-
tion (Cuint) as a function of the external concentration for each population. This
can be derived with the following biodynamic model [32]:

Cuint =

(
km

kc + Cu
· Cu+AE · IR · CuF

)
· 1

ke
,

where Cu is the external concentration, km is the maximal intake rate and kc
is the half-saturation constant. CuF is the copper concentration in food, AE is
the assimilation efficiency, IR is the ingestion rate and ke is the constant loss
rate. Consequently, the internal copper concentrations for Scenedesmus(CS) and
Daphnia(CD) as a function of external concentration(Cu) are as follows [5, 6, 32]:

CS(Cu) =

(
Cu · kmS

Cu+ kcS

)
· 1

keS
, (2.2)

CD(Cu) =

(
Cu · kmD

Cu+ kcD
+

eIS

S + h
· CS

)
· 1

keD
, (2.3)

where kmS and kmD are the maximum ingestion rates of Scenedesmus and Daphnia,
respectively. kcS and kcD are their half-satiation constants, keS and keD are their
constant loss rates, respectively.

It is common to represent copper dose-response relationships by a sigmoid curve
that captures only the effect of copper as a pollutant at high concentration. Thus,
Prosnier et al [32] introduced the following asymmetric double sigmoid function
with two thresholds, deficiency and toxicity:

Cux =(a+ c)− 1

2
(a− e) tanh [dx (Cx (Cu)− Cx (Vx))]

+
1

2
(a− c) tanh [bx (Cx (Cu)− Cx (Ux))] ,

(2.4)
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Table 1. Values of the parameters for model (2.6).

Parameters Values Units Parameters Values Units

r 1.2 d−1 kmD 15 µgg−1d−1

K 0.1-5 mgCL−1 kcD 7 µgL−1

h 0.164 mgCL−1 keD 1 µgd−1

e 0.6 − VI 5 µgL−1

m 0.35 d−1 UI 16.8 µgL−1

Cu 0-100 µgL−1 dI 5 −

I 1.8 d−1 bI 1 −

where Cux is the effect of copper on parameter x, (a+ c) is the minimal value of the
effect, (a− e) is the amplitude of the effect, Vx and Ux are copper concentrations
that cause deficiency and toxicity in 50% of individuals, dx and bx the lower and
higher slopes of the curve, respectively.

The effect of copper on predation is between none effect on predation at inter-
mediate concentrations and total inhibition of predation at low and high concentra-
tions. Thus, by taking a = −0.5 and c = e = 0.5 and assuming that CS in Eq. (2.3)
is a constant, we get from Eqs. (2.3) and (2.4):

CuI =
1

2
tanh

[
dI
keD

(
Cu · kmD

Cu+ kcD
− VI · kmD

VI + kcD

)]
− 1

2
tanh

[
bI
keD

(
Cu · kmD

Cu+ kcD
− UI · kmD

UI + kcD

)]
,

(2.5)

and the maximum uptake rate of Daphnia under the influence of copper is I (Cu) =
CuI · I. Introducing the copper effect into model (2.1) leads to the following equa-
tions: {

dS
dt = rS

(
1− S

K

)
− I(Cu)SD

S+h ,
dD
dt =

(
eI(Cu)S

S+h −m
)
D.

(2.6)

Parameter values in model (2.6) derived from Refs. [5, 6] are given in Table 1.

3. Qualitative analysis of deterministic model (2.6)

For model (2.6), the trivial equilibrium E0 = (0, 0) and boundary equilibrium E1 =
(K, 0) are always feasible, the positive equilibrium E∗ = (S∗, D∗) is feasible if and

only if I(Cu) > m(K+h)
eK , where

S∗ =
mh

eI(Cu)−m
, D∗ =

r

I(Cu)

(
1− S∗

K

)
(S∗ + h) .

To investigate the stability of the above equilibria, we have to consider the
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following Jacobian matrix of model (2.6):

J(S,D) =

 r(1− 2S
K )− I(Cu)Dh

(S+h)2
− I(Cu)S

S+h

eI(Cu)h

(S+h)2
D eI(Cu)S

S+h −m

 .

At the trivial equilibrium E0 = (0, 0), the Jacobian matrix takes the form

JE0 =

 r 0

0 −m

 .

The corresponding eigenvalues are λ1 = r > 0 and λ2 = −m < 0, thus E0 is a
saddle. At the boundary equilibrium E1 = (K, 0), the Jacobian matrix takes the
form

JE1 =

−r − I(Cu)K
K+h

0 eI(Cu)K
K+h −m

 .

The corresponding eigenvalues are λ1 = −r < 0 and λ2 = eI(Cu)K
K+h −m. If I(Cu) <

m(K+h)
eK , then E1 is a stable node; if I(Cu) > m(K+h)

eK , then E1 is a saddle.
At the positive equilibrium E∗ = (S∗, D∗), the Jacobian matrix takes the form

JE∗ =

 r(1− 2S∗

K )− I(Cu)D∗h

(S∗+h)2
− I(Cu)S∗

S∗+h

eI(Cu)h

(S∗+h)2
D∗ 0

 ,

and

Det(JE∗) =
ehI2(Cu)S∗D∗

(S∗ + h)3
> 0,

Trace(JE∗) = r(1− 2S∗

K
)− I(Cu)D∗h

(S∗ + h)
2 =

I(Cu)D∗S∗

(K − S∗)(S∗ + h)2
(K − 2S∗ − h).

According to Routh-Hurwitz criterion, we know that E∗ is stable if K < 2S∗ + h,
and unstable if K > 2S∗ + h. Furthermore, in the case of K = 2S∗ + h, we know
that Trace(JE∗) = 0 and the following transversality condition for Hopf bifurcation
is satisfied:

d

dK
Trace(JE∗)|K=2S∗+h =

rS∗

(2S∗ + h)2
(2− h

S∗ + h
) ̸= 0.

Therefore, we can conclude from [39] that model (2.6) undergoes a Hopf bifurcation
at the positive equilibrium E∗ as K passes through the critical value 2S∗ + h.

Summarizing the above discussions, we obtain the following theorems.

Theorem 3.1. For model (2.6), there exists the trivial equilibrium E0 and boundary

equilibrium E1. E0 is always unstable; E1 is stable if I(Cu) < m(K+h)
eK , whereas it

is unstable if I(Cu) > m(K+h)
eK .

Theorem 3.2. For model (2.6), there exists the positive equilibrium E∗ in the case

of I(Cu) > m(K+h)
eK . E∗ is stable if K < 2S∗ + h and unstable if K > 2S∗ + h, and

Hopf bifurcation occurs when K = 2S∗ + h. That is, a limit cycle Γ will bifurcate
from E∗ as K passes through the critical value 2S∗ + h.
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To visualize the dynamics of model (2.6), in Fig. 1, we show the stability domains
in (Cu,K) plane by taking the other parameter values in Table 1, where

L1 : I(Cu) =
m(K + h)

eK
, L2 : K = 2S∗ + h.

Specifically, boundary equilibrium E1 is stable in the case of (Cu,K) ∈ D0, positive

Figure 1. Stability domains in (Cu,K) plane for model (2.6) with fixed parameters showed in Table 1.

equilibrium E∗ is stable in the case of (Cu,K) ∈ D1, and there exists a stable limit
cycle in the case of (Cu,K) ∈ D2. One can see from Fig. 1 that if K < 0.1174, E1 is
always stable for any concentration of Cu. If K ∈ (0.1174, 0.3985), E1 is stable for
low and high concentrations of Cu, whereas E∗ is stable for middle concentration
of Cu. If K > 0.3985, the model dynamics will experience four transitions as
the concentration of Cu increases. Let K = 0.45, and we obtain that the four
critical concentrations of Cu are 4.9425, 5.2455, 11.6912 and 15.0906. The orbits
of model (2.6) will converge to the boundary equilibrium E1 in the cases of Cu <
4.9425 or Cu > 15.0906, as shown in Fig. 2, i.e., the Scenedesmus species survives
and the Daphnia species goes to extinction. The orbits will converge to the positive
equilibrium E∗ in the cases of Cu ∈ (4.9425, 5.2455) or Cu ∈ (11.6912, 15.0906), as
shown in Fig. 3, i.e., the two species survive in the form of constant. The orbits
will converge to the limit cycle Γ in the case of Cu ∈ (5.2455, 11.6912), as shown in
Fig. 4, i.e., the two species survive in the form of oscillation.

4. Extinction probability analysis based on CTMC
model

To gain an understanding of the probability of Daphnia species extinction, a time-
homogenous CTMC model can be formulated based on the infinitesimal probabil-
ities. We first construct a CTMC model for the Scenedesmus-Daphnia interaction
based on the ODE model (2.6). Define a CTMC by the discrete random vector
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Figure 2. Phase portraits of model (2.6) with K = 0.45, Cu = 4.5 (left) and Cu = 15.5 (right).

Figure 3. Phase portraits of model (2.6) with K = 0.45, Cu = 5 (left) and Cu = 13 (right).

Figure 4. Phase portraits of model (2.6) with K = 0.45, Cu = 6.5.
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Table 2. State transitions and the infinitesimal probabilities for the CTMC model

Description State transition a → b Rate P (a, b)

Increase of S due to the birth (S,D) → (S + 1, D) P1 = rS(1− S
K )

Decrease of S due to the predation (S,D) → (S − 1, D) P2 = I(Cu)SD
S+h

Increase of D due to the predation (S,D) → (S,D + 1) P3 = eI(Cu)SD
S+h

Decrease of D due to the death (S,D) → (S,D − 1) P4 = mD

No change (S,D) → (S,D) 1−
∑4

i=1 Pi

Y (t) = (S(t), D(t)) which takes values in a set K ⊂ N2
0, where N0 is the set of

non-negative integers. For simplicity, the same notations for the random variables
are used as in deterministic model (2.6). The infinitesimal transition probabilities
for the process Y (t) are given by

Prob {Y (t+∆t) = b| Y (t) = a} = P (a, b)∆t+ o(∆t), (4.1)

where the transitions and their rates are summarized in Table 2.
In the following, we will derive the extinction probability of Daphnia species

based on the branching process theory [3]. In order to derive the extinction prob-
ability, we apply the branching process theory to approximate the Markov chain
process (listed in Table 2) near the deterministic boundary equilibrium E1 = (K, 0)
with a small initial number of Daphnia species. Given D(0) = i, the branching
process has a limiting probability of extinction

P0 = lim
t→∞

Prob {D(t) = 0} ,

which can be estimated by the offspring probability-generating function (pgf) of
D(t), one can see Refs. [17, 25,45] for more details about the offspring pgf.

In the continuous-time process, a birth is not related to a death. Hence, the
offspring pgf for Daphnia speciesD given the initial numbers S(0) = K and I(0) = 1
is

f(u) = p0 + p2u
2,

where

p0 =
P4

P3 + P4
=

m
eI(Cu)K

K+h +m
=

m(K + h)

eI(Cu)K +m(K + h)

is the probability of decrease of a Daphnia individual, and

p2 =
P3

P3 + P4
=

eI(Cu)K
K+h

eI(Cu)K
K+h +m

=
eI(Cu)K

eI(Cu)K +m(K + h)

is the probability of increase of a Daphnia individual.
The mean number of offspring per Daphnia individual is given by

mD = f ′(1) = 2p2 =
2eI(Cu)K

eI(Cu)K +m(K + h)
.
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By the theory of Galton-Watson branching process, we know that

P0 = lim
t→∞

Prob {D(t) = 0} = 1

in the case of mD < 1 (i.e., I(Cu) < m(K+h)
eK ). Biologically speaking, the extinction

probability of Daphnia species is one in that case. IfmD > 1 (i.e., I(Cu) > m(K+h)
eK ),

then

P0 = lim
t→∞

Prob {D(t) = 0} =
m(K + h)

eI(Cu)K
,

and the extinction probability of Daphnia species is approximately m(K+h)
eI(Cu)K .

When the initial number D(0) = i, we get the following conclusion.

Theorem 4.1. For model (4.1), the extinction probability of Daphnia species is

one in the case of I(Cu) < m(K+h)
eK , and is approximately

(
m(K+h)
eI(Cu)K

)i

in the case

of I(Cu) > m(K+h)
eK , where i is the initial number of Daphnia species.

Remark 4.1. One can see from Theorem 3.2 and Theorem 4.1 that the properties
of CTMC model are totally different to the ODE model. Specifically, when I(Cu) >
m(K+h)

eK , the ODE model predicts that the Daphnia species can survive, whereas
the CTMC model predicts that the Daphnia species has a probability of extinction

which is approximately
(

m(K+h)
eI(Cu)K

)i

with D(0) = i.

By fixing D(0) = i = 1, K = 0.45 and the other parameter values in Table 1,
we show the curve of the extinction probability as a function of Cu in Fig. 5. It
indicates that the curve of extinction probability P0 exhibits a nadir structure. The
extinction probability will decreases monotonically to 0.5692 when the concentration
of Cu is less than 6.2446, but increases monotonically when the concentration of
Cu is more than 6.2446.

Figure 5. Extinction probability as a function of Cu with D(0) = i = 1, K = 0.45
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5. Conclusion and discussion

In this paper, we mainly investigated how the concentration of copper affects the
phytoplankton-zooplankton dynamics in the freshwater ecosystem, through the
model on interactions between Scenedesmus and Daphnia in deterministic and
stochastic environments respectively.

By considering the maximum take rate of Daphnia as a function of copper con-
centration, we first constructed a Scenedesmus-Daphnia interaction model coupled
with the copper concentration. For this model, we established the existence and
stability conditions of the equilibria and proved the existence of Hopf bifurcation.
We found that for different concentrations, the Scenedesmus-Daphnia interaction
system may exhibit different dynamics: the Scenedesmus species survives and the
Daphnia species goes to extinction, and the two species survive in the form of
constant or in the form of oscillation.

To understand the effect of stochastic environment on the destiny of species,
we used the CTMC to model the interaction between Scenedesmus and Daphnia.
Applying the branching process theory, the approximate extinction probability of
Daphnia species was obtained for the CTMC model. The results revealed that the
Daphnia species will go to extinction in a positive probability, even if it can survive
in the deterministic environment. Besides, this probability is closely related to the
concentration of copper.

Note that the predictions of deterministic model and stochastic model are dif-
ferent in some cases, and some researches have used other stochastic processes to
model the stochastic factors in ecosystems (see Refs. [13, 23, 43, 46] and the ref-
erences therein). Therefore, in our future works, we will construct and study the
Scenedesmus-Daphnia interaction models driven by other stochastic processes, such
as standard Wiener process and mean-reverting Ornstein-Uhlenbeck process.
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