Analysis of Irreversibility in the Flow of Jeffrey Fluid Through an Inclined Channel Considering Navier-Slip
Year: 2024
Author: Ravi Mahla, Kolla Kaladhar
East Asian Journal on Applied Mathematics, Vol. 14 (2024), Iss. 4 : pp. 895–916
Abstract
In this paper, we investigate the phenomenon of entropy generation of natural convection Jeffrey fluid flow through a sloping channel under Navier-Slip conditions. The study considers the influences of the Soret effect, inclined magnetic field, and Hall current. Employing appropriate transformations, we express the main equations in dimensionless form. Numerical solutions are implemented using the spectral quasi-linearization method (SQLM). Graphical representations are utilized to assess the impacts of diverse thermophysical parameters. Empirical findings indicate that augmenting the channel inclination angle, inclination angle, Soret number, and magnetic parameter induces a proportional rise in entropy generation. Conversely, a surge in Hall current yields a reduction in entropy generation. When the Soret parameter, magnetic parameter, channel inclination angle, and Jeffrey fluid parameter increase, it increases flow and cross-flow velocity. A contrary trend is observed for the Hall parameter.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/eajam.2023-227.221023
East Asian Journal on Applied Mathematics, Vol. 14 (2024), Iss. 4 : pp. 895–916
Published online: 2024-01
AMS Subject Headings:
Copyright: COPYRIGHT: © Global Science Press
Pages: 22
Keywords: Natural convection inclined magnetic field sloping channel Entropy SQLM.