Journals
Resources
About Us
Open Access

The First Eigenvalue of $(p, q)$-Laplacian System on $C$-Totally Real Submanifold in Sasakian Manifolds

Year:    2024

Author:    Mohammad Javad Habibi Vosta Kolaei, Shahroud Azami

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 4 : pp. 873–889

Abstract

Consider $(M, g)$ as an $n$-dimensional compact Riemannian manifold. Our main aim in this paper is to study the first eigenvalue of $(p, q)$-Laplacian system on $C$-totally real submanifold in Sasakian space of form $\overline{M}^{2m+1} (\kappa).$ Also in the case of $p, q > n$ we show that for $λ_{1,p,q}$ arbitrary large there exists a Riemannian metric of volume one conformal to the standard metric of $S^n.$

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.12150/jnma.2024.873

Journal of Nonlinear Modeling and Analysis, Vol. 6 (2024), Iss. 4 : pp. 873–889

Published online:    2024-01

AMS Subject Headings:   

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:    Eigenvalue $(p q)$-Laplacian system geometric estimate Sasakian manifolds.

Author Details

Mohammad Javad Habibi Vosta Kolaei

Shahroud Azami