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_______________ Abstract. Here, a hierarchical autoregressive spatio-temporal model under the Bayesian 

framework is proposed to address the simultaneous multi-site PM2.5 prediction. The true 

daily average concentration of PM2.5 is regarded as a potential spatio-temporal process, 

then the temporal correlation is described by the first-order autoregressive process and 

the spatial correlation is captured based on the Matérn process, which greatly improves 

the efficiency in dimension reduction and synchronous prediction. In addition, 

meteorological factors such as daily maximum temperature, relative humidity and wind 

speed are used as explanatory variables to improve the prediction accuracy. The 

combination of Bayesian method and MCMC can realize parameter estimation and 

prediction process due to the model's hierarchical structure. The empirical analysis of 

daily PM2.5 concentration in Beijing shows that the proposed model has good 

interpolation or prediction performance in both spatial and temporal dimensions. 
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_____________________________________________________________________________  

1   Introduction 

As one of the main air pollutants, PM2.5, due to its small particle size, can be directly 

inhaled by the human body, and has a long residence time in the atmosphere and a long 

transportation distance, so it has a great impact on human health and atmospheric 

environmental quality. Medical studies have shown that too high concentration of PM2.5 
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will not only lead to an increase in the incidence and mortality of cardiopulmonary 

diseases [1], but also affect the cardiovascular system, nervous system and immune 

system of the human body [2-3], and even have toxic effects on genetic materials at 

different levels such as chromosomes and DNA, causing cancer and birth defects [4-5]. 

Research on PM2.5 includes data collection methods, mechanisms, causes and 

influencing factors [6-7]. From a statistical point of view, PM2.5 concentration in a region 

over a period of time is regarded as a typical spatio-temporal data set, and relevant 

research focuses on spatial interpolation and short-term or long-term prediction in time. 

The space-time Kriging method [8-9] is a popular method for spatial interpolation of 

PM2.5, which can realize linear and unbiased optimal estimation of unobserved locations 

based on the spatio-temporal position relationship and spatio-temporal variation 

characteristics of spatio-temporal data, while the prediction of PM2.5 in time dimension 

can be made using mechanism analysis or statistical modeling methods. Mechanism 

analysis methods mainly model the physicochemical processes of the generation, 

conversion and diffusion of air pollutants, such as CMAQ model [10]. The statistical 

modeling method is to capture the characteristics of the data to obtain the change rule of 

pollutant concentration, including Multivariable Linear Regression (MLR) [11], 

Generalized Additive Model (GAM) [12-13], as well as various extension models of 

statistical learning models such as BP neural network [14] and Long Short-Term Memory 

(LSTM) [15-16]. Compared with mechanism analysis method, statistical method relies 

less on pollution source data, transmission mode and physical mechanism, and focuses 

more on the law of data itself. Quantitative analysis has more advantages in accuracy, 

and is a powerful tool for processing complex data. 

In recent years, many studies have focused on the spatio-temporal characteristics 

and statistical inference of PM2.5 concentration. For example, Cheam et al. [17] applied 

EM algorithm to the inference of parametric spatiotemporal mixed model to cluster air 

quality data. Based on the semi-parametric spatiotemporal model, Clifford et al. [18] use 

Gaussian Markov random field to approximate the spatial random effect and non-

parametric time trend, and make Bayesian inference to predict the concentration of 

atmospheric particulate matter. These studies focus more on the flexibility of models and 

calculations and do not take into account the meteorological variables that play an 

important role in triggering air pollution. Some studies have also developed spatio-

temporal models containing meteorological variables and applied them to spatio-

temporal prediction [19-20]. For example, Wan et al. [21] conducted a comprehensive 

study on PM2.5 concentration in Beijing by establishing a fine parametric statistical model, 

analyzed the spatio-temporal dependent structure of PM2.5 concentration and made a 

prediction. However, when dealing with large-scale data, especially multi-site 

synchronous prediction, such spatio-temporal models will face excessive computational 

complexity. 

In this paper, a Bayesian Hierarchical Autoregression (BHAR) spatio-temporal 

model was established for the average daily PM2.5 concentration of 35 air quality 

monitoring points in Beijing, based on the Bayesian framework, stratified model theory 
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and meteorological factors. The model has three advantages: First, the hierarchical 

structure is used to describe the clear correlation of variables and the spatial and 

temporal structure; Second, using Bayesian method can achieve the purpose of 

parameter estimation and multi-site synchronous prediction at the same time; Third, it 

can forecast the locations with meteorological information in addition to the existing air 

quality monitoring points, and solve the problem of sparse distribution of air quality 

monitoring points in some areas. The BHAR space-time model fits the temporal and 

spatial correlation simultaneously in the underlying space-time process, and achieves 

dimensionality reduction, which solves the problem of high computational complexity 

of the traditional space-time model. Further, with the help of sp-Timer package [22] in R 

software, Markov Chain Monte Carlo (MCMC) algorithm is used to estimate and predict 

parameters of the model. 

 

2   Preliminary data analysis 
 

The research area of this paper is Beijing, located at 115.7∘~117.4∘𝐸, 39. 4∘~41.6∘𝑁, with 

a high terrain in the northwest and low terrain in the southeast. The west, north and 

northeast are surrounded by mountains on three sides, and the southeast plain gradually 

slopes toward the Bohai Sea, as shown in Figure 1. 

 

Figure 1: Map of Beijing's topography and its air quality monitoring stations (green dots) 

Beijing had 27 air quality monitoring points, but eight PM2.5 monitoring points were 

added in 2012. Since the air quality release platform (http://zx.bjmemc.com.cn) of 

Beijing Municipal Ecological and Environmental Monitoring Center updated the names 

of air quality monitoring points in Beijing from January 23, 2021, the monitoring points 

were re-classified according to the six districts of the city, the southeast, the northeast, 

the southwest and the northwest (Table 1). At the same time, considering that PM2.5 

pollution mostly occurs in winter [23], this paper collected PM2.5 mass concentration 

(μg 𝑚3⁄ ) data of 24 h per day from February 1, 2021 to March 31, 2021 from 35 monitoring 

sites in Beijing for subsequent analysis. Based on the collected data, this paper models 

and predicts the 24 h daily average mass concentration of PM2.5(daily average mass 
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concentration). 

Table 1: Air quality monitoring stations in Beijing 

 
In order to preliminarily explore the temporal and spatial distribution characteristics 

of PM2.5 concentration in Beijing, the average PM2.5 mass concentration of each hour in a 

day and each day in a week at all stations was calculated by hour, and then the box plot 

was drawn. It can be observed from Figure 2a that the mass concentration of PM2.5 shows 

a trend of first decreasing and then rising throughout the day, gradually decreasing from 

early morning until 14:00, which may be related to the terrain and winter climate 

conditions, which lead to thermal inversion and weak wind in the morning and evening, 

preventing the diffusion of pollutants [24]. At the same time, it can also be found that the 

mass concentration of PM2.5 has a small increase in the morning and evening peak hours, 

which may be affected by automobile exhaust. Figure 2b shows that the variation of PM2.5 

in a week is also regular. With the continuous improvement of human activities in a week, 

the PM2.5 mass concentration also gradually increases, while on Mondays and rest days, 

the PM2.5 mass concentration is significantly lower. 

 

 

Figure 2: Diurnal (a) and weekly (b) variation of PM2.5 concentration averaged by 35 air quality 

monitoring stations in Beijing from February to March 2021 

Next, the spatial distribution characteristics of PM2.5 concentration in Beijing are 

analyzed. First, the spatial distribution map of the average PM2.5 mass concentration in 

Beijing in February and March 2021 was drawn. It can be observed from Figure 3 that the 

mass concentration of PM2.5 in the northern mountainous area is relatively low, among 

which Yanqing County has the lowest concentration, which may be affected by the valley 

topography, while the high mass concentration of PM2.5 in the central urban area is 
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obviously reasonable. 

 

 

Figure 3: Distribution of average PM2.5 concentration in Beijing from February to March 2021 

Then the spatial autocorrelation of PM2.5 mass concentration distribution was 

analyzed with the help of global Moreland index. The global Moran index formula is 

 𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗(𝑦𝑖−�̄�)(𝑦𝑗−�̄�)𝑛

𝑗=1
𝑛
𝑖=1

(∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ) ∑ (𝑦𝑖−�̄�)2𝑛

𝑖=1

，   (1) 

where 𝑤𝑖𝑗 is the distance weight, representing the weighted distance between sites 𝑖 and 

𝑗 , and 𝑦𝑖  represents the PM2.5 mass concentration value. After calculation, the global 

Molan index 𝐼 = 0.2 of PM2.5 mass concentration is positive, and the P-value of 

significance test is 3.9 × 10−6, indicating that there is a significant positive correlation 

and spatial aggregation of PM2.5 mass concentration distribution in 35 air quality 

monitoring points in Beijing from February to March. 

Further collected daily wind speed (𝑚 𝑠⁄ ), relative humidity (%), and maximum 

temperature (˚C) of three meteorological stations in Yanqing, Miyun, and Beijing in the 

Beijing area from February 1, 2021 to March 31, 2021, based on the data collected from 

the China Meteorological Data Network (http://data.cma.cn). The three meteorological 

variables are briefly recorded as WS, RH and MT respectively, and detailed summary 

information is shown in Table 2. In order to analyze the correlation between 

meteorological variables and PM2.5 mass concentration, the three weather stations were 

first matched with the nearest air quality monitoring points. The three air quality 

monitoring points matched with Yanqing, Miyun and Beijing meteorological stations are 

Yanqing Xiadu, Huairou New City and Daxing Huangcun. Spearman correlation 

coefficients of PM2.5 mass concentration and three meteorological variables were 

calculated respectively, and the results are shown in the last column of Table 2. The 

results show that there is a strong positive correlation between the relative humidity and 

PM2.5. The relative humidity in Beijing is relatively low in February-March, when the 

chemical polymerization of air pollutants causes the increase rate of PM2.5 to be higher 
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than the decrease rate of PM2.5 caused by sedimentation. Relative humidity has a positive 

effect on PM2.5, that is, the mass concentration of PM2.5 increases with the increase of 

relative humidity. Wind speed was negatively correlated with PM2.5, while temperature 

was weakly correlated with PM2.5. 

Table 2: Summary of and correlation coefficients between daily PM2.5 concentrations and 

meteorological variables 

variable mean value minimum maximum 
Spearman correlation 

coefficient 

ρ(PM2.5)/(μg/m3) 74.20 3.25 296.42  

WS /(m/s) 1.85 0.40 4.80 -0.44*** 

RH /% 50.69 15.30 91.00 0.68*** 

MT /˚C 12.05 -0.20 25.60 0.26*** 

Note :*** means 𝑝 < 0.001. 
 

3   BHAR space-time model 
 

3.1   Model Establishment 
 

Assume that 𝑍(𝑠, 𝑡)  represents the actual observed PM2.5 mass concentration of the 

station 𝑠 at time 𝑡, and the corresponding true concentration value is described by a 

potential random process 𝑌(𝑠, 𝑡), both of which satisfy the following measurement error 

model:  

 𝑍(𝑠, 𝑡) = 𝑋𝑇(𝑠, 𝑡)𝛽 + 𝑌(𝑠, 𝑡) + 𝜀(𝑠, 𝑡), (2) 

where: 𝑠 = 𝑠1, 𝑠2, ⋯ , 𝑠𝑛 is the geographical location of 𝑛 sites; 𝑡 = 1,2，⋯，𝑇 is time (𝑑); 

𝑋(𝑠, 𝑡)  represents the p-dimensional meteorological variable, i.e. 𝑋(𝑠, 𝑡) =

(𝑥1(𝑠, 𝑡), 𝑥2(𝑠, 𝑡), ⋯ , 𝑥𝑝(𝑠, 𝑡))
𝑇

; 𝛽 is the regression coefficient; 𝜀(𝑠, 𝑡) is the error term and 

is usually assumed to be a white noise process, i.e. 𝜀(𝑠, 𝑡)~GP(0, σ𝜀
2). In spatial statistics, 

𝜎𝜀
2 is often referred to as the nugget value. When the distance of sampling points is 0, the 

semi-variance function value should also be 0. However, due to measurement error and 

spatial variation, when the two sampling points are very close, the corresponding semi-

variance function value is not 0, that is, the nugget value exists. 

Establish a first-order autoregressive model for the potential pollutant emission level 

𝑌 (𝑠, 𝑡) [22]: 

 𝑌(𝑠, 𝑡) = 𝜌𝑌(𝑠, 𝑡 − 1) + 𝜂(𝑠, 𝑡), (3) 

where 𝜂(𝑠, 𝑡) is a residual random term used to describe the spatiotemporal random 

effects of potential pollutant emission levels. It is assumed that 𝜂(𝑠, 𝑡) is independent in 

time but satisfies the Gaussian process GP(0, 𝛴𝜂) in space, where 𝛴𝜂 = 𝜎𝜂
2𝑆𝜂 , 𝜎𝜂

2  is the 

variance that does not vary with space, 𝑆𝜂 represents the spatially dependent covariance 
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matrix, which is usually described by the Matern family correlation function [25]. At this 

time, the covariance matrix of 𝜂(𝑠, 𝑡) is 𝑛 × 𝑛 dimension instead of 𝑛𝑇 × 𝑛𝑇 dimension, 

which realizes dimension reduction and simplifies the calculation. The general form of 

the Matérn family correlation function is 

 𝜅(𝑢; 𝜑, 𝑣) =
1

2𝑣−1𝛤(𝑣)
(2√𝑣𝑢𝜑)

𝑣
𝐾𝑣(2√𝑣𝑢𝜑), 𝜑 > 0, 𝑣 > 0, (4) 

In the command, 𝑢 = ‖𝑠𝑖 − 𝑠𝑗‖  indicates the distance between the monitoring 

point 𝑠𝑖  and 𝑠𝑗. In this case, the Euclidean distance is selected. 𝜑 is used to control the 

decay rate of the spatial correlation, i.e. the greater the distance 𝑢, the faster the decay 

rate. 𝑣  is the parameter controlling the smoothness degree; 𝐾𝑣  is the second Bessel 

function of the 𝑣 order. When 𝑣 = 0.5 , the Matérn family correlation function 

degenerates to an exponential correlation function, i.e. 𝜅(𝑢; 𝜑) = 𝑒𝑥𝑝(−𝜑𝑢); when 𝑣 =

3 2⁄ , 𝜅(𝑢; 𝜑) = (1 + 𝜑𝑢) 𝑒𝑥𝑝(−𝜑𝑢); when 𝑣 → ∞, the Matérn family correlation function 

degenerates into a Gaussian process function, i.e. 𝜅(𝑢; 𝜑) = 𝑒𝑥𝑝(−𝜑2𝑢2). 

In summary, for the measured data, the structure of the BHAR space-time model is 

as follows: 

 𝑍𝑡 = 𝑋𝑡𝛽 + 𝑌𝑡 + 𝜀𝑡 , (5) 

 𝑌𝑡 = 𝜌𝑌𝑡−1 + 𝜂𝑡 , (6) 

In the command, 𝑍𝑡 = (𝑍(𝑠1, 𝑡), ⋯ , 𝑍(𝑠𝑛, 𝑡))
𝑇

, 𝑌𝑡 = (𝑌(𝑠1, 𝑡), ⋯ , 𝑌(𝑠𝑛, 𝑡))
𝑇

, 𝜀𝑡 =

(𝜀(𝑠1, 𝑡), ⋯ , 𝜀(𝑠𝑛, 𝑡))
𝑇

, 𝜂𝑡 = (𝜂(𝑠1, 𝑡), ⋯ , 𝜂(𝑠𝑛, 𝑡))
𝑇

, and 𝜀𝑡~𝑁(0, 𝜎𝜀
2𝐼𝑛) , 𝜂𝑡~𝑁(0, 𝜎𝜂

2𝑆𝜂) . 

According to the hierarchical model structure, the BHAR spatio-temporal model can be 

divided into three layers: the first layer represents the distribution of the original data 

under the conditions of given potential spatio-temporal processes and parameters; the 

second layer represents the distribution of potential processes given the parameters 𝑌𝑡|𝛩; 

the third layer represents the prior distribution of the introduced parameters or 

hyperparameters. The processes in the second layer can add different levels of 

interpretation [26], the first level represents the real potential process, and the second 

level describes the spatiotemporal random effects of the potential process. 

 

3.2   Parameter estimation and prediction 
 

The parameter to be estimated in the BHAR space-time model is 𝛩 = {𝛽, 𝜌, 𝜎𝜀
2, 𝜎𝜂

2, 𝜑, 𝑣}, 

which is estimated by MCMC method. All other parameters except ϕ and ν have 

conjugate prior distributions, 𝛽, 𝜌, 𝜎𝜀
2, 𝜎𝜂

2  can be obtained after the given prior 

distributions, and the parameters are further estimated by Gibbs sampling method. Fixed 

𝑣 = 0.5, the Metropolis-Hastings (MH) algorithm is used to estimate 𝜑. 

The prediction of 𝑍 (𝑠, 𝑡) can be divided into three categories: one is to predict the 

value of unknown monitoring point 𝑠0 at known time 𝑡; the second is to predict the value 

of known monitoring point 𝑠 at unknown time point 𝑡0; the third is to predict the value 

of unknown monitoring point 𝑠0 at unknown time point 𝑡0. The first kind of prediction 

is spatial interpolation, and the second and third kinds of prediction are in time. 

Firstly, spatial interpolation is introduced. At unknown monitoring point 𝑠0 , 
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equation (1) can be used to obtain: 

 𝑍(𝑠0, 𝑡) = 𝑋𝑇(𝑠0, 𝑡)𝛽 + 𝑌(𝑠0, 𝑡) + 𝜀(𝑠0, 𝑡), (7) 

where 𝑌(𝑠0, 𝑡) = 𝜌𝑌(𝑠0, 𝑡 − 1) + 𝜂(𝑠0, 𝑡). Obviously, 𝑌(𝑠0, 𝑡) can only be determined by 

the 𝑌(𝑠0,⋅)  order of all time points prior to t, and includes 𝑌(𝑠0, 0) .  𝑌(𝑠0, 0)  can be 

calculated based on the prior distribution of the initial condition 𝑌0. Of course, if 𝑌0 is 

specified as a fixed constant, then 𝑌(𝑠0, 0) can also be thought of as the same constant 

[19], so for simplicity, 𝑌0 is usually chosen as a fixed value. 

The prediction of 𝑍(𝑠0, 0)  is generally based on the posterior distribution 

𝜋(𝑍(𝑠0, 𝑡)|𝑍), which can be obtained by integrating the joint posterior distribution: 

𝜋(𝑍(𝑠0, 𝑡)|𝑍) = ∫ 𝜋(𝑍(𝑠0, 𝑡)|𝑌(𝑠0, 𝑡), 𝜎𝜀
2) × 𝜋(𝑌(𝑠0, 𝑡)|𝛩, 𝑌) × 𝜋(𝛩, 𝑌|𝑍)𝑑𝑌(𝑠0, 𝑡)𝑑𝑌𝑑𝛩, (8) 

In the above formula, 𝑍  and 𝑌 represent the values of the known time 𝑡 and the 

monitoring point 𝑠  respectively. The estimate of the predicted value 𝑍(𝑠0, 0)  was 

obtained by the MCMC component sampling method as follows: 

1) Random sample 𝛩(𝑗), 𝑌(𝑗) from the posterior distribution 𝜋(𝛩, 𝑌|𝑍);  

2) Sample 𝑌(𝑗)(𝑠0, 𝑡) from the posterior distribution 𝜋(𝑌(𝑠0, 𝑡)|𝛩(𝑗), 𝑌(𝑗)); 

3) Sample 𝑍(𝑗)(𝑠0, 𝑡)  is extracted from the posterior distribution 

𝜋 (𝑍(𝑠0, 𝑡)|𝑌(𝑗)(𝑠0, 𝑡), 𝜎𝜀
2(𝑗)

). 

In terms of time dimension, the prediction process is similar to the spatial 

interpolation process. For a certain site 𝑠 (including existing monitoring points or any 

designated position as the monitoring point), the forward time prediction can also be 

realized based on the posterior distribution of 𝑍(𝑠, 𝑇 + 1)  according to the MCMC 

sampling method similar to spatial interpolation. The main difference with spatial 

interpolation is that the prediction in the time dimension needs to simulate 𝑌(𝑠, 𝑇 + 1) 

from a marginal distribution with zero mean and variance 𝜎2𝜂𝑆𝜂 , rather than a 

conditional distribution. Since all the information at the observation point has been used 

to obtain 𝑌(𝑠, 𝑇) from time 0 to time T, at future time 𝑇 + 1, there is no new information 

available for the conditional distribution except for the new value of the regression 

term 𝑋(𝑠, 𝑇 + 1). 

 

4   Case Analysis 
 

Combined with the spatial distribution of 35 air quality monitoring points in Beijing, 9 of 

them were selected as the spatial verification set, and the two days of March 30 and 

March 31, 2021 were selected as the time verification set, and the data of the remaining 

26 monitoring points were used as the training set to fit the model. The R software 

package spTimer is used to realize the calculation process of parameter estimation and 

prediction simultaneously. From the parameter estimation table (Table 3), it can be seen 

that the 95% confidence interval of the estimation of regression coefficients 𝛽1 and 𝛽3 for 

the two variables WS and MT contains zero points, so it is not significant. Among the 

meteorological variables, only the regression coefficient 𝛽2 of relative humidity RH is 

significant and positive, which is consistent with the results of preliminary data analysis, 
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and further indicates that the relative humidity RH in Beijing has a significant positive 

impact on PM2.5 from February to March. 

Table 3: MCMC parameter estimation of BHAR model 

parameters mean value median 
standard 
deviation 

95% confidence 
interval 

𝛽0 3.5571 3.5468 0.6790 [2.2342,4.9009] 

𝛽1 0.1084 0.1089 0.0759 [-0.0399,0.2542] 

𝛽2 0.0174 0.0174 0.0078 [0.0016,0.0329] 

𝛽3 -0.0003 -0.0007 0.0253 [-0.0503,0.049] 

ρ 0.4144 04146 0.0234 [0.3678,0.4596] 

𝜎𝜀
2 0.0063 0.0063 0.0003 [0.0058,0.0069] 

𝜎𝜂
2 5.9494 5.8522 0.8581 [4.5854,7.7547] 

𝜙 0.0020 0.0020 0.0003 [0.0015,0.0026] 

In order to evaluate the prediction performance of BHAR spatio-temporal model, 

two measurement indexes, root mean square error RMSE and mean absolute error MAE, 

were used to compare the error between the predicted data and the original data. The 

formula for RMSE and MAE is as follows: 

 RMSE = √
1

𝑛
∑ (�̑�𝑖 − 𝑍𝑖)

2𝑛
𝑖=1 , (9) 

 MAE =
1

𝑛
∑ |�̑�𝑖 − 𝑍𝑖|𝑛

𝑖=1 . (10) 

Firstly, the spatial interpolation of 9 monitoring points of the spatial verification set 

is carried out, and the BHAR space-time model can realize the synchronous prediction 

of 9 monitoring points. For comparison, the gam function in the mgcv package of R 

software was further used to fit the GAM model to the training set data, predict the PM2.5 

mass concentration of each station in the spatial verification set, and calculate the above 

two measurement indicators at the same time. Sorek-Hamer et al. [12] improved the 

prediction effect of PM2.5 mass concentration by taking advantage of GAM's ability to fit 

the nonlinear relationship between the explanatory variable and the explained variable. 

The comparison results are shown in Table 4. It can be seen that both RMSE and MAE of 

the BHAR space-time model are about 1/3 of that of GAM, which proves that the spatial 

interpolation effect of the BHAR space-time model proposed in this paper is consistently 

superior to that of GAM. 

Further, synchronous time prediction was made for the monitoring points in the 

spatial verification set and the training set respectively, and the average daily PM2.5 mass 

concentration on March 30 and 31 was predicted. LSTM was selected as the main 

comparison model, and the conventional ARIMA model was selected as the baseline 

comparison model. The obtained measurement indicators are listed in Table 5. It can be 

seen that ARIMA model has the worst prediction effect, followed by LSTM model, and 

BHAR model has the best time prediction effect. The BHAR spatio-temporal model 
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proposed in this paper is used to model all monitoring points as a whole, and the 

correlation between space and time is fully considered, so the prediction results with 

high accuracy are obtained. 

Table 4: Comparison of spatial interpolation performance 

Model RMSE MAE 

BHAR 12.45 8.16 

GAM 34.8 24.97 

 

Table 5: Comparison of prediction performance in time dimension 

Model RMSE MAE 

BHAR 10.12 8.68 

LSTM 12.22 11.48 

ARIMA 26.81 24.85 

 

5   Summary 
 

The BHAR spatiotemporal model established in this paper takes the PM2.5 data of a region 

as a spatial process of time series, fits the temporal and spatial correlation characteristics 

of PM2.5 mass concentration on the whole, and realizes the short-term prediction function 

of PM2.5 spatial interpolation and time for specific sites, and the prediction effect is better 

than that of GAM and LSTM. This model is not only suitable for the prediction of PM2.5 

mass concentration, but also can be extended to other air quality ground monitoring data, 

such as PM10 and O3 concentrations. Modeling under the Bayesian framework is more 

inclusive to the uncertainty of the model, and the prior distribution given in advance can 

fuse the expert knowledge and improve the prediction accuracy. Further, the 

establishment of a hierarchical model can more clearly depict the underlying space-time 

process inside the data, and enhance the interpretability of the model. At the same time, 

the hierarchical structure of the model also makes the inference process such as 

parameter estimation and prediction more convenient. 

In this paper, wind speed, humidity and temperature are selected as explanatory 

variables to improve the actual forecasting effect of the model. In order to simplify the 

model, fixed coefficient is used in this paper, but the impact of meteorological variables 

on PM2.5 may vary with time and space, so the fitting variable coefficient model will be 

considered in the subsequent study. In this paper, the first order autoregression is used 

to describe the correlation in time dimension, which achieves good numerical results and 

reduces the computational complexity. In practical application, we can select the 

appropriate autoregressive order according to the data characteristics and model 

selection method. In addition, the Matern kernel function used in this model to describe 
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spatial correlation adopts homogeneous Euclidean distance. With more geographical 

details, non-homogeneous Euclidean distance or other non-Euclidean distance can be 

considered to capture more real spatial correlation. 
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