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Numerical Solutions for Fractional Burgers’
Equation Based on Laplace Transform∗
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Abstract The Burgers’ equation has widespread applications across various
fields. In this paper, we propose an efficient approach for obtaining the numer-
ical solution to the time-fractional Burgers’ equation. We extend the classical
Burgers’ equation to its fractional form by introducing Caputo derivatives.
Using the Cole-Hopf transform, we reformulate the problem into a fractional
diffusion equation. The Laplace transform method is then applied to convert
the equation into an ordinary differential equation (ODE), which can be solved
analytically. However, due to the lack of an inverse Laplace transform for this
specific form, numerical approximation methods are then utilised to approx-
imate the true solution. Numerical simulations are provided to demonstrate
the stability and accuracy of the proposed method.

Keywords Fractional Burgers’ equation, Laplace transform, Caputo deriva-
tive, numerical simulations
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1. Introduction

Burgers’ equation is a fundamental mathematical model extensively used in various
fields, including fluid dynamics, traffic flow, and non-linear wave propagation in
physics, chemistry, and engineering. Its importance lies in its ability to capture the
interaction between non-linear convection and diffusion processes, making it crucial
for understanding complex physical phenomena. However, despite its significance,
a general analytical solution for this complex system remains elusive, prompting
researchers to investigate various numerical algorithms for effective solutions.

Numerous numerical methods have been employed to solve Burgers’ equation,
including the Finite-Difference Method (FDM), Method of Lines (MOL), Finite-
Element Method (FEM), and spline techniques, as highlighted by Bonkile et al. [4].
Among FDMs, a key approach involves transforming Burgers’ equation into the
heat equation using the Hopf-Cole transformation. For example, Kutluay et al.
converted Burgers’ equation into a heat diffusion equation and applied explicit and
exact-explicit finite-difference methods to solve the transformed equations under
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specific boundary conditions [23]. Other studies have also leveraged the Hopf-Cole
transformation to derive a linear heat equation, yielding promising results [19, 50].
In two-dimensional cases, Bahadir et al. introduced a fully implicit finite-difference
scheme, solving the non-linear system using Newton’s method [3]. Srivastava et
al. developed a finite-difference technique for coupled viscous Burgers’ equations
on a uniform grid [48]. The method of lines, initially proposed by Rothe [39], has
proven effective in transforming partial differential equations into ordinary differen-
tial equation initial value problems. In the context of FEM and spline approaches,
Roul et al. employed sextic B-spline basis functions for spatial discretisation, achiev-
ing highly accurate results with reduced computational time [40], while Majeed et
al. utilised an extended cubic B-spline collocation scheme for the time-fractional
modified Burgers’ equation with Caputo fractional derivatives [32]. Dhawan et al.
provided a comprehensive review of techniques addressing the challenges posed by
the non-linear nature of Burgers’ equation [8]. Additionally, Cengizci et al. sta-
bilized finite element formulations with shock-capturing techniques [6], and Singh
et al. [46] and Jiwari et al. [18] investigated efficient and hybrid methodologies,
respectively.

Fractional-order calculus, which extends differentiation to non-integer orders,
has gained significant traction in areas such as signal processing, control systems,
and mathematical modelling. This is largely due to the time-memory character-
istics inherent in fractional derivatives, enabling more accurate modelling of dy-
namic systems with memory effects. Notable formulations, including the Grünwald-
Letnikov [26, 29], Riemann-Liouville [35], and Caputo [10, 31] formulas, are com-
monly applied. These fractional derivatives have been successfully integrated into
ordinary and partial differential equations (ODEs and PDEs), offering new perspec-
tives for addressing complex problems [38,47].

Incorporating time-fractional derivatives into Burgers’ equation allows for the
inclusion of memory effects and non-local interactions, which are often present in
real-world scenarios but are overlooked in classical models. Analytical solutions to
the fractional Burgers’ equation are typically limited to specific values of the frac-
tional order parameter, denoted as α. Consequently, efficient numerical methods
have been developed to address this limitation, with various studies demonstrat-
ing their effectiveness [22, 51]. Finite difference methods have shown particular
promise in tackling both time-fractional and space-fractional PDEs [13, 25]. For
instance, Chen et al. introduced a Fourier method for solving fractional diffu-
sion equations, demonstrating the stability and convergence of their implicit dif-
ference approximation scheme [7]. For testing convergence and stability, Roul et
al. [41] demonstrated the unconditional stability of a proposed non-standard finite
difference scheme for the fractional neutron point kinetic equation and utilised Von-
Neumann stability analysis for a numerical method applied to the fractional neutron
diffusion equation [42]. Other approaches, including finite element methods [17,27],
wavelet methods [49, 52], variational iteration methods [16, 36], homotopy pertur-
bation methods [34], matrix approaches [15, 28], and emerging machine learning
techniques [12,30], have further advanced the solutions for fractional PDEs.

This paper presents a novel approach to numerically solving the fractional Burg-
ers’ equation using the Laplace transform. The Laplace transform enables the
derivation of an exact solution by directly applying the transform and analytically
solving the corresponding ODE. In cases where the inverse Laplace transform lacks
an exact solution, we resort to numerical algorithms for computation. The struc-
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ture of this paper is as follows: Section 2 introduces fractional derivatives, Burgers’
equation, and other key definitions. Section 3 applies the Laplace transform to
the fractional PDEs, transforming the problem into solvable ODEs. In Section 4,
we solve the ODEs and reconstruct the original solution using numerical methods.
Section 5 presents numerical examples to validate the theoretical results. Section
6 presents convergence and stability analysis of the proposed model, and Section 7
concludes the paper.

2. Definitions and basic model

2.1. Fractional derivatives

The Caputo fractional calculus has proven highly effective in modelling systems with
non-zero initial conditions, making it a suitable choice for this problem. Therefore,
we introduce the Caputo fractional derivative into Burgers’ equation. The Caputo
fractional derivative, as defined in [33], is expressed as:

C
t0D

α
t y(t) =

1

Γ(m− a)

∫ t

t0

y(m)(τ)

(t− τ)1+α−m
dτ, (2.1)

where Γ(·) refers to the Gamma function. For a positive integer n, Γ(n) = (n− 1)!;
and for non-integer values, Γ(z) is defined as:

Γ(z) =

∫ ∞

0

tz−1e−tdt. (2.2)

The Caputo Fractional Integral is defined as:

C
t0D

−γ
t y(t) =

1

Γ(γ)

∫ t

t0

y(τ)

(t− τ)1−γ
dτ. (2.3)

2.2. Fractional Burgers’ equation

In this paper, our objective is to address the fractional Burgers’ equation, as pre-
sented in [22]: 

∂αu

∂tα
+ u

∂u

∂x
− v

∂2u

∂x2
= 0, 0 < x < 1, t > 0;

u(x, 0) = sin(πx), u(0, t) = u(1, t) = 0,

(2.4)

where ∂αu
∂tα is the Caputo fractional derivative mentioned in equation (2.1), and the

fractional order is denoted by α ∈ (0, 1]. Here, υ is a constant that implies the given
limit of diffusivity and is set as υ = 1.

2.3. Cole-Hopf transform

Instead of seeking a direct solution, we apply the Cole-Hopf Transform (CHT)
to simplify the equation. The CHT facilitates the reduction of the problem to
the fractional heat equation, offering a more tractable form. This transformation
has been widely employed in solving complex differential equations encountered in
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physics and chemistry [11,43,44]. By using the CHT, the Burgers’ equation can be
rewritten as:

ut + uux = υuxx, t ≥ 0. (2.5)

To solve this equation, we apply a non-linear change of variables. Following the
CHT, we introduce a potential function ϕ(x, t) such that u = ϕx. Consequently,
the original equation transforms into:

ϕxt + ϕxϕxx = υϕxxx,

and it can be integrated by x to be:

ϕt +
ϕ2x
2

= υϕxx.

Suppose the new variable ϕ is given by :

ϕ = −2υ log(ψ), (2.6)

which meets: 

ϕt = −2υ

ψ
ψt,

ϕx = −2υ

ψ
ψx,

ϕxx = −2υ

ψ
ψxx + 2υ(

ψx

ψ
)2,

then the transformed equation is:

ψt = υψxx, (2.7)

and equation (2.4) can be modified into the form of fractional heat equation:
∂αq

∂tα
= υ

∂2q

∂x2
,

q(x, 0) = e−
1−cos (πx)

2υπ ,

qx(0, t) = qx(1, t) = 0.

(2.8)

3. Fractional order partial differential equations
(FOPDE) and Laplace transform

3.1. Clarification of interchange of variables

The Laplace transform of a function f(t) is defined as:

L{f(t)} = F (s) =

∫ ∞

0

e−stf(t)dt. (3.1)

The Laplace transform converts a function from the time domain (t) to the Laplace
domain (s). During this transformation, the variable x remains constant, while t,
which is transformed into s, becomes the primary variable. However, when solving

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2025.318 | Generated on 2025-04-15 10:31:58



322 W. Sun, Y. An, Y. Gao & S. Luo

the resulting ordinary differential equations, x is treated as the primary variable,
and s is determined by t at the initial stage of the calculation. This distinction
underscores the dual roles played by x and t during the two phases of the analysis.
The transformation of the main integration variable is essential when solving PDEs
using the Laplace transform. Thus, in this context, x, t, and s represent variables,
while constants are denoted as x and s.

3.2. Laplace-transformed Caputo FOPDE and initial condi-
tions

Several transform methods for solving PDEs exist in the literature. In this paper, we
focus on the Laplace transform method, which reshapes PDEs into corresponding
ODEs. The Laplace-transformed Caputo derivative is given by [5]:

L

{
∂αq

∂tα

}
= L

{
C
t0D

α
t q(x, t)

}
= sαQ(x, s)−

n−1∑
k=0

sα−k−1q(k)(0), (3.2)

where Q(s) is the Laplace-transformed q(x, t), and according to the properties of
the Laplace transform, we get the transformed qxx(x, t) from Qxx(x, s):

L (qxx(x, t)) = L

{
∂2q(x, t)

∂x2

}
=
∂2Q(x, s)

∂x2
= Qxx(x, s). (3.3)

Then, the heat equation (2.8) could be Laplace transformed as:

sαQ(x, s)−
n−1∑
k=0

sα−k−1q(k)(0) = υ
∂2Q(x, s)

dx2
, (3.4)

which is arranged to be a constant coefficient non-homogeneous fractional order
ODE:

d2Q(x, s)

dx2
− sα

υ
Q(x, s) =

−sα−1

υ
e−

1−cos (πx)
2υπ . (3.5)

Once α = 1, we have Laplace transformed Burgers’ equation as:

υ
d2Q(x, s)

∂x2
− sQ(x, s) = −e−

1−cos (πx)
2υπ , (3.6)

that could be an examiner for the feasibility of the model.
In the process of solving PDEs, the Laplace transform is frequently employed,

particularly in cases involving second-order derivatives, as it is well-suited for ob-
taining analytical solutions. However, when non-integer orders are introduced, the
right-hand side of the equation becomes intertwined with the variable s, which in-
troduces considerable complexity, posing significant challenges to finding analytical
solutions.

4. Solving the transformed equations

4.1. Solving the Laplace-transformed ODE

Since the Laplace-transformed equation (3.5) is an ODE with respect to x for each
value of s, s can be treated as a constant within the ODE. Accordingly, we solve
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the ODE by deriving its general solution and one of its particular solutions. The
general solution for ODEs of this form is:

Qg = c1e
√

sα

υ x + c2e
−
√

sα

υ x, (4.1)

and one of its particular solutions is:

Qp = e−
√

sα

υ x

∫ x

0

−e
ξ
√

sα

υ f(ξ)

2
√

sα

υ

dξ + e
√

sα

υ x

∫ x

0

e−ξ
√

sα

υ f(ξ)

2
√

sα

υ

dξ, (4.2)

where

f(x) = −s
α−1

υ
e−

1−cosπx
2υπ .

The solution to the transformed equation is the sum of the general solution and one
of its particular solution:

Q(x, s) =Qp +Qg,

=e−
√

sα

υ x

∫ x

1

−e
ζ
√

sα

υ f(ζ)

2
√

sα

υ

dζ + e
√

sα

υ x

∫ x

1

e−ξ
√

sα

υ f(ξ)

2
√

sα

υ

dξ

+ c1e
√

sα

υ x + c2e
−
√

sα

υ x, (4.3)

which is rearranged to be:

Q(x, s) =

√
sα

υ

2s
e−x

√
sα

υ

∫ x

1

eζ
√

sα

υ + cosπζ−1
2πυ dζ −

√
sα

υ

2s
ex
√

sα

υ

∫ x

1

e−ξ
√

sα

υ + cosπξ−1
2πυ dξ

+ c1e
√

sα

υ x + c2e
−
√

sα

υ x. (4.4)

The first order derivative of the Laplace transformed solution Qx(x, s) is calcu-
lated as:

Qx(x, s) =− sα

2sυ
e−x

√
sα

υ

∫ x

1

eξ
√

sα

υ + cosπξ−1
2πυ dξ − sα

2sυ
ex
√

sα

υ

∫ x

1

e−ζ
√

sα

υ + cosπζ−1
2πυ dζ

+ c1

√
sα

υ
e
√

sα

υ x − c2

√
sα

υ
e−

√
sα

υ x. (4.5)

To get the constant c1 and c2, we perform Laplace transform on the boundary
conditions(2.8) and put them back into the equation (4.4) to calculate c1 and c2:L {qx(0, t)} = 0,

L {qx(1, t)} = 0,

based on which the initial condition yields to:

Qx(1, s) = c1e
√

sα

υ − c2e
−
√

sα

υ = 0,

Qx(0, s) =

√
sα

υ
c1 −

√
sα

υ
c2 −

sα

2sυ

∫ 0

1

eξ
√

sα

υ + cosπξ−1
2πυ dξ

− sα

2sυ

∫ 0

1

e−ζ
√

sα

υ + cosπζ−1
2πυ dζ = 0,

(4.6)
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and c1, c2 are calculated as:

c1 =
sα

2sυ
√

sα

υ (1− e2
√

sα

υ )

(∫ 0

1

eξ
√

sα

υ + cosπξ−1
2πυ dξ +

∫ 0

1

e−ζ
√

sα

υ +
cos (πζ)−1

2πυ dζ

)
,

c2 =
sαe2

√
sα

υ

2sυ
√

sα

υ (1− e2
√

sα

υ )

(∫ 0

1

eξ
√

sα

υ +
cos (πξ)−1

2πυ dξ +

∫ 0

1

e−ζ
√

sα

υ + cosπζ−1
2πυ dζ

)
.

(4.7)
Since the left-hand side of the equation to be verified corresponds to the general

solution of the original equation, and since Q(x, 0) represents a point on Q(x, t)
when t = 0 (or equivalently, s = 0), there must exist a pair of constants c1, c2 that
satisfies the equation.

Remark 4.1. We can also find the a discretized form of Q(x, s) with the finite
difference method according to equation (4.4):

Q(xi+1, sj)− 2Q(xi, sj) +Q(xi−1, sj)

∆x2
− sαj Q(xi, sj) = −sα−1

j e−
1−cos(πxi)

2π ,

where Qij = Q(xi, sj).

4.2. Inverse Laplace transform

With the given function F (s) in equation (3.1), the inverse Laplace transform can
be defined as follows:

L −1 (F (s)) = f(t).

In the context of inverting the Laplace transform, certain functions can be read-
ily addressed using established tables. However, in our case, the Laplace transform
result of Q(s) does not correspond to any known formulation. As a result, we ap-
ply numerical approximation methods to compute the inverse Laplace-transformed
q(x, t). Among the widely recognized methods are the Gaver-Stehfest method [24],
Schapery’s method [45], Möbius transformation methods [2,20], Talbot method [9],
and Fourier series method [14,21].

In this paper, we employ the Gaver-Stehfest approximation to reconstruct the
original function q(x, t) from Q(x, s). The approximation is given by the following
expression:

q(x, t)|N ≈ ln 2

t

N∑
k=1

VkQ

(
x, k

ln 2

t

)
, (4.8)

where Vk represents the coefficients associated with the Gaver-tehfest method:

Vk = (−1)k+N/2

min(k,N/2)∑
j=⌊(k+1)/2⌋

j
N
2 (2j)!

(N2 − j)!j!(j − 1)!(k − j)!(2j − k)!
. (4.9)

For a fixed value of x, the function q(x, t) is approximated as a linear combination
of Q(x, s). The parameter N must be chosen larger than the number of decimal
digits of precision. In our simulations, we set N = 12. The approximation error is
dependent on N , and a rigorous error analysis will be conducted in future work.
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4.3. Inverse Cole-Hopf transform

Upon obtaining the value of q(x, t), a restoration to the initial function u(x, t) is
facilitated through equation (2.6) as follows:

u(x, t) = −2υ
qx(x, t)

q(x, t)
, (4.10)

where qx(x, t) can be approximated by the finite difference method and the numer-
ical examples following show that.

5. Numerical examples

Using CHT method [37], the exact solution of fractional Burgers’ equation is:

u(x, t) = 2υπ

[ ∑∞
n=1 ane

−n2π2υtα

α n sin(nπx)

a0 +
∑∞

n=1 ane
−n2π2υtα

α n cos(nπx)

]
, (5.1)

where

a0 =

∫ 1

0

e−(
1−cos(πx)

2υπ )dx,

and

an = 2

∫ 1

0

e−(
1−cos(πx)

2υπ ) cos(nπx)dx.

To compute the numerical approximation, we utilize the gradient function from
Numpy in Python to perform the finite difference for dx. The gradient is calculated
using second-order accurate central differences in the interior, and second differences
are applied at the boundaries.

Example 5.1. To evaluate the accuracy and efficiency of the model, we set α = 1
and compute the numerical solution at t = 0.1 and t = 0.2. The step size for dx is
chosen as 1/1024.

Table 1. Absolute Error at α = 1 for different t values

x
t = 0.1 t = 0.2

Numerical Exact Abs. Error Numerical Exact Abs. Error

0.1 0.10930 0.10911 1.90E-04 0.04178 0.04177 4.81E-06

0.2 0.20904 0.20906 1.90E-05 0.07974 0.07972 2.21E-05

0.3 0.29173 0.29177 3.49E-05 0.11060 0.11057 3.02E-05

0.4 0.34770 0.34772 1.97E-05 0.13079 0.13074 5.07E-05

0.5 0.37156 0.37162 5.87E-05 0.13853 0.13847 5.22E-05

0.6 0.35916 0.35920 4.67E-05 0.13269 0.13263 5.54E-05

0.7 0.31042 0.31044 1.93E-05 0.11372 0.11367 5.10E-05

0.8 0.22800 0.22799 3.92E-06 0.08295 0.08291 3.91E-05

0.9 0.12136 0.12135 1.02E-05 0.04396 0.04394 2.14E-05
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Table 1 shows that our model reaches good stability and accuracy at integer
order. The absolute error compared with corresponding exact solution is below
0.0001 which is better than the results in [22].

The plot of u(x, t) for α = 1 at t = 0.1 shows that even with a small step
size of dx = 1/1000, the curve is almost indistinguishable from the exact solution,
confirming the accuracy of the method. The total computation time for solving
1000 points is approximately 3.06 seconds, with each step taking around 3 millisec-
onds—an impressively fast result compared to existing methods.

(a) u(x, t) at α = 1, t = 0.1 and step=1/1024 (b) u(x, t) at t = 0.1, α = 0.95 and step=1/1024

Figure 1. u(x, s) at different α

Furthermore, we measured the computation time for various step sizes and com-
pared these results with those obtained using the CHT method [37]. The table below
illustrates the computational efficiency of our proposed method in comparison to
the CHT approach.

Table 2. Comparison of time consumption for different time steps between two methods. Note: The
computations were performed using a single-core CPU (M1 Pro).

Step
Our Method Method in [37]

Total Time (s) Time per Step (s) Total Time (s) Time per Step (s)

1/12 0.0468 0.0036 3.0012 0.2309

1/64 0.2043 0.0031 11.1696 0.1718

1/128 0.3961 0.0031 22.4827 0.1743

1/256 0.7802 0.0030 43.8430 0.1706

1/512 1.5637 0.0030 89.8373 0.1751

1/1024 3.1223 0.0030 178.1930 0.1738

Example 5.2. To testify the stability and accuracy of the model in fractional
orders, we calculate u(x, t) at different α values.
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Table 3. Absolute Error for different α values at t = 0.1

x
α = 0.99 α = 0.95 α = 0.9

Numerical Exact Abs. Error Numerical Exact Abs. Error Numerical Exact Abs. Error

0.1 0.1071 0.1057 0.0014 0.0993 0.0918 0.0076 0.0905 0.0745 0.0160

0.2 0.2050 0.2024 0.0026 0.1898 0.1757 0.0142 0.1728 0.1425 0.0303

0.3 0.2860 0.2824 0.0036 0.2643 0.2449 0.0194 0.2400 0.1983 0.0417

0.4 0.3407 0.3365 0.0042 0.3140 0.2913 0.0227 0.2844 0.2355 0.0489

0.5 0.3638 0.3595 0.0043 0.3345 0.3108 0.0237 0.3020 0.2507 0.0513

0.6 0.3514 0.3473 0.0041 0.3222 0.2998 0.0224 0.2900 0.2413 0.0487

0.7 0.3036 0.3001 0.0035 0.2777 0.2586 0.0190 0.2491 0.2077 0.0414

0.8 0.2228 0.2203 0.0025 0.2034 0.1897 0.0138 0.1821 0.1521 0.0301

0.9 0.1186 0.1173 0.0013 0.1081 0.1009 0.0073 0.0966 0.0808 0.0159

And we plot the lines of u(x, t) in different t and see how the solution evolves
with the t dimension. As supposed, it keeps in the shape of sin function in the half
interval but the amplitude decreases as t increases.

(a) u(x, t) with different step of dx (b) u(x, t) for group of t at α = 0.95

Figure 2. u(x, s) at different x(left) or t(right)

The gradual and smooth progression of the curves also reflects the model’s sta-
bility. As a result, we proceed to a detailed visualization of the 3D surface of u(x, t)
(see Figure 3). The surface plot, showing u(x, t) for t ∈ (0, 1) and x ∈ (0, 1), demon-
strates a smooth gradient, consistent with the Mean Absolute Error (MAE) analysis
mentioned earlier. This 3D representation provides a comprehensive view of the ini-
tial solutions to the fractional Burgers’ equation in the bi-dimensional space of x
and t, highlighting favourable characteristics of the solution.
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(a) α = 0.99 (b) α = 0.95

Figure 3. 3-D graph of u(x, t) at different α

In addition, we analyse the absolute error from a 3D perspective. Compared
with the scale of absolute errors displayed in [1], our model continues to perform
well under these conditions.

Figure 4. Absolute error of u(x, t) at α = 0.99

Example 5.3. In the third example, we examine the model with smaller values
of α, specifically setting α = 0.5. We plot the surface of the solution in the same
manner as before, and observe that the surface maintains a good resemblance to
the exact solution described in equation (5.1). At this stage, however, the error
becomes more pronounced.
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Figure 5. Surface for u(x, t) at α = 0.5.

6. Convergence and stability analysis

We compute the Mean Absolute Error (MAE) of the solution using various step
sizes for dx to assess the order of convergence. Using the solution with a step size of
1/1024 as the benchmark for the best available approximation, we observe that as
the step size decreases, the MAE also reduces to an ideal range. Additionally, the
reduction in MAE from step = 1/8 to step = 1/1024 indicates the model’s stability.
As the step size decreases beyond 1/1024, the MAE stabilizes, likely due to the
limitations in the approximation of q(x, t) in equation (4.8).

Table 4. MAE Analysis of Example when t = 0.1, α = 0.95

x

step
1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

0.1 0.0049 0.0623 0.0933 0.0935 0.0935 0.0973 0.0992 0.0993

0.2 0.1202 0.1787 0.1795 0.1798 0.1865 0.1898 0.1898 0.1898

0.3 0.2240 0.2285 0.2517 0.2623 0.2624 0.2624 0.2636 0.2642

0.4 0.2965 0.3024 0.3038 0.3106 0.3136 0.3136 0.3136 0.3140

0.5 0.3259 0.3323 0.3339 0.3343 0.3344 0.3344 0.3344 0.3344

0.6 0.3259 0.3285 0.3233 0.3237 0.3238 0.3227 0.3222 0.3222

0.7 0.3059 0.2827 0.2840 0.2843 0.2799 0.2776 0.2776 0.2776

0.8 0.2374 0.2419 0.2187 0.2058 0.2059 0.2059 0.2042 0.2034

0.9 0.1297 0.1321 0.1327 0.1171 0.1091 0.1091 0.1091 0.1081

MAE 0.0944 0.0385 0.0246 0.0100 0.0058 0.0025 0.0010

To further verify the stability of the solution for small α values, we analyse the
incremental behaviour of u(x, t) as dx increases with a step size of 1/1024. The
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increments of u(x, t) exhibit smooth behaviour, indicating that the model remains
stable at each successive step.

Figure 6. 1/1024 Increment of u(x, t) at α = 0.5.

7. Conclusion

In this paper, we investigate the fractional Burgers’ equation using the Caputo
derivative. The Laplace transform method is employed to convert the problem
into an ordinary differential equation, which features a complex structure. Since
an analytical solution is only available for specific fractional ODEs, we apply a
numerical method to compute the inverse Laplace transform. The numerical ex-
amples demonstrate a high level of accuracy, with results reaching approximately
99%. Although minor deviations are present at certain points, they remain within
acceptable bounds. Additionally, the proposed method proves to be highly efficient,
requiring less than 1/50 of the computational time compared to the CHT method.
Future research will explore the application of this method to higher-dimensional
cases, given its potential for both feasibility and accuracy.
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