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Mathematical Model Dynamics of Cyber Accounts
for Vices, Recovery and Relapse

Oluwatayo Michael Ogunmiloro1,† and Samuel Olukayode Ayinde1

Abstract In this study, we develop a mathematical model through a system
of first-order nonlinear ordinary differential equations. This model covers the
dynamics between vulnerable cyber accounts and those implicated in cyber
vices such as bullying, scams, spreading of misinformation, and the creation of
harmful digital footprints. It further explores the mechanisms of recovery and
relapse among these accounts. Through some mathematical analysis, we apply
relevant theorems to affirm the model’s fundamental properties, which includes
its existence, uniqueness, positivity, and boundedness. We also determine
the model’s cyber vice-free and endemic equilibrium states, analyzing their
local and global asymptotic stability based on when the basic reproduction
number Rcb is greater or less than one. Simulation exercises are conducted to
substantiate our theoretical findings and demonstrate the model’s behavior in
relation to Rcb. The simulation outcomes reveal an escalating trend in cyber
vices, showing the necessity for targeted interventions that promote a more
secure online environment for users and the broader cyber space.
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1. Introduction

Cyber vices, including cyberbullying, scams, fraud, fake news, and digital foot-
prints, have emerged as formidable challenges in the digital era. Understanding
their dynamics and developing effective strategies to combat them is crucial for en-
suring online safety and security. The advent of the digital age has revolutionized
the way we communicate, work, and interact with each other [23]. The internet and
social media platforms have brought numerous opportunities for connectivity and
information sharing. However, along with these advancements, there has also been
a rise in online cyber vices, posing significant challenges for individuals, organiza-
tions, and societies as a whole [22]. Cyberbullying, scams, fraud, fake news, and the
creation of digital footprints are just a few examples of the detrimental activities
that can occur in the online realm [19–21]. Understanding the dynamics of online
cyber vices and developing effective strategies to combat them is of utmost impor-
tance in today’s interconnected world. Mathematical modeling provides a powerful
tool for gaining understanding into the mechanisms driving these vices and can aid
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in the development of proactive measures to mitigate their impact. By constructing
mathematical models, interactions between different entities involved in cyber vices
and recovery dynamics can be studied [11–15]. Additionally, mathematical models
enable us to study the effectiveness of various intervention strategies and assess
their potential outcomes before implementation. In recent years, there has been a
significant research focus on studying the effects of cyber defense and attacks using
mathematical models, with notable contributions from Alexopoulous and Daras [1],
Emmanuello and Ridley [2], Gencoglu [3], and Guilan, Del-Rey, and Cassado [4].
Furthermore, several researchers [9, 10] and [16–18], have developed mathematical
models to address security threats and issues in the cyber space. Additionally,
the cyber analysis of smart power and grid processes has been explored through
mathematical modeling by researchers such as [5–8]. Despite these advancements,
to the best of our understanding, we have identified a crucial gap regarding the
understanding of how cyber accounts/sites are created and utilized to perpetrate
vices such as scams, frauds, bullying, and leaving digital footprints. Moreover, the
potential mitigation of these cyber activities using mathematical modeling has yet
to be comprehensively discussed. To address this gap, our study seeks to investigate
and analyze cyber accounts and their role in fostering various vices. We propose
a robust mathematical model to shed light on this important aspect of cyber be-
havior. In Section 2, we provide a detailed formulation of the mathematical model,
aiming to capture the cyber activities. Subsequently, in Section 3, we present the
mathematical analysis of the existence and uniqueness, positivity, boundedness, and
stability properties of the model. To gain understanding and verify the model’s per-
formance, we perform numerical simulations in Section 4. Finally, in Section 5, we
conclude our study, summarizing the key findings and proposing potential future
directions for the work.

2. Mathematical model formulation

The model assumes a deterministic system, where the future behavior of the system
is entirely determined by its initial conditions and parameter values. This assump-
tion disregards any random or stochastic elements that may exist in the real-world
dynamics of cyber vices and recovery. The following system of equations describes
the dynamics of various online vices, including cyber bullying, scams, fake news,
and digital footprints, as well as the recovery process of affected online accounts.
The total number of online cyber accounts (Ncb(t)) is divided into compartments
such that Ncb(t) = Va(t) +Cb(t) + Sc(t) + Fn(t) +Df (t) +Rs(t), where the rate of
change of vulnerable cyber accounts (Va) is given by

dVa
dt

= Φ− (β1Cb + β2Sc + β3Fn + β4Df )Va − δVa. (2.1)

The rate of change of cyber account dedicated to cyber bullying (Cb) is

dCb
dt

= β1CbVa − (δ + ψ1)Cb + ς1Cb. (2.2)

The rate of change of cyber account involved in scams (Sc) is

dSc
dt

= β2ScVa − (δ + ψ2Sc + ς2Cb. (2.3)
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The rate of change of cyber account spreading fake news (Fn) is

dFn
dt

= β3FnVa − (δ + ψ3)Fn + ς3Cb. (2.4)

The rate of change of cyber account leaving digital footprints (Df ) is

dDf

dt
= β4DfVa − (δ + ψ4)Df + ς4Cb. (2.5)

The rate of change of cyber account (Rs) is

dRs
dt

= ψ1Cb + ψ2Sc + ψ3Fn + ψ4Df − δRs − ς1Cb − ς2Sc − ς3Fn − ς4Df . (2.6)

Coupling the equations (2.1) - (2.6) above yields

dVa
dt

= Φ− (β1Cb + β2Sc + β3Fn + β4Df )Va − δVa,

dCb
dt

= β1CbVa − (δ + ψ1)Cb + ς1Cb,

dSc
dt

= β2ScVa − (δ + ψ2Sc + ς2Sc,

dFn
dt

= β3FnVa − (δ + ψ3)Fn + ς3Fn,

dDf

dt
= β4DfVa − (δ + ψ4)Df + ς4Df ,

dRs
dt

= ψ1Cb + ψ2Sc + ψ3Fn + ψ4Df − δRs,

− ς1Cb − ς2Sc − ς3Fn − ς4Df .



(2.7)

Subject to initial conditions Va ≥ 0, Cb ≥ 0, Sc ≥ 0, Fn ≥ 0, Df ≥ 0, Rs ≥ 0. The
parameters in (2.7) are defined as follows:

• Φ: Creation of new cyber sites and platforms.

• δ: Inactivation/death rate of cyber accounts.

• βi(i = 1−4): Contact rates between vulnerable account and accounts devoted
to cyber vices.

• ψi(i = 1− 4): Progression rates affected cyber accounts to recovery.

• ςi(i = 1− 4): Relapse rate of the accounts for cyber vices after recovery.
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Figure 1. Schematic diagram for the cyber accounts interactions in the host cyber space

3. Basic analysis

The first order ordinary differential equation (ODE) in general form is

φ̇ = ℏ(t,ϖ), φ(to) = φo. (3.1)

Theorem 3.1. Let ∇ denote the domain such that

|t− to| ≤ x, |φ− φo| ≤ y, φ = (φ1, φ2, ...., φn). (3.2)

Assume that
ℏ(t, φ) : ||ℏ(t, φ1)− ℏ(t, φ2)|| ≤ q∗||φ1 − φ2|| (3.3)

satisfies the Lipschitz condition and the pairs (t, φ1) and (t, φ2) are in ∇, where q∗

denotes a positive constant, then there exists δ > 0 for the interval |t− to| ≤ δ, and
a unique continuous vector solution φ(t) of (3.1) exists such that (3.1) is satisfied
by ∂ℏk

∂Wl
, k, l = 1, 2, ....n in domain ∇ is continuous and bounded.

Lemma 3.1. If the continuous partial derivative ℏ(t, φ), that is ∂ℏk

∂Wl
, exists for a

bounded close convex domain R, then for R the Lipschitz condition is satisfied such
that 0 < R <∞.

Proof. From (2.7), we assume that

W1 = Φ− (β1Cb + β2Sc + β3Fn + β4Df )Va − δVa,

W2 = β1CbVa − (δ + ψ1)Cb + ς1Cb,

W3 = β2ScVa − (δ + ψ2Sc + ς1Cb,

W4 = β3FnVa − (δ + ψ3)Fn + ς1Cb,

W5 = β4DfVa − (δ + ψ4)Df + ς1Cb,

W6 = ψ1Cb + ψ2Sc + ψ3Fn + ψ4Df − δRs,

− ς1Cb − ς2Sc − ς3Fn − ς4Df .


(3.4)
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Then from the first expression in (3.4), we obtain

∂W1

∂Va
= | − (β1Cb + β2Sc + β3Fn + β4Df )− δ| <∞,

∂W1

∂Cb
= | − β1Va| <∞,

∂W2

∂Sc
= | − β2Va| <∞,

∂W3

∂Fn
= | − β3Va| <∞,

∂W4

∂Df
= | − β4Va| <∞,

∂W5

∂Rs
= |0| <∞.



(3.5)

Following the same approach for the remaining variables Wb,Wc,Wd,We and Wf

in (3.4), we observe that the partial derivatives of the remaining variables exist, and
are continuous and bounded in the domain. Hence, a unique solution exists.

Theorem 3.2. The solutions of model (2.7) under its initial conditions are positive
for time t > 0.

Proof. Taking the first expression in (2.7), that is

dVa
dt

=Q− (β1Cb + β2Sc + β3Fn + β4Df )Va − δVa

≥− (β1Cb + β2Sc + β3Fn + β4Df )Va − δVa,
(3.6)

then ∫
dVa
Va

≥ −
∫
((β1Cb + β2Sc + β3Fn + β4Df )− δ)dt, (3.7)

where

lnVa ≥ −((β1Cb + β2Sc + β3Fn + β4Df )− δ)t+ C. (3.8)

In (3.8), C denotes a constant and at t = 0, lnVa(0) = C. On substitution,

lnVa(t) ≥ −((β1Cb + β2Sc + β3Fn + β4Df )− δ)t+ lnVa(0), (3.9)

where

lnVa(t)− lnVa(0) ≥ −((β1Cb + β2Sc + β3Fn + β4Df )− δ)t. (3.10)

Therefore,

ln
Va(t)

Va(0)
≥ −((β1Cb + β2Sc + β3Fn + β4Df )− δ)t (3.11)

and

Va(t) ≥ Va(0)e
−((β1Cb+β2Sc+β3Fn+β4Df )−δ)t > 0. (3.12)

The same approach applies to the remaining state variables of (2.7), ensuring the
positivity of the model.
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Theorem 3.3. The set R+6 is invariant in the positive sense with respect to (2.7),
such that the solution of (2.7) is uniformly bounded in the subset

Υ =

{
(Va, Cb, Sc, Fn, Df , Rs) ∈ R+6 : Ncb ≤

ϕ

µ

}
.

Proof. The total host cyber accounts yield

dNcb
dt

=
dNcb
dt

+
dNcb
dt

+
dNcb
dt

+
dNcb
dt

+
dNcb
dt

= ϕ+ δ(Va + Cb + Sc + Fn +Df +Rs) ≤ ϕ− δNcb.

 (3.13)

The solution to the differential inequality (3.13) yields

lim
t→∞

supNcb(t) ≤
ϕ

δ
. (3.14)

It follows from (3.14) that model (2.7) is uniformly bounded in Υ, that is Υ ={
(Va, Cb, Sc, Fn, Df , Rs) ∈ R+6 : Ncb ≤ ϕ

µ

}
. This shows that (2.7) is well behaved

and meaningful in the sense of transmission of vices in the cyber host space.
The equilibrium solutions are determined to study the long term behavior of

the model. The two equilibria are the cyber vices free (CB1)and endemic (CB2)
equilibrium solutions which are given by

CB1 =
(Φ
δ
, 0, 0, 0, 0, 0

)
, (3.15)

and

CB2 =V ∗
a =

(δ + ψ1 + ς1)

β1
,

C∗
b =

δ(Φβ1 − δ − ψ1 − ς1)

β1(δ + ψ1 + ς1)
,

S∗
c =

δ(Φβ2 − δ − ψ2 − ς2)

β2(δ + ψ2 + ς2)
,

F ∗
n =

δ(Φβ3 − δ − ψ3 − ς3)

β3(δ + ψ3 + ς3)
,

D∗
f =

δ(Φβ4 − δ − ψ4 − ς4)

β4(δ + ψ4 + ς4)
,

R∗
n =

Φ(β1 − δ − ψ1 − δς1)(ψ1 − ς1)

β1(δ + ψ1 + ς1)δ

×Φ(β2 − δ − ψ2 − δς2)(ψ2 − ς2)

β2(δ + ψ2 + ς2)δ

×Φ(β3 − δ − ψ3 − δς3)(ψ3 − ς3)

β3(δ + ψ3 + ς3)δ

×Φ(β4 − δ − ψ4 − δς4)(ψ4 − ς4)

β4(δ + ψ4 + ς4)δ
.



(3.16)

Using the equilibrium solution (CB1) in (3.15), we establish the following theorem.

Theorem 3.4. The basic reproductive number Rcb is given by

ρ(FV −1) = Rcb =
Φ(β1 + β2 + β3 + β4)

(δ(δ + ψ1 + ς1))(δ(δ + ψ2 + ς2))(δ(δ + ψ3 + ς3))(δ(δ + ψ4 + ς4))
.
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Proof. Using the next generation matrix method [18], the non-negative matrix F,
known as the appearance of new cyber vices in the model yields

F =



0 0 0 0 0 0

0 β1 Φ
δ 0 0 0 0

0 0 β2 Φ
δ 0 0 0

0 0 0 β3 Φ
δ 0 0

0 0 0 0 β4 Φ
δ 0

0 0 0 0 0 0



, (3.17)

while the matrix V known as the transitions of cyber account in and out of the
system is given by

V =



δ 0 0 0 0 0

0 δ + ψ1 + ς1 0 0 0 0

0 0 δ + ψ2 + ς2 0 0 0

0 0 0 δ + ψ3 + ς3 0 0

0 0 0 0 δ + ψ4 + ς 0

0 ψ1 − ς1 ψ2− ς2 ψ3 − ς3 ψ4 − ς4 δ



, (3.18)

while the inverse of V yields

V−1 =



δ 0 0 0 0 0

0 δ + ψ1 + ς1 0 0 0 0

0 0 δ + ψ2 + ς2 0 0 0

0 0 0 δ + ψ3 + ς3 0 0

0 0 0 0 δ + ψ4 + ς4 0

0 ψ1 − ς1 ψ2 − ς2 ψ3 − ς3 ψ4 − ς4 δ



, (3.19)
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so that FV−1 yields

FV−1 =



0 0 0 0 0 0

0 β1 Φ
δ (δ+ψ1+ς1)

0 0 0 0

0 0 β2 Φ
δ (δ+ψ−2+ς2)

0 0 0

0 0 0 β3 Φ
δ (δ+ψ3+ς−3) 0 0

0 0 0 0 β4 Φ
δ (δ+ψ4+ς4)

0

0 0 0 0 0 0



. (3.20)

The eigenvalues of FV−1 become

FV−1 =



0

0

β4 Φ
δ (δ+ψ4+ς4)

β3 Φ
δ (δ+ψ3+ς3)

β2Q
δ (δ+ψ2+ς2)

β1 Φ
δ (δ+ψ1+ς1)



. (3.21)

Therefore the basic reproductive number is the spectral radius

ρ(FV−1) = Rcb =
Φ(β1 + β2 + β3 + β4)

(δ(δ + ψ1 + ς1))(δ(δ + ψ2 + ς2))(δ(δ + ψ3 + ς3))(δ(δ + ψ4 + ς4))
.

(3.22)
This is the average number of secondary cases of cyber accounts with vices generated
when a affected cyber account is introduced into the vulnerable cyber space.

Theorem 3.5. The cyber vices free equilibrium solution CB1 (3.15) is locally
asymptotically stable if Rcb < 1 and unstable otherwise.

Proof. We obtain the Jacobian J of model (2.7) at the cyber vices free equilibrium
solution (3.15),

J =



δ 0 0 0 0 0

0
β1Φ
δ − (δ + ψ1 + ς1) 0 0 0 0

0 0
β2Φ
δ − (δ + ψ2 + ς2) 0 0 0

0 0 0
β3Φ
δ − (δ + ψ3 + ς3) 0 0

0 0 0 0
β4Φ
δ − (δ + ψ4 + ς) 0

0 ψ1 − ς1 ψ2 − ς2 ψ3 − ς4 ψ4 − ς4 δ



.

(3.23)
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It is observed that only two eigenvalues (δ) are negative, while the remaining posi-

tive eigenvalues are Φ(β1+β2+β3+β4)
(δ(δ+ψ1+ς1))(δ(δ+ψ2+ς2))(δ(δ+ψ3+ς3))(δ(δ+ψ4+ς4))

, which form Rcb.

Therefore, when 1−Rcb > 0, then −Rcb > −1, such that Rcb < 1. This shows that
the cyber vices free equilibrium solution is locally asymptotically stable.

Theorem 3.6. The cyber vices free equilibrium is globally asymptotically stable
when Rcb < 1.

Proof. By the use of the comparison technique, the cyber accounts dedicated to
online vices alone can be simplified as

Ċb

Ṡc

Ḟn

Ḋf

 =
( Va
Ncb

)
F


Cb

Sc

Fn

Df

− V


Cb

Sc

Fn

Df

 = F− V


Cb

Sc

Fn

Df

−
(
1− Va

Ncb

)
F


Cb

Sc

Fn

Df

 ≤

(F− V)


Cb

Sc

Fn

Df

 , (3.24)

where F and V are defined in (3.17) and (3.18). The linearized differential inequal-
ity in (3.24) is stable whenever Rcb < 1. Consequently, by standard comparison,
(Cb, Sc, Fn, Df ) → (0, 0, 0, 0) as t→ ∞. If one substitutes Cb = Sc = Fn = Df = 0

in (2.7), then (Va, R) →
(

Φ
δ , 0

)
as t → ∞. Therefore, (Va, Cb, Sc, Fn, Df , R) →(

Φ
δ , 0, 0, 0, 0, 0

)
as t → ∞ and hence the CB1 is globally asymptotically stable

when Rcb < 1. This implies that cyber vices can be eliminated from the cyber
space if Rcb can be maintained below 1.

Theorem 3.7. The cyber vices endemic equilibrium (3.16) is locally asymptotically
stable whenever Rcb > 1.

Proof. Linearizing the model using the cyber-vices endemic equilibrium solution
(3.16), we obtain the Jacobian J as

J =



−Ao co c1 c2 c3 0

bo A1 0 0 0 0

b1 0 A2 0 0 0

b2 0 0 A3 0 0

b3 0 0 0 A4 0

0 ψ1 − ς1 ψ2 − ς2 ψ3 − ς3 ψ4 − ς4 δ



, (3.25)
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where the following are defined:

Ao = −Cbβ1 −Dfβ4 − Fnβ3 − Scβ2 − δ, A1 = Vaβ1 − δ − ψ1 − ς1,

A2 = V aβ2 − δ − ψ2 − ς2 A3 = V aβ3 − δ − ψ4 − ς3,

A4 = V aβ4 − δ − ψ4 − ς4 co = β1Va c1 = β2Va c2 = β3Va,

c3 = β4Va c4 = β5Va, bo = β1Cb, b1 = β2Sc, b2 = β3Fn, β4Df .

 (3.26)

The characteristics equation yields

λ6 + τoλ
5 + τ1λ

4 + τ2λ
3 + τ3λ

2 + τ4λ+ τ5, (3.27)

where

τo = (−δ −A4 −A3 −A2 −A1 +Ao) , (3.28)

τ1 =
(
A2 A1 +A3 A1 +A4 A1 −A1 Ao + δA1 +A3 A2 +A4 A2−

A2 Ao + δA2 +A4 A3 −A3 Ao + δA3 −A4 Ao + δA4 − δ

Ao − b1 c1 − b2 c2 − b3 c3 − bo co

)
,

 (3.29)

τ2 =
(
−A1 A2 A3 −A1 A2 A4 +A1 A2 Ao −A1 A2 δ −A1 A3 A4 +A1 A3 Ao−

A1 A3 δ +A1 A4 Ao −A1 A4 δ +A1 Ao δ + b1 c1 A1 + b2 c2 A1 + b3 c3 A1

−A2 A3 A4 +A2 A3 Ao −A2 A3 δ +A2 A4 Ao −A2 A4 δ +A2 Ao δ + b2 c2

A2 + b3 c3 A2 +A2 bo co +A3 A4 Ao −A3 A4 δ +A3 Ao δ +A3 b1 c1 + b3 c3

A3 +A3 bo co +A4 Ao δ +A4 b1 c1 +A4 b2 c2 +A4 bo co + b1 c1 δ + b2 c2

δ + b3 c3 δ + bo co δ
)
,


(3.30)

τ3 =
(
A1 A2 A3 A4 −A1 A2 A3 Ao +A1 A2 A3 δ −A1 A2 A4 Ao +A1 A2 A4

δ −A1 A2 Ao δ −A1 A2 b2 c2 −A1 A2 b3 c3 −A1 A3 A4 Ao +A1 A3 A4

δ −A1 A3 Ao δ −A1 A3 b1 c1 −A1 A3 b3 c3 −A1 A4 Ao δ −A1 A4 b1 c1

−A1 A4 b2 c2 −A1 b1 c1 δ −A1 b2 c2 δ −A1 b3 c3 δ −A2 A3 A4 Ao +A2

A3 A4 δ −A2 A3 Ao δ −A2 A3 b3 c3 −A2 A3 bo co −A2 A4 Ao δ −A2 A4

b2 c2 −A2 A4 bo co −A2 b2 c2 δ −A2 b3 c3 δ −A2 bo co δ −A3 A4 Ao

δ −A3 A4 b1 c1 −A3 A4 bo co −A3 b1 c1 δ −A3 b3 c3 δ −A3 bo co δ−

A4 b1 c1 δ −A4 b2 c2 δ −A4 bo co δ
)
,


(3.31)
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τ4 =
(
A1 A2 A3 A4 Ao −A1 A2 A3 A4 δ +A1 A2 A3 Ao δ +A1 A2 A3 b3 c3

+A1 A2 A4 Ao δ +A1 A2 A4 b2 c2 +A1 A2 b2 c2 δ +A1 A2 b3 c3 δ+

A1 A3 A4 Ao δ +A1 A3 A4 b1 c1 +A1 A3 b1 c1 δ +A1 A3 b3 c3 δ+

A1 A4 b1 c1 δ +A1 A4 b2 c2 δ +A2 A3 A4 Ao δ +A2 A3 A4 bo co+

A2 A3 b3 c3 δ +A2 A3 bo co δ +A2 A4 b2 c2 δ +A2 A4 bo co δ +A3

A4 b1 c1 δ +A3 A4 bo co δ
)
,


(3.32)

and

τ5 =− δ
(
A1 A2 A3 A4 Ao +A1 A2 A3 b3 c3 +A1 A2 A4 b2 c2 +A1 A3 A4

b1 c1 +A2 A3 A4 bo co

)
.


(3.33)

From (3.28)-(3.33) it can be shown that τi > 0 for i = 0− 5 using the following

D1 = τo,D2 =

τo 1

τ2 τ1

 ,D3 =


τo 1 0

τ2 τ1 τo

0 0 τ2

 ,D4 =


τo 1 0 0

τ2 τ1 τo 0

0 τ3 τ2 τ1

0 0 0 τ3

 ,

D5 =



τo 1 0 0 0

τ2 τ1 τo 1 0

τ4 τ3 τ2 τ1 τo

0 0 τ4 τ3 τ2

0 0 0 0 τ4


,D6 =



τo 1 0 0 0 0

τ2 τ1 τo 1 0 0

τ4 τ3 τ2 τ1 τo 1

0 τ5 τ4 τ3 τ2 τ1

0 0 0 τ5 τ4 τ3

0 0 0 0 0 τ5


.



(3.34)

In (3.34), if all τi > 0 for i = 0 − 5 and the conditions in D1 − D6 hold, then the
cyber vices endemic equilibrium is locally asymptotically stable when Rcb > 1.

Theorem 3.8. The cyber vices present equilibrium is globally asymptotically stable
if Rcb > 1.

Proof. At equilibrium, model (2.7) becomes

ϕ = (β1Cb + β2Sc + β3Fn + β4Df )Va − δVa,

(δ + ψ1 + ς1) = β1Va,

(δ + ψ2 + ς1) = β2Va,

(δ + ψ3 + ς1) = β3Va,

(δ + ψ4 + ς1) = β4Va,

Rs = ψ1Cb + ψ2Sc + ψ3Fn + ψ4Df − δRs,

− ς1Cb − ς2Sc − ς3Fn − ς4Df .


(3.35)
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We construct a Goh-Volterra Lyapunov Lcb function given by

Lcb =
(
Va − V ∗

a − V ∗
a ln

Va
V ∗
a

)
+

(
Cb − C∗

b − C∗
b ln

Cb
C∗
b

)
+
(
Sc − S∗

c − S∗
c ln

Sc
S∗
c

)
+

(
Fn − F ∗

n − F ∗
n ln

Fn
F ∗
n

)
+
(
Df −D∗

f −D∗
f ln

Df

D∗
f

)
.


(3.36)

Differentiating (3.36), we have

˙Lcb =
(
1− V ∗

a

Va

)
V̇a +

(
1− C∗

b

Cb

)
Ċb

+
(
1− S∗

c

Sc

)
Ṡc +

(
1− F ∗

n

Fn

)
Ḟn

+
(
1−

D∗
f

Df

)
Ḋf .


(3.37)

In (3.37), each term is solved directly. For the first term, we obtain

˙Lcb =
(
1− V ∗

a

Va

)
((β1Cb + β2Sc + β3Fn + β4Df )Va − δVa

− (β1C
∗
b − β2S

∗
c − β3F

∗
n − β4D

∗
f )V

∗
a + δV ∗

a ))

˙Lcb =
(
1− V ∗

a

Va

)
(β1(CbVa − C∗

b V
∗
a ) + β2(ScVa − S∗

cV
∗
a )

+ β3(FnVa − F ∗
nV

∗
a ) + β4(DfVa −D∗

fV
∗
a )− δ(Va − V ∗

a )

˙Lcb = β1

(
1− C∗

b V
∗
a

CbVa
− V ∗

a

Va
+
V ∗
a VaCb
VaV ∗

a C
∗
b

)
+ β2

(
1− S∗

cV
∗
a

ScVa
− V ∗

a

Va
+
V ∗
a VaSc
VaV ∗

a S
∗
c

)
+ β3

(
1− F ∗

nV
∗
a

FnVa
− V ∗

a

Va
+
V ∗
a VaFn
VaV ∗

a F
∗
n

)
− δ

(
2− V ∗

a

Va
− Va
V ∗
a

)
.



(3.38)

For the second term we have

˙Lcb = β1

(
1− C∗

b

Cb

)
(Va − V ∗

a ) = β1

(
1− C∗

b V
∗
a

CbVa
− V ∗

a

Va
+
V ∗
a VaCb
VaV ∗

a C
∗
b

)
. (3.39)

For the third term, we get

˙Lcb = β2

(
1− S∗

c

Sc

)
(Va − V ∗

a ) = β2

(
1− S∗

cV
∗
a

ScVa
− V ∗

a

Va
+
V ∗
a VaSc
VaV ∗

a S
∗
c

)
. (3.40)

For the fourth term, we obtain

˙Lcb = β3

(
1− F ∗

n

Fn

)
(Va − V ∗

a ) = β3

(
1− F ∗

nV
∗
a

FnVa
− V ∗

a

Va
+
V ∗
a VaFn
VaV ∗

a F
∗
n

)
. (3.41)

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2025.91 | Generated on 2025-04-15 10:20:19



Mathematical Model Dynamics of Cyber Accounts for Vices, Recovery and Relapse 103

And the fifth term yields

˙Lcb = β4

(
1−

D∗
f

Df

)
(Va − V ∗

a ) = β4

(
1−

D∗
fV

∗
a

DfVa
− V ∗

a

Va
+
V ∗
a VaDf

VaV ∗
aD

∗
f

)
. (3.42)

Finally, the sixth term becomes

(ψ1 − ς1)
(
1− R∗

sC
∗
b

RsCb
− C∗

b

Cb
+
R∗
sRsCb

RsR∗
sC

∗
b

)
+ (ψ2 − ς2)

(
1− R∗

sS
∗
c

RsSc
− S∗

c

Sc
+
R∗
sRsSc

RsR∗
sS

∗
c

)
+

(ψ3 − ς3)
(
1− R∗

sF
∗
n

RsFn
− F ∗

n

Fn
+
R∗
sRsFn

RsR∗
sF

∗
n

)
+ (ψ4 − ς4)

(
1−

R∗
sD

∗
f

RsDf
−
D∗
f

Df
+
R∗
sRsDf

RsR∗
sD

∗
f

)
−

δ
(
2− R∗

s

Rs
− Rs
R∗
s

)
.



(3.43)

Coupling (3.39) - (3.43), we obtain(
1− V ∗

a

Va

)
(β1(CbVa − C∗

b V
∗
a ) + β2(ScVa − S∗

cV
∗
a ) + β3(FnVa − F ∗

nV
∗
a )

+ β4(DfVa −D∗
fV

∗
a )− δ(Va − V ∗

a )β1

(
1− C∗

b V
∗
a

CbVa
− V ∗

a

Va
+
V ∗
a VaCb
VaV ∗

a C
∗
b

)
+

β2

(
1− S∗

cV
∗
a

ScVa
− V ∗

a

Va
+
V ∗
a VaSc
VaV ∗

a S
∗
c

)
+ β3

(
1− F ∗

nV
∗
a

FnVa
− V ∗

a

Va
+
V ∗
a VaFn
VaV ∗

a F
∗
n

)
− δ

(
2− V ∗

a

Va
− Va
V ∗
a

)
+ β1

(
1− C∗

b V
∗
a

CbVa
− V ∗

a

Va
+
V ∗
a VaCb
VaV ∗

a C
∗
b

)
+

β2

(
1− S∗

cV
∗
a

ScVa
− V ∗

a

Va
+
V ∗
a VaSc
VaV ∗

a S
∗
c

)
+ β3

(
1− F ∗

nV
∗
a

FnVa
− V ∗

a

Va
+
V ∗
a VaFn
VaV ∗

a F
∗
n

)
+

β4

(
1−

D∗
fV

∗
a

DfVa
− V ∗

a

Va
+
V ∗
a VaDf

VaV ∗
aD

∗
f

)
+ (ψ1 − ς1)

(
1− R∗

sC
∗
b

RsCb
− C∗

b

Cb
+
R∗
sRsCb

RsR∗
sC

∗
b

)
+ (ψ2 − ς2)

(
1− R∗

sS
∗
c

RsSc
− S∗

c

Sc
+
R∗
sRsSc

RsR∗
sS

∗
c

)
+ (ψ3 − ς3)

(
1− R∗

sF
∗
n

RsFn
−

F ∗
n

Fn
+
R∗
sRsFn

RsR∗
sF

∗
n

)
+ (ψ4 − ς4)

(
1−

R∗
sD

∗
f

RsDf
−
D∗
f

Df
+
R∗
sRsDf

RsR∗
sD

∗
f

)
− δ

(
2− R∗

s

Rs
− Rs
R∗
s

)
.


(3.44)

In (3.34), if Va = V ∗
a , Cb = C∗

b , Sc = S∗
c , Fn = F ∗

n , Df = D∗
f and Rs = R∗

s ,

then ˙Lcb ≥ 0 ⇔ (Va, Cb, Sc, Fn, Df , Rn) = (V ∗
a , C

∗
b , S

∗
c , F

∗
n , D

∗
f , R

∗
n). Hence from

the Lasalle invariance princple [18], the cyber vices endemic equilibrium is globally
asymptotically stable when Rcb > 1.

4. Numerical simulations and discussions

Here, we perform numerical simulations using the ODE 45 in python computational
software and the following initial values were assumed in millions Vb = 10, Cb =
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5, Sc = 3, Fn = 2, Df = 1, Rc = 0.9 while the parameter values are given in Table
1, as seen in existing literature.

Table 1. Parameter Definitions

Descriptions Parameters Range Values Point Values per day Sources

Recruitment rate of new cyber accounts Φ 0-1 0.8 [1–3,12–14]

Inactivation/death rate of accounts δ 0-1 0.8354 [1–3,12–14]

Interaction/contact rates βi(i = 1− 4) 0-1 0.21, 0.34, 0.41, 0.50 [1–3,12–14]

Recovery rates ψi(i = 1− 4) 0-1 0.11, 0.21, 0.31, 0.42 [1–3,12–14]

Relapse rates ςi(i = 1− 4) 0-1 0.11, 0.55, 0.77, 0.8 [1–3,12–14]

In Figures 2-5, we observe the convergence of the model’s stability behavior
towards the cyber vices free equilibrium solution when Rcb < 1, varied within dif-
ferent days. This implies that without any intervention or control measures, the
cyber vices, including attacks, bullying, scams, and digital footprints, continue to
increase over time in the cyberspace. In the context of the simulations, the conver-
gence of the model’s stability behavior to the vices-free equilibrium when Rcb < 1
refers to the long-term behavior of the system when it is not influenced by any ex-
ternal factors, interventions, or control measures. At the vices-free equilibrium, the
cyber vices, such as attacks, bullying, scams, and digital footprints, are effectively
minimized, resulting in a stable and safe cyberspace environment. In this scenario,
the model indicates that over time, the system will settle into a state where the
prevalence of cyber vices remains low, and there is little to no impact on the cy-
berspace. Similarly, Figures 6-9 illustrate the convergence of the model’s stability
behavior towards the cyber vices endemic equilibrium solution. The sustained in-
crease in cyber vices over time emphasizes the urgent need for effective measures
to curb their propagation and minimize their impact on the cyberspace. On the
other hand, the convergence of the model’s stability behavior to the vices endemic
equilibrium, when Rcb > 1 refers to the long-term behavior of the system where
the presence of cyber vices becomes a persistent feature in the cyberspace. In this
scenario, the model shows that without intervention, the prevalence of cyber vices
will continue to grow, potentially leading to a detrimental impact on the cyberspace
and its users.The simulations illustrate that in the absence of proactive measures to
address cyber vices, the system tends to converge towards the vices endemic equi-
librium. This highlights the critical importance of implementing strategies to curb
the propagation of cyber vices and reduce their impact. Without such measures,
the cyberspace becomes increasingly vulnerable to malicious activities and harmful
practices.
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Figure 2. The behavior of the total cyber accounts model variables varying within 20 days at the cyber
vices free equilibrium when Rcb < 1.

Figure 3. The behavior of the total cyber accounts model variables varied in 100 days at the cyber
vices free equilibrium when Rcb < 1.
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Figure 4. The behavior of the total cyber accounts model variables varied in 200 days at the cyber
vices free equilibrium when Rcb < 1.

Figure 5. The behavior of the total cyber accounts model variables varied within 365 days at the cyber
vices free equilibrium when Rcb < 1.
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Figure 6. The behavior of the total cyber accounts model variables varied in 20 days at the cyber vices
free equilibrium when Rcb > 1.

Figure 7. The behavior of the total cyber accounts model variables varied within 100 days at the cyber
vices free equilibrium when Rcb > 1.
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Figure 8. The behavior of the total cyber account model variables varied within 200 days at the cyber
vices free equilibrium when Rcb > 1.

Figure 9. The behavior of the total cyber account model variables varied within 365 days at the cyber
vices free equilibrium when Rcb > 1.

5. Conclusion

In this work, we have constructed a mathematical model aimed at understanding
the behavior and spread of cyber vices within vulnerable online accounts and those
engaged in activities such as bullying, scams, dissemination of fake news, and the
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creation of damaging digital footprints, along with examining the effects of relapse
and recovery among these accounts. By applying appropriate mathematical theo-
rems, we have verified the model’s basic features, including its existence, uniqueness,
positivity, and boundedness. Our investigations led us to identify equilibrium states
and compute the basic reproduction number, Rcb, which is crucial for assessing the
system’s stability. Our findings suggest that when Rcb < 1, the cyber environ-
ment remains largely safe and stable, evidenced by the local and global asymptotic
stability of the cyber vices-free equilibrium. On the other hand, if Rcb > 1, it in-
dicates a tendency towards an endemic state of cyber vices within the cyberspace,
characterized by local and global asymptotic stability, if left unchecked. Simulations
conducted to corroborate the model’s stability properties illustrate the potential for
cyber vices to become endemic and intensify over time in the absence of effective
mitigation strategies, thus posing a considerable threat to online safety. The im-
plications of our work show the importance of implementing strategic interventions
to counteract the spread of cyber vices and maintain a healthy and secure online
environment. By devising and executing suitable control measures, it is possible to
decrease the proliferation of malicious activities across cyber accounts, shield those
at risk, and lessen the adverse effects of cyber threats. The equilibrium states, basic
reproduction number Rcb and stability analysis provided by our model offer a cru-
cial thought for the creation of focused and efficacious intervention strategies. It is
imperative for policymakers, cyber security professionals, and other stakeholders to
work together in formulating and applying proactive approaches to combat cyber
vices, thereby preserving the integrity of the digital domain.
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