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Numerical Analysis for Fractional Riccati
Differential Equations Based on Finite Difference

Method

Bowen Xie1 and Yijin Gao2,†

Abstract The fractional Riccati differential equation has a wide application
in various areas, for instance, economics and the description of solar activity.
In this paper, we focus on the numerical approach of the fractional Riccati
differential equations. Two different types of fractional operators are consid-
ered under the Riemann-Liouville and Caputo senses. From the numerical
simulations, we observe that the explicit finite difference method is not sta-
ble. Instead, we employ the implicit finite difference methods to discretize the
complicated systems such that stability can be guaranteed. We also exhibit
the total error estimations for our algorithms to ensure good approximations.
Compared with the other polynomial numerical methods, we can properly ex-
tend the model into a larger domain with a large terminal time, which can
be verified by numerical examples. Further, we discuss some complex numer-
ical examples to demonstrate the performance of our methods and indicate
that our approaches are applicable and tractable to other fractional Riccati
equations.
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1. Introduction

Riccati differential equation has been used widely in the stochastic control [13, 14,
16, 50, 53] and physics [2, 48, 54]. There are various types of Riccati differential
equations and generally, one may see some quadratic forms as in [3, 49]:

dy(t)

dt
= A(t)y(t) +B(t)y2(t) + C(t),

where A(·), B(·), and C(·) are smooth functions. Its numerical and analytical
solutions have been well studied. In [7], the authors established an analytic solution
and a reliable numerical approximation of the Riccati equation by using Adomian’s
decomposition method. [22] presented a method for the computation of the periodic
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nonnegative definite stabilizing solution of the periodic Riccati equation. Algebraic
Riccati equations have been discussed in [5, 20, 21].

As an extension of such a model, a fractional differential operator is employed
since the modified equations significantly improve its application in practice (cf.
[29, 32, 42, 52]). We consider the following fractional Riccati differential equation
(cf. [6]):

Dαy(t) = A(t)y2(t) +B(t)y(t) + C(t), 0 < α ≤ 1, 0 ≤ t ≤ 1, (1.1)

with a given initial condition, which generally has no analytical solutions (cf. [38,
39]). It is natural to establish alternative numerical methods to study the solution
profile.

Several existing methods have been proposed for solving the fractional Riccati
differential equation numerically. [26] proposed a modified variational iteration
method based on Adomian polynomials. In [31], the authors used a fractional-
order Legendre operational matrix. Homotopy perturbation technique and B-spline
operational matrix were discussed in [27, 28]. [18] used the hyperbolic-NILT method
to solve the fractional differential equations. A new modified Atangana-Baleanu was
proposed in [46, 55]. Additionally, the theoretical results regarding the stability were
presented in [10, 11]. Other efficient literature can be found in [1, 15, 24, 25, 35,
40, 42, 56].

However, there are some potential constraints within these existing approaches.
One may see that we have the limitation for variable t in the equation (1.1), and
the polynomial approximation will blow up with t > 1. Our major contribution can
be summarized as the following: First, we consider a new discretization based on
the finite difference method, which expands the original domain for larger t as an
extension:

Dαy(t) = A(t)y2(t) +B(t)y(t) + C(t), 0 < α ≤ 1, t > 1. (1.2)

Second, we establish the error estimation under some mild assumptions, which can
be verified by its corresponding numerical results. Moreover, our analysis is based
on two different fractional operator definitions: Caputo’s fractional definition and
Riemann-Liouville’s fractional definition. Other fractional definitions may be con-
ducted in a similar fashion, and we omit the details for brevity. Last but not least,
we consider an implicit finite difference method instead of an explicit method, which
loses the stability property in general. However, from our numerical experiments,
we observe that the implicit method guarantees the stability of the system, and the
graph fits well. Meanwhile, a quadratic solution is provided to manage the implicit
component.

The rest of the paper is organized as follows. In Section 2, we present the basic
model with two different definitions of fractional operator: Caputo and Riemann-
Liouville. Section 3 provides error estimation based on the implicit finite difference
method, and the theoretical results indicate stability. Then, Section 4 exhibits the
numerical examples to support our theoretical analysis. We draw the conclusions
in the Section 5.
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2. Basic models

2.1. Caputo fractional derivative

There are various types of fractional derivatives given in the literature [8, 33, 34,
43, 45]. We intend to consider Caputo’s fractional derivative in this section.

Definition 2.1. The fractional integral operator with the order α in the Caputo
sense (see [1, 17]) is defined as

C
0 D

α
xy(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1y(m)(t)dt, α > 0, x > 0.

for m− 1 < α ≤ m, m ∈ N, and Γ(·) is the gamma function.

One observes that in our model (1.1) α < 1, which yields that m = 1 in the
above definition. Therefore, the fractional operator can be further written as:

C
0 D

α
xy(x) =

1

Γ(1− α)

∫ x

0

(x− t)−αy′(t)dt, (2.1)

where α, x > 0. This enables us to utilize the finite difference method with a proper
mesh size in the direction of the independent variable, which further implies

C
0 D

αy(tj) =
1

Γ(1− α)

∫ tj

0

y′(t)

(tj − t)α
dt

=
1

Γ(1− α)

j−1∑
k=0

∫ tk+1

tk

y′(t)

(tj − t)α
dt

=
1

Γ(1− α)

j−1∑
k=0

y(tk+1)− y(tk)

(tj − tk)α
.

Therefore, our fractional model (1.2) has the discretization scheme:

A(tj+1)y
2(tj+1) +B(tj+1)y(tj+1) + (C(tj+1)− CA(t0, · · · , tj)) = 0, (2.2)

where the last term depends on all history values:

CA(t0, · · · , tj) ≡
1

Γ(1− α)

j−1∑
k=0

y(tk+1)− y(tk)

(tj − tk)α
.

Notice that our method distinguishes from the finite difference methods for gen-
eral non-fractional equations involving only several past data within each iteration.
Here, (2.2) includes all the history prior to the time tj+1. Hence, it is straight-
forward to solve the implicit scheme in terms of tj+1 with the quadratic formula,
where we may pick its positive value

y(tj+1) =
−B(tj+1) +

√
(B(tj+1))2 − 4A(tj+1)(C(tj+1)− CA)

2A(tj+1)
. (2.3)

Here, the discriminant should be guaranteed to be positive so that no complex
values can be generated. For brevity, we postpone the analysis of discriminant to
Sections 3 and 4.
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2.2. Riemann-Liouville fractional derivative

The Riemann-Liouville (R-L) definition is another widely used fractional differenti-
ation for reality modeling (cf. [23, 30, 36, 41, 47]). We employ the initial definition
of the R-L fractional derivative proposed in [19] and state in the following definition
for clarity.

Definition 2.2. The R-L fractional integral operator with the order 0 < α ≤ 1 is
defined as

RL
0 Dα

xf(x) =
1

Γ(m− α)

dm

dxm

∫ x

0

(x− t)m−α−1f(t)dt,

for x > 0 with m− 1 < α ≤ m, and m ∈ N.

The special case for α = 1 can be reduced to the ordinary first-order derivative.
Thus, in our Riccati model, we assume that α < 1, which leads to m = 1 in the
above definition. Therefore, the fractional operator can be further written as:

Dαy(x) =
1

Γ(1− α)

d

dx

∫ x

0

(x− t)−αy(t)dt, (2.4)

where x > 0 and 0 < α ≤ 1. This enables us to employ the finite difference method
with a mesh size in the direction of the independent variable.

The discretization of our fractional Riccati equation is the literature (cf. [4, 12,
19, 37]). To the best of our knowledge, it is the first time to consider an implicit
relationship and we intend to formulate a quadratic equation. To this end, we define
the new function F (·):

F (t) =
1

Γ(1− α)

∫ t

0

(t− τ)−αy(τ)dτ.

The Riemann-Liouville fractional operator (2.4) renders that

Dαy(x) =
d

dt
F (t) =

F (tj+1)− F (tj)

∆t
, (2.5)

where the discretization is given by

F (tj+1) =
1

Γ(1− α)

∫ tj+1

0

(tj+1 − τ)−αy(τ)dτ,

F (tj) =
1

Γ(1− α)

∫ tj

0

(tj − τ)−αy(τ)dτ.

(2.6)
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We consider a two-point approximation of the integration in (2.6) as follows:

F (tj+1)

=
1

Γ(1− α)

∫ tj+1

0

(tj+1 − τ)−αy(τ)dτ

=
1

Γ(1− α)

j∑
k=0

∫ tk+1

tk

(tj+1 − τ)−α y(tk+1) + y(tk)

2
dτ

=
1

Γ(1− α)

j∑
k=0

y(tk+1) + y(tk)

2

(
− 1

1− α

)[
(tj+1 − tk+1)

−α+1 − (tj+1 − tk)
−α+1

]
= − 1

Γ(2− α)

j∑
k=0

y(tk+1) + y(tk)

2

[
(tj+1 − tk+1)

−α+1 − (tj+1 − tk)
−α+1

]
.

(2.7)

The last equality holds since the properties of gamma function: Γ(z + 1) = zΓ(z)
and we have (1−α)Γ(1−α) = Γ(2−α). Similarly, we can derive the approximation
of F (tj) as follows:

F (tj) =
1

Γ(1− α)

∫ tj

0

(tj − τ)−αy(τ)dτ

=
1

Γ(1− α)

j−1∑
k=0

∫ tk+1

tk

(tj − τ)−α y(tk+1) + y(tk)

2
dτ

=
1

Γ(1− α)

j−1∑
k=0

y(tk+1) + y(tk)

2

(
− 1

1− α

)[
(tj − tk+1)

−α+1 − (tj − tk)
−α+1

]
= − 1

Γ(2− α)

j−1∑
k=0

y(tk+1) + y(tk)

2

[
(tj − tk+1)

−α+1 − (tj − tk)
−α+1

]
.

(2.8)

Substituting them into the expression of F ′(t) in (2.5), we have the discretized
estimation:

d

dt
F (t) =

1

∆tΓ(2− α)

{
−

j∑
k=0

y(tk+1) + y(tk)

2
[(tj+1 − tk+1)

−α+1 − (tj+1 − tk)
−α+1]

+

j−1∑
k=0

y(tk+1) + y(tk)

2

[
(tj − tk+1)

−α+1 − (tj − tk)
−α+1

]}
+Rα,j ,

(2.9)

where Rα,j is the error term defined as (cf. [4]):

Rα,j =
1

∆tΓ(2− α)

{ j∑
k=0

∫ tk+1

tk

y(s)− y(tk+1)

(tj+1 − s)α
ds−

j−1∑
k=0

∫ tk+1

tk

y(s)− y(tk+1)

(tj − s)α
ds

}
.

Therefore, our fractional model (1.2) obtains the discretization scheme:

F (tj+1)− F (tj)

∆t
= A(tj+1)y

2(tj+1) +B(tj+1)y(tj+1) + C(tj+1), (2.10)
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where the left-hand side can be computed using (2.9). It is worth mentioning that
we tend to use the implicit scheme as in the right-hand side of (2.10), which further
yields quadratic equation in terms of the value at tj+1 with some simple algebraic
manipulations as follows:

NA(tj+1)y
2(tj+1) + (NB(tj+1)− 1)y(tj+1) +NC(tj+1) +M = 0, (2.11)

where N and M are quantities depending on the index j and the past values of
function y at t0, · · · , tj , and they are defined as follows:

N = − 1

ajj
∆tαΓ(2− α),

M = −y(tj) +
1

ajj

(
−

j−1∑
k=0

(y(tk+1) + y(tk))ajk +

j−1∑
k=0

(y(tk+1) + y(tk))bjk

)
.

(2.12)

Further, the scalers are defined as

ajk = (j − k)1−α − (j + 1− k)1−α,

bjk = (j − k − 1)1−α − (j − k)1−α.
(2.13)

For the specific j ≡ k, we have ajj = bj,j−1 = −1, aj,j−1 = 1 − 21−α. Hence, it is
straightforward to solve the implicit scheme with the quadratic formula (positive
value),

y(tj+1) =
−(NB(tj+1)− 1) +

√
(NB(tj+1)− 1)2 − 4NA(tj+1)(NC(tj+1) +M)

2NA(tj+1)
.

(2.14)
The discriminant should be guaranteed to be positive so that no complex values
will be generated. For brevity, we postpone the analysis of discriminant to Sections
3 and 4.

3. Error estimations

In this section, we focus on the error estimation for the fractional Riccati differential
equation. To simplify the calculation, we take the specific equation as an example :

D1/2y(t) + y(t) + y2(t) = g(t), (3.1)

where g(t) = 8t3/2

3
√
π
+ t2 + t4. The exact solution is y(t) = t2, and the initial value is

y(0) = 0. Our theorems are divided into two settings: one is based on the Caputo
fractional definition, and the other is according to the R-L fractional definition.

Theorem 3.1. In the Caputo fractional Riccati in Section 2.1, we consider the
scheme starting at the origin with initial condition y(t1 = 0) = 0. Then we have

the basic estimation for the solution at each point y(tn) = ((n− 1)∆t)
2
+ O(∆tλ),

where ∆t is the mesh size and λ is the higher order number.
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Proof. We simplify this equation with an implicit finite difference method,

g(tj+1) =
1

Γ(1− α)

∫ tj

0

y′(s)

(tj − s)α
ds+ y(tj+1) + y2(tj+1)

=
1

Γ(1− α)

j−1∑
i=1

∫ ti+1

ti

y′(s)

(tj − s)α
ds+ y(tj+1) + y2(tj+1)

=
1

Γ(1− α)

j−1∑
i=1

y(ti+1)− y(ti)

(tj − ti)α
+ y(tj+1) + y2(tj+1).

(3.2)

We further introduce the quantity

CA(t0, · · · , tj) =
1

Γ(1− α)

j−1∑
i=1

y(ti+1)− y(ti)

(tj − ti)α
, (3.3)

which is independent of y(tj+1) but depending on the past values of y at t1, · · · , tj .
Then we have the modified equation:

y2(tj+1) + y(tj+1) + (CA(t0, · · · , tj)− g(tj+1)) = 0, (3.4)

which has the solution through the quadratic formula:

y(tj+1) =
−1 +

√
1− 4(CA(t0, · · · , tj)− g(tj+1))

2
. (3.5)

Take the example for g(t) = 8t3/2

3
√
π

+ t2 + t4 with t ≥ 0 into consideration, which

implies

g(tj+1) =
8(jh)3/2

3
√
π

+ t2j+1 + t4j+1 ≈ 8(h)3/2

3
√
π

+ (jh)2 + (jh)4.

Notice that

CA(t0, · · · , tj) =
1

Γ(1− α)

j−1∑
i=1

[(j − i)h]−α (y(ti+1)− y(ti)) .

Now it is crucial to estimate the discriminant
√

1− 4(CA(t0, · · · , tj)− g(tj+1)). We
may approximate it using the mesh size h as follows:√

1− 4(CA − g(tj+1))

≈

√√√√(2(jh)2 + 1)2 + 4

(
8(jh)3/2

3
√
π

− 1√
π

j−1∑
i=1

(y(ti+1)− y(ti))(j − i)−1/2h−1/2

)
≈ 2(jh)2 + 1.

(3.6)

This estimation indicates that our solution y(tj+1) at time tj+1 can be approximated
using (jh)2, namely y(tj+1) ≈ (jh)2, which coincides with our analytical solution
of the Caputo fraction Riccati equation. Notice that we may assume yi = y(ti) ≈
(i−1)2h2. The summation part can be thought of asMh3/2 whereM is a constant,
and it is negligible in our estimation.
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Theorem 3.2. In the R-L fractional Riccati defined in Section 2.2, we consider

A(t) = −1, B(t) = −1, C(t) = g(t) = 8t3/2

3
√
π
+ t2 + t4 for all t ∈ [0, T ]. Then y(tj+1)

can be approximated by (jh)2 for small h, where h > 0 is the mesh size of our
iteration.

Proof. We substitute the coefficients A,B, and C into the equation (2.14) to
obtain

y(tj+1) =
N + 1−

√
(N + 1)2 + 4N(tj+1)(NC(tj+1) +M)

−2N
, (3.7)

where N = ∆tαΓ(2− α) is a positive number, and

M = −y(tj)−

(
−

j−1∑
k=0

(y(tk+1) + y(tk))ajk +

j−1∑
k=0

(y(tk+1) + y(tk))bjk

)

= −y(tj) +
j−1∑
k=0

[y(tk+1) + y(tk)](ajk − bjk).

Here we intend to show that the numerator of (3.7) can be estimated using some
scaled (jh)2 as follows:

N + 1−
√
(N + 1)2 + 4N(tj+1)(NC(tj+1) +M) ≈ −2N(jh)2, (3.8)

If we square both sides of (3.8), we obtain

(N + 1)2 + 4N(tj+1)(NC(tj+1) +M) ≈ 4N2(jh)4 + (N + 1)2 + 4N(N + 1)(jh)2.

With some easy algebraic manipulations, we further obtain

N(tj+1)(NC(tj+1) +M) ≈ N2(jh)4 +N(N + 1)(jh)2.

Then we substitute the function C(·) in our case to derive

NM +N2 8(jh)
3/2

3
√
π

≈ N(jh)2.

We are left to estimate the value of M as follows:

M = −y(tj)−

(
−

j−1∑
k=0

(y(tk+1) + y(tk))ajk +

j−1∑
k=0

(y(tk+1) + y(tk))bjk

)

= −y(tj) +
j−1∑
k=0

[y(tk+1) + y(tk)](ajk − bjk)

≈ −((j − 1)h)2 +

j−1∑
k=0

[
(kh)2 + (k − 1)2h2)

]
(ajk − bjk)

= h2

(
−(j − 1)2 +

j−1∑
k=0

(k2 + (k − 1)2)(ajk − bjk)

)
≈ (jh)2.
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It is straightforward to obtain that the last approximation converges as j tends to
infinity by Matlab, namely, if we set the task function:

f(j) =
1

j2

(
−(j − 1)2 +

j−1∑
k=0

(k2 + (k − 1)2)(ajk − bjk)

)
,

one can easily deduce that f(j) converges to 1 as j tends to infinity. This completes
the proof.

4. Numerical examples

In this section, we give three examples to exhibit our numerical methods in estimat-
ing the R-L and Caputo fractional Riccati equations. Meanwhile, we use a complex
function in Example 4.3 to demonstrate the performance of our methods compared
with polynomial approximations in terms of unusual complicated models with large
terminal time.

Example 4.1. We consider the fractional Riccati equation

D1/2y(t) + y(t) + y2(t) = g(t), (4.1)

where g(t) = 8t3/2

3
√
π

+ t2 + t4 with initial value y(0) = 0. The exact solution is

y(t) = t2. We plot the Figure 1 based on R-L fractional definition and Figure 2 for
Caputo definition. The absolute error is shown in Figures 3 and 4. Moreover, the
relative errors with different mesh sizes and terminal times are given in Table 1.

Table 1: Relative errors for R-L and Caputo Riccati

h = 0.1, T = 10 h = 0.2, T = 10 h = 0.5, T = 10

R-L 0.006693708 0.006289459 0.005233233

Caputo 0.001817859 0.002459315 0.003605995

h = 0.1, T = 20 h = 0.2, T = 20 h = 0.5, T = 20

R-L 0.00141319 0.001349044 0.001182568

Caputo 0.000333145 0.000454120 0.000678630

h = 0.1, T = 50 h = 0.2, T = 50 h = 0.5, T = 50

R-L 0.000169318 0.000163655 0.000149126

Caputo 3.443717×10−5 4.715865×10−5 7.129121×10−5

We find that even though the finite difference method of the R-L and Caputo
fractional Riccati equations can generate good approximations of the analytical
solution t2 for different mesh sizes and terminal times (see Figures 1 and 2), Caputo
definition provides less relative errors. However, one may notice fluctuations of
absolute errors at the beginning of the iteration (see Figure 4), and they eventually
tend to zero at terminal times. Both definitions in our finite difference method
render decent approximations in this example. Further, our algorithms provide

OPEN ACCESS

DOI https://doi.org/10.12150/jnma.2025.189 | Generated on 2025-04-09 07:43:18



198 B. Xie & Y. Gao

Figure 1. R-L fractional Riccati (4.1) with different mesh sizes and terminal times

Figure 2. Caputo fractional Riccati (4.1) with different mesh sizes and terminal times

the accurate approximation solution at large terminal times T , and they still yield
better approximation compared with polynomial approximation methods (see [6,
15, 31, 56]).
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Figure 3. Absolute errors of R-L fractional Riccati (4.1) with different mesh sizes and terminal times

Figure 4. Absolute errors of Caputo fractional Riccati (4.1) with different mesh sizes and terminal
times

Remark 4.1. We can also apply the Taylor expansion method to analyze such a
model. The details are presented in Appendix A.
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Example 4.2. For the second example, we consider the fractional Riccati equation

D1/2y(t) + y2(t) = h(t), (4.2)

where h(t) = 1√
π

32
10 t

5/2 + t6 with initial value y(0) = 0. The exact solution is

y(t) = t3. We plot Figure 5 based on the R-L fractional definition and Figure 6
Caputo definition. The absolute error is shown in Figures 7 and 8. Furthermore,
the relative errors with different mesh sizes and terminal times are given in Table
2.

Table 2: Relative errors for R-L and Caputo Riccati

h = 0.1, T = 10 h = 0.2, T = 10 h = 0.5, T = 10

R-L 0.000971738 0.000869276 0.000635862

Caputo 0.000976501 0.000877992 0.000709786

h = 0.1, T = 20 h = 0.2, T = 20 h = 0.5, T = 20

R-L 0.000101877 9.381754380×10−5 7.549694872×10−5

Caputo 0.000139692 0.000131738 0.000117240

h = 0.1, T = 50 h = 0.2, T = 50 h = 0.5, T = 50

R-L 4.861499585×10−6 4.579302659×10−6 3.946757902×10−6

Caputo 9.784884134×10−6 9.520875324×10−6 9.021742935×10−6

Figure 5. R-L fractional Riccati (4.2) with different mesh sizes and terminal times
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Figure 6. Caputo fractional Riccati (4.2) with different mesh sizes and terminal times

Figure 7. Absolute errors of R-L fractional Riccati (4.2) with different mesh sizes and terminal times

In this example, we can draw a similar conclusion as the previous example, which
shows that both R-L and Caputo fractional Riccati provide a good approximation
of the analytical solution t3 in Example 4.2 by using the finite difference method.
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Figure 8. Aboslute errors of Caputo fractional Riccati (4.2) with different mesh sizes and terminal
times

The relative errors are acceptable numerically. Figures 7 and 8 indicate that the
absolute errors tend to zero regardless of mesh sizes and terminal times so that our
methods enable large terminal-time approximations.

Example 4.3. We consider the fractional Riccati equation

D1/2y(t) + y2(t) = h(t), (4.3)

where

h(t) =
e√
π

(
1√
t
− 2F (

√
t)

)
+ e2−2t, (4.4)

where F function is the Dowson integral [9, 51] with initial value y(0) = e. The
exact solution is y(t) = e1−t. Figure 9 demonstrates the approximation of the R-L
Riccati in the setting of (4.3).

Even though the function h(·) in the fractional Riccati (4.3) takes an unusual
Dowson integration, the simulation yields a nice approximation to the R-L Riccati
equation (4.3) in Figure 9. This example indicates the power of our method, which
is applicable and tractable in complex cases regardless of terminal times (see (4.3)).

Remark 4.2. It is worth mentioning that some limitations exist for our proposed
method. Firstly, its accuracy is still uncertain when dealing with the corresponding
partial differential equation, which is a more complicated system. Moreover, its
practical applications are moot. It is also natural to see some connections between
the implicit method with machine learning techniques as a function approximation.
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Figure 9. R-L fractional Riccati (4.3) with different mesh sizes and terminal times

5. Conclusion

In this paper, we focus on the fractional Riccati differential equation with two differ-
ent definitions: Caputo and Riemann-Liouville. We discretize the system with the
normal finite difference method and find the iteration through a non-trivial implicit
scheme, which is different from the previous discussion. The implicit method can
guarantee the stability of the system and make the solution smooth. The solution
can be estimated by solving a quadratic equation. Further, the error estimations
demonstrate the accuracy of the algorithm, and numerical simulations fit well in the
numerical examples. Moreover, our methods provide the possibility to track large
terminal time and render good approximations at the tails. There are two interest-
ing paths we can follow in our further work: (i) We may extend the similar method
to other fractional differential equations proposed in physics and engineering; (ii)
In this paper, we only consider the time-dependent fractional operator. One may
consider the space-dependent fractional operator, which can be challenging from the
numerical perspective due to the past-dependent phenomenon. It remains unknown
if one can draw connections with the Mittag-Leffler function (cf. [44]).

A. Taylor expansion

We aim to solve the fractional differential equation problem by proper Taylor ex-
pansions of the task functions. Consider Example 4.1:

D1/2y(t) + y(t) + y2(t) = g(t). (A.1)
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The normal Taylor expansion of y(s) with respect to variable t can be given as
follows:

y(s) = y(t) + y′(t)(s− t) +
1

2
(s− t)2y′′(t) +O((s− t)3).

Then, the first derivative of y(s) can be written as

y′(s) = y′(t) + (s− t)y′′(t) +O((s− t)3).

If we substitute it into (A.1) under the Caputo definition, we have

1

Γ(1− α)

∫ t

0

y′(t) + (s− t)y′′(t)

(t− s)1/2
ds+ y(t) + y2(t) = g(t).

The basic algebra indicates that∫ t

0

(t− s)−1/2ds = 2
√
t,∫ t

0

s

(t− s)1/2
ds =

4

3
t3/2.

Thus we derive that∫ t

0

y′(t) + (s− t)y′′(t)

(t− s)1/2
ds = 2

√
ty′(t)− 2

3
t3/2y′′(t).

Since we have the analytical solution y(t) = t2, one can observe that the above
equation becomes

2
√
t(2t)− 2

3
t3/2(2) =

8

3
t3/2,

which is the first part of the right-hand side of g(t).
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[6] C. Bota and B. Căruntu, Analytical approximate solutions for quadratic ric-
cati differential equation of fractional order using the polynomial least squares
method, Chaos, Solitons & Fractals, 2017, 102, 339–345.

[7] H. Bulut and D. J. Evans, On the solution of the riccati equation by the decom-
position method, International Journal of Computer Mathematics, 2002, 79(1),
103–109.

[8] M. Caputo and M. Fabrizio, A new definition of fractional derivative without
singular kernel, Progress in Fractional Differentiation & Applications, 2015,
1(2), 73–85.

[9] W. Cody, K. A. Paciorek and H. C. Thacher, Chebyshev approximations for
dawson’s integral, Mathematics of Computation, 1970, 24(109), 171–178.
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[46] G. u. Rahman, J. Gómez-Aguilar and D. Ahmad, Modeling and analysis of an
implicit fractional order differential equation with multiple first-order fractional
derivatives and non-local boundary conditions, The European Physical Journal
Special Topics, 2023, 232(14), 2367–2383.
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