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Abstract. In online learning, the data is provided in sequential order, and the goal of the learner is to make
online decisions to minimize overall regrets. This note is concerned with continuous-time models and algo-
rithms for several online learning problems: online linear optimization, adversarial bandit, and adversarial
linear bandit. For each problem, we extend the discrete-time algorithm to the continuous-time setting and
provide a concise proof of the optimal regret bound.
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1 Introduction

In online learning, the data is provided in sequential order, and the goal of the learner
is to make online decisions to minimize overall regrets. This is particularly relevant for
problems with a dynamic aspect. This topic has produced many surprisingly efficient
algorithms that are nothing short of magic.

This note is concerned with several important online learning problems:

• online linear optimization,

• adversarial bandit,

• adversarial linear bandit.

For each problem, we define a regret that quantifies how much worse a learning algo-
rithm’s performance is compared to the best fixed strategy in hindsight. In most of the ex-
isting literature, online learning problems are often placed in the discrete-time setting, and
many discrete-time algorithms have been developed to achieve optimal regret bounds.
However, there has been relatively little work for online learning in the continuous-time
setting. In this note, for each of these problems, we propose a continuous-time model,
describe an algorithm motivated by the discrete-time version, and provide a simple proof
for the optimal regret bound. The main technical tools are Legendre transform and Ito’s
lemma.

Several books, reviews, and lecture notes are devoted to online learning [1, 2, 4, 6, 8,
11, 12] in the discrete-time setting. In recent years, there has been a growing interest in
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the continuous-time setting [3, 5, 10, 13, 14]. Among them, [3, 13] proposed diffusion ap-
proximations for Thompson sampling algorithms for multi-arm bandits; [5,14] developed
continuous models based on Hamilton-Jaboi-Bellman equation for two-armed bandits;
and [10] proposed the first continuous prediction models for the experts’ advice setting.
Our result for the adversarial bandit problem is closely related to the work in [10].

The rest of this note is organized as follows. Section 2 summarizes the main results
of the Legendre transform. Section 3 discusses the online linear optimization problem.
Section 4 presents the continuous-time model for the adversarial bandit. Section 5 extends
the result to the adversarial linear bandit.

2 Legendre transform

Let X be a convex set in R
d and F(x) be a convex function defined on X. To simplify the

discussion, we assume that F(x) is strictly convex.
The Legendre transform [7], denoted by G(y), of F(x), is defined as

G(y) ≡ max
x∈X

y⊤x − F(x),

where the domain Y of the set where G(y) is bounded.
Let x(y) be the point where the maximum is achieved for a given y. Then

y = ∇F
(

x(y)
)

.

A key result of Legendre transform is that F(x) is also the Legendre transform of G(y)

F(x) = max
y∈Y

x⊤y − G(y)

and, similarly for a given x, the maximizer y(x) satisfies

x = ∇G
(

y(x)
)

.

A trivial but useful inequality is

F(x) + G(y) ≥ x⊤y.

In this note, we are concerned with the following case:

X = ∆d ≡
{

(x1, . . . , xd) : xa ≥ 0,
d

∑
i=1

xi = 1

}

, Y = R
d

with F(x) and G(y) given by

F(x) = β−1
d

∑
i=1

xi ln xi, G(y) = β−1 ln

(

d

∑
i=1

exp(βyi)

)

(2.1)

with β > 0.
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Notations. The calculations in this note involve explicit manipulations of the entries
of vectors and matrices. For a vector v, we will use vi to denote its i-th coordinate. For
a matrix M, Mij denotes its (i, j)-th component. On the other hand, when given an ar-

ray Mij of scalars, we use [Mij] to denote the associated matrix. For example, we shall

encounter at several places the gradient and the Hessian of G(y) in (2.1). For example,
a direct calculation shows that, in the component form,

∇G(y)i =
exp(βyi)

∑j exp(βyj)
, 1 ≤ i ≤ d,

∇2G(y)ij = β
(

δij∇G(y)i −∇G(y)i∇G(y)j

)

, 1 ≤ i, j ≤ d.

3 Online linear optimization

Discrete-time problem. The discrete-time online linear optimization [15] is stated as fol-
lows. At each round t = 1, . . . , T,

• the learner picks xt ∈ X = ∆d,

• the adversary picks a reward vector rt ∈ [0, 1]d,

• the learner observes rt and gets reward x⊤t rt.

The regret is defined as

R = max
x∈X

∑
t

(x − xt)
⊤rt.

Remark 3.1. In most of the literature, the problem is formulated as minimizing the loss
rather than maximizing the reward. These two formulations are equivalent. We choose
the latter to put the problem into a Legendre transform setting.

Discrete-time algorithm. An optimal algorithm for this problem is called follow-the-
regularized-leader [15]. At each round t = 1, . . . , T, the learner chooses

xt = argmax
x∈X

(

x⊤
(

t−1

∑
z=1

rz

)

− F(x)

)

for F(x) in (2.1). A direct computation shows that

xt ∝ exp

(

β
t−1

∑
z=1

rz

)

.

This algorithm is also called the multiplicative weights method, since the exponent of xt

can also be updated as xt ∝ xt−1 exp (βrt−1) at each round t. By setting β =
√

2 ln d/T in

(2.1), the discrete-time regret can be bounded by O(
√

T ln d) [6].

Continuous-time problem. The continuous-time model is stated as follows. At each
time t ∈ [0, T],
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• the learner picks x(t) ∈ X,

• the adversary picks reward r(t) ∈ [0, 1]d,

• the learner observes r(t) and gets reward x(t)⊤r(t).

By introducing the cumulative reward

s(t) ≡
∫ t

0
r(z)dz,

the continuous-time regret is

R = max
x∈X

(

x⊤s(T)−
∫ T

0
x(t)⊤ds(t)

)

.

Continuous-time algorithm. Motivated by the discrete-time setting, we set the action
at time t as

x(t) = argmaxx∈X

(

x⊤s(t)− F(x)
)

.

By Legendre transform,
x(t) = ∇G

(

s(t)
)

.

Continuous-time regret bound. The regret analysis is particularly simple in the conti-
nuous-time setting.

Theorem 3.1. For any β > 0, the continuous-time regret is bounded by β−1 ln d.

Proof. For any x ∈ X,

x⊤s(T)−
∫ T

0
x⊤ds(t)

= x⊤s(T)−
∫ T

0
∇G

(

s(t)
)⊤

ds(t)

= x⊤s(T)− G
(

s(T)
)

+ G(0)

≤ F(x) + G(0) ≤ β−1 ln d.

Here we used the facts that x⊤s ≤ G(s) + F(x), F(x) ≤ 0, and G(0) = β−1 ln d.

Remark 3.2. By letting β approach infinity, the regret goes to zero. This shows that in the
continuous-time case, following the leader (i.e. β = ∞) is, in fact, the optimal strategy.
This is different from the discrete-time setting.

4 Adversarial bandit

Discrete-time problem. The discrete-time setting is stated as follows. The arms are in-
dexed by {1, . . . , d}. At the beginning, the adversarial chooses the rewards r1, . . . , rt ∈
[0, 1]d. In each round t = 1, . . . , T,
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• the learner picks arm at,

• the learner gets reward rt,at (but without knowing other components of rt).

Since the arm can be chosen randomly, the regret is defined as

R = max
i

E ∑
t

(rt,i − rt,at).

Discrete-time algorithm. The algorithm performs two tasks at each round t:

(1) Computing a probability distribution pt for selecting the arm.

(2) Forming an estimate r̂t of rt based on the only reward rt,at received.

Assuming that r̂z are available for time z < t, the algorithm defines the probability

pt,i ∝ exp

(

β
t−1

∑
z=1

r̂z,i

)

for an appropriate β value and the reward estimate

r̂t,i =







rt,at

pt,at

, i = at,

0, otherwise.

From the properties of the Legendre transform,

pt = ∇G

(

t−1

∑
z=1

r̂z

)

.

The random estimate r̂t is unbiased
Er̂t = rt,

and its covariance matrix Σt has entries given by

Σt,ij =
r2

t,i

pi
δij − rt,irt,j.

By setting β =
√

2 ln d/dT, the discrete-time regret can be bounded by
√

2Td ln d [6].

Continuous-time problem. The continuous-time model is stated as follows. At the
beginning, the adversarial chooses the rewards r(t) ∈ [0, 1]d for 0 ≤ t ≤ T. At each time
t ∈ [0, T],

• the learner picks arm a(t),

• the learner gets reward r(t)a(t) (but without knowing other components of r(t)).

The continuous-time regret is defined as

R = max
i

E

∫ T

0

(

r(t)i − r(t)a(t)

)

dt.
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Continuous-time algorithm. Motivated by the discrete-time algorithm, we adopt the
reward estimate

r̂(t)i =











r(t)a(t)

p(t)a(t)
, i = a(t),

0, otherwise.

Then the cumulative reward estimate s(t) ∈ R
d follows the following stochastic differen-

tial equation (SDE) [9]:
ds(t) = r(t)dt + σ(t)dB(t),

where σ(t)σ(t)⊤ = Σ(t) with

Σ(t)ij =
r(t)2

i

p(t)i
δij − r(t)ir(t)j.

The probability of choosing arm i at time t is

p(t)i ∝ exp
(

βs(t)i

)

.

Notice that p(t) = ∇G(s(t)).

Continuous-time regret bound. The following theorem states the regret bound of the
continuous-time algorithm after optimizing β.

Theorem 4.1. For β =
√

2 ln d/dT, the continuous-time regret is bounded by
√

2Td ln d.

Proof. For an arbitrary arm a, let x = (0, . . . , 1, . . . , 0)⊤ with 1 at the a-th slot. The regret
with respect to a can be recast as

E

(

x⊤s(T)−
∫ T

0
∇G

(

s(t)
)⊤

ds(t)

)

.

In order to bound
∫ T

0 ∇G(s(t))⊤ds(t), we use Ito’s lemma

dG(s) = ∇G(s)⊤ds +
1

2
ds⊤∇2G(s)ds.

The second (quadratic variation) term can be written as

1

2
tr
(

dsds⊤∇2G
)

=
1

2
tr
(

Σ(t)∇2G
)

dt

=
β

2
tr

(

[

r(t)2
i

p(t)i
δij − r(t)ir(t)j

]

[

δij p(t)i − p(t)i p(t)j

]

)

dt.

Using the facts that both matrices are symmetric nonnegative definite and that the product
only increases if one makes the matrices more positive definite, we can bound this by

β

2
tr

(

[

r(t)2
i

p(t)i
δij

]

[

δij p(t)i

]

)

dt ≤ βd

2
dt,
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where we used r(t) ∈ [0, 1]d. From this, we can bound the regret by

E

(

x⊤s(T)−
∫ T

0
dG
(

s(t)
)

)

+
βdT

2

= E

(

x⊤s(T)− G
(

s(T)
)

)

+ G(0) +
βdT

2

≤ F(x) + G(0) +
βdT

2
≤ β−1 ln d +

βdT

2
.

By choosing β =
√

2 ln d/dT, the regret can be bounded by
√

2Td ln d.

5 Adversarial linear bandit

In practice, there might be many but correlated arms. A common setting is an arm set

A = {a} ⊂ R
d with |A| = k ≫ d. Assume that each arm a ∈ R

d satisfies ‖a‖1 ≤ 1.

Discrete-time problem. At the beginning, the adversarial chooses the rewards r1, . . ., rT

∈ [0, 1]d. In each round t = 1, . . . , T,

• the learner picks arm at ∈ A,

• the learner gets reward a⊤t rt (but without knowing other information about rt).

The discrete-time regret is defined as

R = max
a∈A

E ∑
t

(a − at)
⊤rt.

Discrete-time algorithm. The discrete-time algorithm performs two tasks at round t:

(1) Computing a probability distribution pt for selecting an arm.

(2) Forming an estimate r̂t for rt based only on a⊤t rt.

Assuming that r̂z are available for time z < t, the algorithm defines the probability

pt,a ∝ exp

(

β
t−1

∑
z=1

r̂⊤z a

)

for some β > 0 and the reward estimate

r̂t = Q−1
t at

(

a⊤t rt

)

, Qt = ∑
a∈A

pt,aaa⊤.

The random estimate r̂t is unbiased
Er̂t = rt,

and it has a covariance matrix Σt ∈ R
d×d given by

Σt = ∑
a∈A

pt,aQ−1
t a
(

a⊤rt

)(

r⊤t a
)

a⊤Q−1
t − rtr

⊤
t .
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By setting β = O(
√

ln k/dT) and including appropriate exploration, the regret can be

bounded by O(
√

Td ln k) [6]. Notice that it depends only logarithmically on the number
of arms k.

Continuous-time problem. The continuous-time model is given as follows. At the

beginning, the adversarial chooses the rewards r(t) ∈ [0, 1]d for 0 ≤ t ≤ T. At each time
t ∈ [0, T],

• the learner picks arm a(t),

• the learner gets reward a(t)⊤r(t) (but without knowing other information of r(t)).

The continuous-time regret is defined as

R = max
a∈A

E

∫ T

0

(

a − a(t)
)⊤

r(t)dt.

Continuous-time algorithm. Motivated by the discrete-time algorithm, we use the
reward estimate

r(t) = Q(t)−1a(t)
(

a(t)⊤r(t)
)

, Q(t) = ∑
a∈A

p(t)aaa⊤.

Then the cumulative reward estimate s(t) ∈ R
d follows the following stochastic differen-

tial equation:
ds(t) = r(t)dt + σ(t)dB(t),

where σ(t)σ(t)⊤ = Σ(t) with

Σ(t) = ∑
a

p(t)aQ(t)−1a
(

a⊤r(t)
)(

r(t)⊤a
)

a⊤Q(t)−1 − r(t)r(t)⊤.

The probability of choosing arm a at time t is

p(t)a ∝ exp
(

βa⊤s(t)
)

.

Continuous-time regret bound. Let A be the k × d matrix with rows given by a⊤.

Instead of defined over R
d, we redefine F(x) and G(x) over R

k

F(x) = β−1
k

∑
i=1

xi ln xi, G(y) = β−1 ln

(

k

∑
i=1

exp(βyi)

)

.

Notice that G(0) = β−1 ln k and now p(t) = ∇G(As(t)) ∈ R
k.

Theorem 5.1. For β =
√

2 ln k/dT, the continuous-time regret is bounded by
√

2Td ln k.

Proof. For an arbitrary arm a, let x = (0, . . . , 1, . . . , 0)⊤ with 1 at the a-th slot. The regret
with respect to a can be written as

E

(

x⊤As(T)−
∫ T

0
∇G

(

As(t)
)⊤

d
(

As(t)
)

)

.
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To bound
∫ T

0 ∇G(As(t))⊤d(As(t)), we again invoke Ito’s lemma

dG(As) = ∇G(s)⊤Ads +
1

2
ds⊤A⊤∇2G(As)Ads.

The second (quadratic variation) term can be written as (hiding the t dependence)

1

2
tr
(

Adsds⊤A⊤∇2G(As)
)

=
1

2
tr
(

AΣ(t)A⊤∇2G(As)
)

dt

=
β

2
tr

(

A⊤[δab pa − pa pb]A

(

∑
a

paQ−1a(a⊤r)(r⊤a)a⊤Q−1

))

dt

≤ β

2
tr

(

A⊤[δab pa]A

(

Q−1 ∑
a

apaa⊤Q−1

))

dt ≤ βd

2
dt.

Here we used ‖a⊤r‖ ≤ 1, A⊤[δab pa]A = Q, and ∑a apaa⊤ = Q.
From this, we can bound the regret by

E

(

x⊤As(T)−
∫ T

0
dG
(

As(t)
)

)

+
βdT

2

= E

(

x⊤As(T)− G
(

As(T)
)

)

+ G(0) +
βdT

2

≤ F(x) + G(0) +
βdT

2
≤ β−1 ln k +

βdT

2
.

By choosing β =
√

2 ln k/dT, the regret can be bounded by
√

2Td ln k.

Notice again that the bound depends only logarithmically on the number of arms k.

6 Discussions

This note discusses continuous-time formulations and algorithms for several online learn-
ing problems. The main advantage of the continuous-time approach is that the proof
of the regret bounds can be made concise. Many other online learning problems can be
addressed similarly, including online convex optimization, semi-bandits, combinatorial
bandits, and stochastic bandits.
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