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Abstract. This paper presents a method for finding a sparse representation of Barron functions. Specifically,
given an L2 function f , the inverse scale space flow is used to find a sparse measure µ minimising the L2 loss
between the Barron function associated to the measure µ and the function f . The convergence properties of
this method are analysed in an ideal setting and in the cases of measurement noise and sampling bias. In
an ideal setting the objective decreases strictly monotone in time to a minimizer with O(1/t), and in the case
of measurement noise or sampling bias the optimum is achieved up to a multiplicative or additive constant.
This convergence is preserved on discretization of the parameter space, and the minimizers on increasingly
fine discretizations converge to the optimum on the full parameter space.
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1 Introduction

Most neural networks contain a subnetwork with fewer parameters that performs equally
well [36], and some of these subnetworks have been found to generalise equally or even
better than their dense counterparts [28, 29]. However, it is a priori hard to determine
which parameters of the network will be part of the subnetwork. Hence, various ap-
proaches have been developed for finding well performing sparse neural network. They
fall roughly in three categories. The first is to add a term to the loss or regularizer that
promotes sparsity. An example of this would be the least absolute shrinkage and selection
operator (LASSO), in which a ℓ1 regularizer is added [39]. The second is to train a net-
work first and prune it afterwards, meaning weights are reduced with as little as possible
influence on the performance [31]. The third is to start with a sparse architecture, and add
or remove neurons during training [22].

One of the methods, which starts from a sparse architecture, is based on the Bregman
iteration [33]. This method has been introduced and thoroughly analysed for imaging
and compressed sensing [15, 17, 44]. The method works in these settings by progressively
adding more detail to the reconstructed images and signals, respectively. A limitation
of the original method is that it requires that often requires the problem to be convex.
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However, adaptations of the method, e.g. the linearized variant in [5, 13], where the loss
is replaced by a first order approximation, allows for a successful application to neural
networks. A major success of this method is that it is able to find an auto-encoder without
ever explicitly defining an auto-encoder like architecture [12]. This shows that it has major
potential for automatic neural network architecture design tasks.

1.1 Related work

Bregman iterations were introduced in [33] and further developed and analysed in [1,6,15,
17–19,43,44] as an algorithm to solve sparsity promoting regularisation tasks in computer
vision. Linearized Bregman iterations as introduced in [18, 44] can be seen as a general-
ization of the mirror descent algorithm [4,32] to the non-differentiable, convex case. More
recently, variants of the original algorithm have been applied in the context of machine
learning, see, e.g. [12, 13, 40, 41].

Bregman iterations are the implicit Euler discretization of an inverse scale space flow.
Going to the continuous limit has helped to find easy implementations for relatively com-
plex functionals like the total variation functional, and has helped to obtain well-justified
and simple stopping criteria [14]. In the finite-dimensional case of sparse regularization
(and further generalizations) an exact time discretization can be found, which leads to
efficient methods [15, 30]. We refer to [6] for recent overview.

Similar to inverse scale space flow being the continuous limit of the Bregman iterations,
we have that the Barron spaces are the continuous limit of shallow neural network. It was
proven that Barron functions have bounded point evaluations [2,38], Barron functions can

be approximated in Lp with rate O(m−1/p) [26], Barron spaces have a represented theo-
rem [34] and that Barron spaces are a kind of integral reproducing kernel Banach spaces
(RKBS), a Banach space analogue to reproducing kernel Hilbert spaces (RKHS) [2]. The
spaces are parametrized by the activation function of the networks. The Barron spaces
associated to most of the commonly used non-periodic activation are embedded in the
Barron space with ReLU as activation function [27]. This Barron space together with the
Barron spaces associated to the rectified power unit (RePU), the higher-order generaliza-
tion of the ReLU, are strongly related to bounded variation (BV) spaces [26, 34].

A fundamental open question in machine learning is how to find the best function
representing your data. For Barron spaces, this means finding the best measure µ repre-
senting the Barron function f . Since the relation between µ and f is linear, this leads to
a convex minimization problem. Based on an alternative representation of Barron func-
tions in probability space, the authors in [42] formulated a Wasserstein gradient flow for
this problem based on the ideas of [21]. Under several assumptions, including omnidi-
rectional initial conditions and satisfying the Morse-Sard property, this leads to a unique
solution π [42]. However, not all Barron functions satisfy the Morse-Sard property, plac-
ing a limit on the functions that can be represented with this approach [42]. Although this
unique solution π represents the Barron function f , it is not necessarily the probability
measure for f with the smallest semi-norm. In order to find sparse neural networks, there
is a need for a method that minimizes this semi-norm as well.
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1.2 Background information

This section provides the relevant background information needed of Barron spaces and
Bregman iterations.

1.2.1 Barron spaces

Fix d ∈ N and σ as an element of C0,1(R) or the ReLU activation function max(0, x). Let
X ⊆ R

d and Ω ⊆ R
d × R. Consider a probability measure ρ ∈ P(X ), and define

Kµ(x) =
∫

Ω
σ(a⊺x + b)dµ(a, b) (1.1)

for µ ∈ M(Ω). Barron space Bσ is the Banach space with functions of the form f = Kµ
for some µ ∈ M(Ω) and

‖ f‖Bσ
=











inf
Kµ= f

∫

Ω
(1 + ‖a‖+ |b|)d|µ|(a, b), σ ∈ C0,1(R),

inf
Kµ= f

∫

Ω
(‖a‖+ |b|)d|µ|(a, b), σ(x) = ReLU(x).

(1.2)

The functions in Barron space can be seen as infinitely wide or continuous versions of
shallow neural networks

f : X → R, x 7→
m

∑
i=1

ciσ
(

a⊺i x + bi

)

(1.3)

with ci ∈ R and (ai, bi) ∈ Ω [24]. Two embeddings are relevant for this work. They show
that Barron functions are nice enough to enable proper convergence.

Proposition 1.1 (Barron is Lipschitz, [26, Theorem 3.3]). If ρ ∈ P1(X ) is a probability mea-
sure with finite first moments, then we have Lip( f ) ≤ Lip(σ)‖ f‖Bσ

for every f ∈ Bσ.

Proposition 1.2 (Barron Lp Embedding, [26, Theorem 3.7]). If ρ ∈ Pq(X ) is a probability
measure with finite q-th moments, then Bσ →֒ Lp(X , ρ) for all 1 ≤ p ≤ q.

1.2.2 Bregman iterations

Let H be some Banach space, U be a (closed subset of a) thereof, f ∈ H, J : U → R be
convex, lower semi-continuous and coercive, and R f : U → R be convex, bounded from

below and Fréchet differentiable. The Bregman distance1 between u, v ∈ H for p ∈ ∂J(v)
is given by

D
p
J (u, v) = J(u)− J(v)− 〈p | u − v〉. (1.4)

1Although the Bregman distance is called a distance, it is in general neither symmetric nor does it satisfy the triangle
inequality. It is also referred to as the Bregman divergence.
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The Bregman iterations

uk = arg min
u∈U

D
pk−1
J (u, uk−1) + λR f (u), u0 = 0,

pk = pk−1 − λ∂uR f (uk), p0 = 0, pk ∈ ∂J(uk)
(1.5)

with design parameter λ > 0 are an iterative approximation algorithm for the bilevel
minimization problem

u† ∈ arg min
u∈U

J(u)

s.t. u ∈ arg min
ū∈U

R f (ū).
(1.6)

The Bregman iterations converge monotonically to the optimal solution with worst case
O(1/k) convergence [17].

The inverse scale space flow can be derived from (1.5) by taking the limit of λ ց 0.
Before taking the limit, observe that (1.5) is equivalent to

uk = arg min
u∈U∩∂J∗(pk)

1

λ

(

J(u)− 〈pk−1 | u〉
)

+R f (u), u0 = 0 (1.7a)

pk − pk−1

λ
= −∂uR f (uk), p0 = 0. (1.7b)

Note that usually (1.7b) has the subgradient constraint pk ∈ ∂J(µk) instead of (1.7a) having
∂J∗(pk) as additional constraint. These two ways of writing the constraint are equivalent
by Fenchel duality. In the limit of λ ց 0, (1.7b) can be seen as the Euler discretization of
the flow equation

∂t pt = −∂uR f (ut), p0 = 0, (1.8)

and (1.7a) will find a uk minimizing R f (u) whilst enforcing that pt ∈ ∂J(ut) or equiva-

lently ut ∈ ∂J∗(pt) [11, 14, 37]. The inverse scale space is exactly this limit of λ ց 0 of the
Bregman iterations, i.e. the dynamical process given by

ut = arg min
u∈U∩∂J∗(pt)

R f (u), u0 = 0, (1.9a)

∂t pt = −∂uR f (ut), p0 = 0. (1.9b)

1.3 Our contribution

In this work, we study the convergence and error analysis of finding the smallest mea-
sure µ such that the Barron function Kµ is close to f using the inverse scale space. This
is the continuous and infinite dimensional version of finding a sparse shallow neural net-
work approximating samples of f .

In particular, we consider the minimisation problem

µopt = arg min
µ†∈M(Ω)

J(µ†) (1.10a)
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s.t. µ† ∈ arg min
µ∈M(Ω)

1

2
‖ f − Kµ‖2

L2(ρ), (1.10b)

where J encodes the Barron norm and acts as regularizer and Lρ is the adjoint of K. In
Section 2 we define these operators more rigorously, and show that the associated inverse
scale space is given by

µt = arg min
µ∈∂J∗(pt)

1

2
‖ f − Kµ‖2

L2(ρ), u0 = 0, (1.11a)

∂t pt = Lρ( f − Kµt), p0 = 0. (1.11b)

The data function f and the data distribution ρ are instance dependent, and the conver-
gence behaviour and the error analysis of (1.11) are dependent on these. In machine learn-
ing, measurements of f are noisy and the data sets always have a bias. Furthermore,
computers are discrete beings. Hence, we analyse (1.11) in the following four cases:

1. Noiseless and unbiased case: We have access to f and sample from ρ.

2. Noisy case: We have access to f δ with measurement noise instead to f , but we still
want to find to a minimizer for f .

3. Biased case: We sample from ρε with a sampling bias instead of from ρ, but we still
want to find the minimizer for ρ.

4. Discretized case: The parameter space Ω is discretized and no longer continuous.

The first shows how well (1.11) can be when we manage to reduce noise and sampling
bias to a minimum. The second shows how the methods deals with noise on the data
function f . The third provides a novel perspective on learning methods. It shows how
well the method deals with a bias in the sampling. In machine learning there is a large
focus on computing the generalisation error of a method, i.e. how large is the error you
make when you solve (1.10) with only n samples of ρ relative to using ρ in its entirety. This
is one way of having a bias in the sampling. Another bias that one could have as the goal
to classify animals based on images to determine whether they are suitable pets, but one
has no images of fish. Our method captures both of these biases in one go. The last shows
that the method behaves nicely when the parameter space Ω is discretized.

We show in Section 2 that the (1.11) is well-defined and determine its optimality condi-
tions. After that we discuss the aforementioned four cases in Sections 3 to 6 respectively.

2 Inverse scale space flow for Barron spaces

In this section, we start by defining the necessary functionals and operators to write down
the inverse scale space flow for Barron spaces. In Section 2.1, we show how to get from
the general form of the inverse scale space in (1.9) to (2.3). Then, in Section 2.2, we show
that this flow is well-defined. Last, in Section 2.4, we derive several optimality conditions
for the flow that are needed for the proofs of the convergence rates later in this work.
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Fix d ∈ N. Let X ⊆ R
d and Ω ⊆ R

d+1, ρ ∈ P2(X ) be a probability measure with
bounded second moment, σ ∈ C0,1(R) or σ(x) = max(0, x), V(a, b) = 1 + ‖a‖+ |b| and
f ∈ L2(ρ), where we mean that a ∈ R

d and b ∈ R when we write (a, b) ∈ Ω. Use these to
define the operators

K : M(Ω) → L2(X , ρ), µ 7→
(

x 7→
∫

Ω
σ(a⊺x + b)dµ(a, b)

)

, (2.1a)

Lρ : L2(X , ρ) → C(Ω), φ 7→
(

(a, b) 7→
∫

X
φ(x)σ(a⊺x + b)dρ(x)

)

, (2.1b)

J : M(Ω) → [0, ∞), µ 7→
∫

Ω
V(a, b)d|µ|(a, b), (2.1c)

R f : M(Ω) → [0, ∞), µ 7→ 1

2
‖Kµ − f‖2

L2(X ,ρ). (2.1d)

We consider the task of finding

µopt ∈ arg min
µ†∈M(Ω)

J(µ†) (2.2a)

s.t. µ† ∈ arg min
µ∈M(Ω)

R f (µ). (2.2b)

The constraint in (2.2b) says that we are looking for a measure µ such that Kµ represents
the L2(ρ) projection of f onto the Barron space, and (2.2a) highlights that we want the
measure that induces the Barron norm. We will search for the measure µopt using the
inverse scale space flow. The flow corresponding to (2.2) is given by

µt = arg min
µ∈∂J∗(pt)

R f (µ), u0 = 0, (2.3a)

∂t pt = Lρ( f − Kµt), p0 = 0. (2.3b)

In the following, we will assume that every µ† we refer to has finite J(µ†) .

2.1 Derivation of the inverse scale space flow for Barron spaces

To derive the inverse scale space flow for Barron spaces, we start with (1.5) and (1.9).
These imply that the Bregman iterations and associated inverse scale space flow for (2.2)
are given by the iterative process

µk = arg min
µ∈M(Ω)

D
pk−1
J (µ, µk−1) + λR f (µ), µ0 = 0, (2.4a)

pk = pk−1 − λ∂µR f (µk), p0 = 0, pk = ∂J(µk), (2.4b)

and the dynamical system

µt = arg min
µ∈M(Ω)∩∂J∗(pt)

R f (µ), µ0 = 0, (2.5a)

∂t pt = −∂µR f (µt), p0 = 0, (2.5b)
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respectively. First, observe that ∂J∗(pt) ⊆ M(Ω). This shows that (2.5a) and (2.3a) match.
Before we show that (2.5b) is the same as (2.3b), we show that Lρ is in fact the adjoint of K.

Lemma 2.1. The adjoint Lρ is given by K, i.e. L⋆
ρ = K.

Proof. Let φ ∈ L2(X , ρ) and µ ∈ M(Ω), then, by Fubini-Tonelli

〈Kµ | φ〉L2(ρ) =
∫

Ω

∫

X
σ(a⊺x + b)dρ(x)φ(x)dµ(a, b)

=
∫

Ω

∫

X
φ(x)σ(a⊺x + b)dρ(x)dµ(a, b)

= 〈µ | Lρφ〉M(Ω).

From the definition of the adjoint it follows that L⋆
ρ = K.

Note that K is the adjoint for all Lρ with ρ ∈ P2(X ), but that the difference between the
various Lρ is the inner product used.

Proposition 2.1. The variational derivative of R f is given by

∂µR f (µ) = Lρ(Kµ − f ). (2.6)

Proof. Observe that

lim
‖ν‖M(Ω)→0

|R f (µ + ν)−R f (µ)− 〈∂µR f (µ) | ν〉M(Ω)|
‖ν‖M(Ω)

= lim
‖ν‖M(Ω)→0

∣

∣‖K(µ + ν)− f‖2
L2(ρ)

/2 − ‖Kµ − f‖2
L2(ρ)

/2 − 〈K∗(Kµ − f ) | ν〉M(Ω)

∣

∣

‖ν‖M(Ω)

≤ lim
‖ν‖M(Ω)→0

∣

∣‖Kν‖2
L2(ρ)

/2 + 〈Kµ − f |Kν〉L2(ρ) − 〈K∗(Kµ − f ) | ν〉M(Ω)

∣

∣

‖ν‖M(Ω)
(triangle ineq.)

= lim
‖ν‖M(Ω)→0

∣

∣‖Kν‖2
L2(ρ)

/2
∣

∣

‖ν‖M(Ω)
(def. of adjoint)

≤ lim
‖ν‖M(Ω)→0

1

2
‖K‖2

op‖ν‖M(Ω) = 0.

Hence,
∂µR f (µ) = K∗(Kµ − f ). (2.7)

Combining Lemma 2.1 with (2.7) finishes the proof.

This shows that (2.5b) is indeed the same as (2.3b), and thus that (2.5) is the same
as (2.3).

2.2 Existence

To show that the inverse scale space flow of (2.3) has a solution, we use a theorem by
Brezis [9, Theorem 3.1]. This theorem establishes that the differential inclusion equation
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∂trt + Brt ∈ 0 (2.8)

given some initial condition r0 ∈ dom(B) := {r ∈ H | Br 6= ∅} has a solution. Here,
B is a maximally monotone, possibly nonlinear and possibly multivalued operator over
a Hilbert space H. We show that for a suitably chosen maximal operator B, the solution
to (2.8) exists, that for suitably chosen operator B̃ the inverse scale space flow of (2.3) can
be written in the form (2.8) using B̃, and that the solution to the former flow satisfies the
dynamics of the latter flow. Thereby establishing the existence of a solution to (2.3).

These suitably chosen operators B̃ and B are

A : C(Ω) → M(Ω), p 7→ arg min
µ∈∂χ{‖·‖∞≤1}(p)

R f (µ), (2.9a)

B̃ : L2(ρ) → L2(ρ), r 7→ KA
(

V−1Lρr
)

− f , (2.9b)

B : L2(ρ) → L2(ρ), r 7→ K∂J∗(Lρr)− f . (2.9c)

First, we show (2.8) with operator B has a solution. For this, we use that it is maximal
monotone.

Lemma 2.2. The operator B is maximal monotone.

Proof. J∗ is the Fenchel dual of J. Hence, J∗ is lower semi-continuous, convex and proper.
Lρ is a bounded linear operator, so J∗ ◦ Lρ is also lower semi-continuous, convex and
proper. Thus, r 7→ ∂J∗(Lρr) is maximal monotone [10]. Subtracting a constant from a max-
imal monotone operator preserves maximal monotonicity, so B is maximal monotone. The
proof is complete.

This means the operator B satisfies the requirements for Brezis, and we thus have a so-
lution.

Proposition 2.2. For every r0 ∈ dom(B) there exists a unique function r : [0, ∞) → L2(ρ) such
that

1. r satisfies (2.8) for almost every t ∈ (0, ∞) with initial condition r0,

2. rt ∈ dom(B) for all t > 0,

3. rt is Lipschitz continuous on [0, ∞) with ‖∂trt‖L∞([0,∞);L2(ρ)) ≤ ‖B◦(r0)‖L2(ρ),

4. r is right differentiable for all t ∈ (0, ∞) and ∂+t rt + B◦(rt) = 0 for all t ∈ (0, ∞),

5. t 7→ B◦(rt) is right continuous and t 7→ ‖B◦(rt)‖ non-increasing,

where
B◦(rt) = arg min

r∈B(rt)

‖r‖L2(ρ). (2.10)

Proof. See [9, Theorem 3.1].

This does not show that (2.3) has a solution yet, since this satisfies (2.8) with the oper-
ator B̃ whereas (2.3) satisfies (2.8) with the operator B. The former about B̃ follows from
the following lemma.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.240123 | Generated on 2025-04-05 21:33:48



J. Mach. Learn., 4(1):48-88 56

Lemma 2.3. Eq. (2.3) can be written as

∂trt + B̃(rt) = 0, r = 0. (2.11)

Proof. Substituting (2.9a) into (2.3) gives

∂t pt = Lρ

(

f − KA
(

V−1 pt

))

, p0 = 0. (2.12)

Replacing pt with Lρrt gives us

Lρ∂trt = Lρ

(

f − KA
(

V−1Lρrt

))

, r0 = 0. (2.13)

Since Lρ is a bounded linear operator and thus continuous, r must satisfy

∂trt = f − KA
(

V−1Lρrt

)

, r0 = 0, (2.14)

or equivalently

∂trt + KA
(

V−1Lρrt

)

− f = 0, r0 = 0. (2.15)

Substituting (2.9b) into (2.15) gives (2.11).

We use the listed properties of the solution from Proposition 2.2 to show that the solu-
tion r to (2.8) with the operator B agrees with (2.8) with the operator B̃. This implies that
there is a solution to (2.3).

Proposition 2.3. Eq. (2.3) has a solution for every µ0 and p0 satisfying µ0 = A(V−1Lρr0) and
p0 = Lρr0 for some r0 ∈ dom(B). In particular, (2.3) has a solution for µ0 = 0 and p0 = 0.

Proof. Let r be the solution from Proposition 2.2 with initial condition r0 ∈ dom(B). Since

J∗ = χ{‖V−1·‖∞≤1}, (2.16)

we have that

B◦(rt) = arg min
x∈B(rt)

‖x‖L2(ρ)

= K

(

arg min
µ∈∂J∗(Lρrt)

‖Kµ − f‖L2(ρ)

)

− f

= KA
(

V−1Lρrt

)

− f = B̃(rt). (2.17)

So in fact, r also solves (2.8) with B̃, which has the same solution as (2.3) by Lemma 2.3.
What remains is to map the solution r to µ and p using

µt := A
(

V−1Lρrt

)

, pt := Lρrt.

The proof is complete.

Remark 2.1. Note that this µt is not unique in general. Since the difference between non-
uniqueness is from the null space of K, this does not impact any of the later statements.
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2.3 Regularity

The regularity that Proposition 2.2 puts on the solution r carries over to µ and p.

Proposition 2.4. µ ∈ L∞([0, ∞),M(Ω)) and p ∈ W1,∞([0, ∞), C(Ω)).

Proof. Recall from point 3 of Proposition 2.2 that

‖∂tr‖L∞([0,∞),L2(ρ)) ≤
∥

∥B◦(r(0)
)∥

∥

L2(ρ)
≤ ‖ f‖L2(ρ). (2.18)

This implies that

‖Kµt − f‖L2(ρ) = ‖∂tr‖L2(ρ) ≤ ‖ f‖L2(ρ), (2.19)

‖rt‖L2(ρ) ≤
∫ t

0
‖∂srs‖L2(ρ)ds ≤ t‖ f‖L2(ρ). (2.20)

We will use this in the norm bounds for both µ and p.
For the regularity of p, observe that

‖Lρ‖L2(ρ)→C(Ω) = ‖K‖M(Ω)→L2(ρ) < ∞ (2.21)

by Lemma 2.1 and Proposition 1.2. Since ∂t pt = Lρ∂trt, pt = Lρrt and rt ∈ L2(ρ), we have

‖pt‖C(Ω) = ‖Lρrt‖C(Ω) ≤ ‖Lρ‖L2(ρ)→C(Ω)‖rt‖L2(ρ)

≤ t‖Lρ‖L2(ρ)→C(Ω)‖ f‖L2(ρ), (2.22)

‖∂t pt‖C(Ω) = ‖Lρ∂trt‖C(Ω) ≤ ‖Lρ‖L2(ρ)→C(Ω)‖∂trt‖L2(ρ)

≤ ‖Lρ‖L2(ρ)→C(Ω)‖ f‖L2(ρ) (2.23)

by (2.20), (3) of Proposition 2.3 and (2.21). Hence, p ∈ W∞,1([0, T), C(Ω)) with

‖p‖W1,∞([0,T),C(Ω)) ≤ max(1, t)‖Lρ‖L2(ρ)→C(Ω)‖ f‖L2(ρ). (2.24)

For the regularity of µ, observe that

‖µt‖M(Ω) ≤ J(µt)

= 〈pt | µt〉M(Ω) (Fenchel duality)

= 〈rt |Kµt〉L2(ρ)

≤ ‖rt‖L2(ρ)‖Kµt‖L2(ρ) (Cauchy-Schwarz)

= ‖rt‖L2(ρ)‖Kµt − f + f‖L2(ρ)

≤ ‖rt‖L2(ρ)

(

‖Kµt − f‖L2(ρ) + ‖ f‖L2(ρ)

)

(Triangle ineq.)

≤ 2‖rt‖L2(ρ)‖ f‖L2(ρ) (Eq. (2.19))

≤ 2t‖ f‖2
L2(ρ). (Eq. (2.20))
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Hence, µ ∈ L∞([0, T),M(Ω)) with

‖µ‖L∞([0,T),M(Ω)) ≤ 2T‖ f‖2
L2(ρ). (2.25)

Since the solution r is unique and the shown regularity holds for all T > 0, we can extend
the regularity to the interval [0, ∞).

2.4 Optimality conditions

We have now proven the existence and regularity of the solutions to (2.3). In this section,
we will have a look at some of the conditions that must hold for the optimal solution. In
particular, the orthogonality condition, the first-order optimality condition and the source
condition.

We first consider the orthogonality condition. This is a necessary condition, not a suf-
ficient condition. This condition is equivalent to the first-order optimality condition for
(2.2b).

Proposition 2.5 (Orthogonality Condition).

Lρ( f − Kµ†) = 0. (2.26)

Proof. For µ† to be a minimizer of R f , it must hold that

∂µR f (µ
†) = 0. (2.27)

Recall from Lemma 2.1 that
∂µR f (µ) = Lρ( f − Kµ). (2.28)

Substituting (2.28) into (2.27) finishes the proof.

The second condition we consider is the first-order optimality condition. This is again
a necessary condition and not a sufficient condition.

Proposition 2.6 (First-Order Optimality Condition).

〈∂t pt | µt − γ〉 ≥ 0 (2.29)

holds for all t > 0 and γ ∈ ∂J∗(pt).

Proof. For µt to minimize the right-hand side of (2.3a) it must satisfy the first-order opti-
mality conditions for the right-hand side. Hence, µt must satisfy

〈∂R f (µt) |γ − µt〉 ≥ 0 (2.30)

for all γ ∈ ∂J∗(pt). Substituting (2.5b) into (2.30) gives (2.29).

J∗ is a characteristic function, so ∂J∗ is the normal cone given by

∂J∗(pt) = ∂χ{‖V−1·‖∞≤1}(pt)

=
{

µ ∈ M(Ω) | 〈µ | q − pt〉 ≤ 0, ∀ q : ‖V−1q‖∞ ≤ 1
}

. (2.31)

In particular, 0 ∈ ∂J∗(pt) for all t ≥ 0. This gives the following corollary.
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Corollary 2.1.
〈∂t pt | µt〉 ≥ 0 (2.32)

holds for all t ≥ 0.

The third condition we consider is the source condition. It is satisfied by µ† if there
exists a φ ∈ L2(X , ρ) such that

K⋆φ ∈ ∂
∫

Ω
V(a, b)d|·|(µ†). (2.33)

Here, φ is called the Lagrangian multiplier, since it is the multiplier for the Lagrangian

Lagrangian(µ, φ) = J(µ)− 〈φ |Kµ − f 〉L2(ρ). (2.34)

Hence, satisfying the source condition is akin to the existence of a Lagrange multi-
plier [16]. The following proposition provides an alternative representation for (2.33).

Proposition 2.7 (Source Condition). The source condition is satisfied by µ† if there exists a φ ∈
L2(X , ρ) such that

Lφ(a, b) = V(a, b) sgn{µ†} µ† a.e., (2.35)

and
|Lφ(a, b)| ≤ V(a, b) (2.36)

for all (a, b) ∈ Ω.

Proof. We repeat the steps of Bredies in [8, around Eq. (4.1)], which in turn in based on [16,
below Definition 1]. From the definition of the subdifferential it follows that (2.33) can
only be satisfied when

〈K⋆φ | ν〉M(Ω) −
∫

Ω
V(a, b)d|ν| ≤ 〈K⋆φ | µ†〉M(Ω) −

∫

Ω
V(a, b)d|µ† | (2.37)

for all ν ∈ M(Ω). Since

〈K⋆φ | ν〉M(Ω) = 〈φ |Kν〉L2(ρ) = 〈Lρφ | ν〉M(Ω) (2.38)

by the definition of the adjoint and Lemma 2.1, (2.37) is equivalent to

〈Lρφ | ν〉M(Ω) −
∫

Ω
V(a, b)d|ν| ≤ 〈Lρφ | µ†〉M(Ω) −

∫

Ω
V(a, b)d|µ† |. (2.39)

Eq. (2.39) must also hold when we take the supremum of the left-hand side

sup
ν∈M(Ω)

〈Lρφ | ν〉M(Ω) −
∫

Ω
V(a, b)d|ν| ≤ 〈Lρφ | µ†〉M(Ω) −

∫

Ω
V(a, b)d|µ† |. (2.40)

Every measure ν ∈ M(Ω) has a polar decomposition such that

dν(a, b) = sgn{ν}(a, b)d|ν|(a, b). (2.41)
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This allows us to write (2.40) as

sup
ν∈M(Ω)

〈Lρφ − sgn{ν}V | ν〉M(Ω) ≤ 〈Lρφ sgn{µ†} − V | |µ† |〉M(Ω). (2.42)

The right-hand side is bounded, so must the left-hand side. If Lρφ(a, b) > V(a, b) for some
(a, b) ∈ Ω, then the left-hand side can be made arbitrarily large by concentrating a large
positive ν around that value. Similarly, if Lρφ(a, b) < −V(a, b) for some (a, b) ∈ Ω, then
the left-hand side can be made arbitrarily large by concentrating a large negative ν around
that value. Hence, Lρφ must satisfy

|Lρφ(a, b)| ≤ V(a, b). (2.43)

Inserting this bound into (2.42) gives

0 = sup
ν∈M(Ω)

〈Lρφ − sgn{ν}V | ν〉M(Ω) ≤ 〈Lρφ sgn{µ†} − V | |µ† |〉M(Ω) ≤ 0. (2.44)

Hence,
Lρφ = V sgn{µ†}, µ† a.e. . (2.45)

The proof is complete.

Note that the source condition described in Proposition 2.7 implies that µt must vanish
on the set

Ω0
t = {(a, b) ∈ Ω | − V(a, b) < pt(a, b) < V(a, b)}. (2.46)

3 Idealized setting

In this section, we prove that both the L2 loss R f (µt) and the Bregman distance D
pt

J (µ†, µt)

decrease monotonically to the optimum value in an ideal setting. The rate at which both
of them decrease is of order O(1/t). This rate is independent of the input dimension d.

Theorem 3.1 (Ideal Case). R f (µt) is decreasing in time with bound

R f (µt) ≤ R f (µ
†) +

J(µ†)

t
, t > 0 a.e., (3.1)

∂tD
pt
J (µ†, µt) ≤ 0, t ≥ 0 a.e. (3.2)

with equality only when µt minimizes R f . Moreover, if φ ∈ L2(X , ρ) is the function such that

the source condition of µ† is satisfied, then

D
pt

J (µ†, µt) ≤
‖φ‖2

L2(ρ)

2t
(3.3)

for almost every t ≥ 0.

First, we will show the rate of change of the L2 loss R f (µt) and the Bregman distance

D
pt

J (µ†, µt) under ideal conditions.
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Lemma 3.1. R f (µt) is decreasing in time.

Proof. This follows directly from Proposition 2.2 point 5.

Lemma 3.2.

∂tD
pt

J (µ†, µt) ≤ 〈∂t pt | µt − µ†〉M(Ω) ≤ R f (µ
†)−R f (µt) ≤ 0 (3.4)

holds for almost every t ≥ 0.

Proof. Recall from the Fenchel duality that

J(µt) = J(µt) + J∗(pt) = 〈pt | µt〉M(Ω). (3.5)

Hence,

∂tD
pt

J (µ†, µt) = ∂t

(

J(µ†)− J(µt)− 〈pt | µ† − µt〉M(Ω)

)

= ∂t

(

J(µ†)− 〈pt | µ†〉M(Ω)

)

(Eq. (3.5))

= 〈∂t pt | −µ†〉M(Ω)

≤ 〈∂t pt | µt − µ†〉M(Ω) (Corollary 2.1)

≤ R f (µ
†)−R f (µt) (−∂t pt ∈ ∂R f (µt))

≤ 0. (µ† minimizer)

The proof is complete.

Proposition 3.1. For all t ≥ 0, it holds that

∂tD
pt

J (µ†, µt) < 0, (3.6)

when
‖ f − Kµt‖L2(ρ) > ‖ f − Kµ†‖L2(ρ) (3.7)

as well as when
‖Kµ† − Kµt‖L2(ρ) > 0. (3.8)

Proof. Eq. (3.7) holds if and only if

R f (µ
†) < R f (µt). (3.9)

The combination of (3.9) and (3.4) proves the first statement. For the second statement,
observe that

∂tD
pt

J (µ†, µt) ≤ 〈∂t pt | µt − µ†〉M(Ω) (Lemma 3.2)

= 〈Lρ( f − Kµt) | µt − µ†〉M(Ω) (Eq. (2.3))

= 〈Lρ( f − Kµt)− Lρ( f − Kµ†) | µt − µ†〉M(Ω) (Proposition 2.5)

= 〈Lρ(Kµ† − Kµt) | µt − µ†〉M(Ω)
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= 〈Kµ† − Kµt |Kµt − Kµ†〉L2(ρ) (Lemma 2.1)

= −‖Kµ† − Kµt‖2
L2(ρ).

Clearly, this is strictly negative when (3.8) is satisfied.

Lemmas 3.2 and 3.1 show that under ideal conditions the Bregman distance and the
population loss respectively are decreasing, and Proposition 3.1 shows that this decrease
is strict. We will now use these to show that the Bregman distance and the population loss
converge and give a rate at which they do that.

Proposition 3.2. If µ† satisfies the source condition through φ ∈ L2(ρ), then

D
pt

J (µ†, µt) ≤
‖φ‖2

L2(ρ)

2t
(3.10)

for almost every t > 0.

Proof. Define

∂tet = Kµ† − Kµt, e0 = 0, (3.11)

and
p† = Lρφ. (3.12)

Observe that
∂t pt = Lρ∂tet, p0 = 0 = Lρe0. (3.13)

With this we obtain

∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

= 〈∂tet | et − φ〉L2(ρ)

= 〈Kµ† − Kµt | et − φ〉L2(ρ) (Eq. (3.11))

= 〈Lρ(et − φ) | µ† − µt〉M(Ω) (Lemma 2.1)

= 〈pt − p† | µ† − µt〉M(Ω) (Eqs. (3.13), (3.12))

= −
(

Dpt(µ†, µt) + Dp†
(µt, µ†)

)

.

Hence,

∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

+ Dpt(µ†, µt) ≤ 0.

Integrating from 0 to t gives
∫ t

0
Dps(µ†, µs)ds +

1

2
‖et − φ‖2

L2(ρ) −
1

2
‖e0 − φ‖2

L2(ρ) ≤ 0. (3.14)

Therefore,

Dpt(µ†, µt) =
1

t

∫ t

0
Dpt(µ†, µt)ds
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=
1

t

∫ t

0
Dps(µ†, µs)ds +

1

t

∫ t

0

∫ t

s
∂τ Dpτ(µ†, µτ)dτds (Fund. th. of calc.)

≤ 1

t

∫ t

0
Dps(µ†, µs)ds (Lemma 3.2)

≤ − 1

2t
‖et − φ‖2

L2(ρ) +
1

2t
‖e0 − φ‖2

L2(ρ) (Eq. (3.14))

≤ 1

2t
‖e0 − φ‖2

L2(ρ)

=
1

2t
‖φ‖2

L2(ρ). (Eq. (3.13))

The proof is complete.

Proposition 3.3. We have

R f (µt) ≤ R f (µ
†) +

J(µ†)

t
(3.15)

for almost every t > 0.

Proof. Observe that

D
pt

J (µ†, µt)− (t − s)
(

R f (µ
†)−R f (µt)

)

= D
pt

J (µ†, µt)−
∫ t

s

(

R f (µ
†)−R f (µt)

)

dτ

≤ D
pt
J (µ†, µt)−

∫ t

s

(

R f (µ
†)−R f (µτ)

)

dτ (Lemma 3.1)

≤ D
pt

J (µ†, µt)−
∫ t

s
∂τ D

pτ

J (µ†, µτ)dτ (Lemma 3.2)

= D
ps

J (µ†, µs). (Fund. th. of calc.)

Hence, we obtain after rewriting

R f (µt) ≤ R f (µ
†) +

D
ps

J (µ†, µs)− D
pt

J (µ†, µt)

t − s

≤ R f (µ
†) +

D
ps

J (µ†, µs)

t − s
(D

pt

J (µ†, µt) ≥ 0)

≤ R f (µ
†) +

D
ps

J (µ†, µs)

t
(0 ≤ s < t)

≤ R f (µ
†) +

D
p0
J (µ†, µ0)

t
(Lemma 3.2)

= R f (µ
†) +

J(µ†)

t
.

The proof is complete.
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4 Measurement noise

In this section, we prove that with noise on the measurements, the method will converge
with O(1/t) to the solution that best fits the noisy data. If the noise is small enough, then
it will at first get closer to the noiseless data, too. After some time, the method will start to
get close to the solution for the noisy data and will start moving away from the solution
for the noiseless data. The point at which this transition is of the order of the noise, and
suggest that the method should be stopped early in the presence of measurement noise.

In the remainder of the work, we consider f δ to be some perturbation of f such that

‖ f δ − f‖2
L2(ρ) ≤ δ (4.1)

with δ > 0. When using f δ instead of f , the flow in (2.3) changes. For this section, we will
keep referring to the solution based on f with µ and p whilst we will refer to the solution

based on f δ with ν and q.

Theorem 4.1 (Measurement Noise). We have

∂tD
pt(µ†, νt) ≤

δ2

4
, t ≥ 0 a.e., (4.2)

∂tD
qt

J (µ
†, νt) < 0, t ≥ 0 a.e., (4.3)

when
‖ f − Kνt‖L2(ρ) > δ + ‖ f − Kµ†‖L2(ρ) (4.4)

as well as when
‖Kµ† − Kνt‖L2(ρ) > δ. (4.5)

Moreover, if µ† satisfies the source condition through φ ∈ L2(X , ρ), then

D
qt

J (µ
†, νt) ≤

1

2t
(‖φ‖L2(ρ) + δt)2 +

δ2t

8
(4.6)

for almost every t > 0.

To prove this, observe that the flow for f δ has the same properties as the flow for f .

Lemma 4.1. R f δ(νt) is decreasing in t.

Proof. Swapping the role of f and f δ, i.e. considering f to be a perturbation of f δ, im-
plies that R f δ(νt) should behave the same as R f (µt) from Lemma 3.1. Thus, R f δ(νt) is

decreasing in t.

Lemma 4.1 shows that the inverse scale space converges with f δ, but it does not tell us
how close it will get to the best solution for f .

Lemma 4.2.

∂tD
pt(µ†, νt) ≤

δ2

4
(4.7)

holds for all t ≥ 0.
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Proof. This follows from

∂tD
qt

J (µ
†, νt)

≤ 〈∂tqt | νt − µ†〉M(Ω) (Lemma 3.2)

=
〈

L
(

f δ − Kνt

)
∣

∣ νt − µ†
〉

M(Ω)
(Eq. (2.3a))

=
〈

L
(

f δ − Kνt

)

− Lρ( f − Kµ†)
∣

∣ νt − µ†
〉

M(Ω)
(Proposition 2.5)

=
〈

f δ − f + Kµ† − Kνt

∣

∣Kνt − Kµ†
〉

L2(ρ)
(Lemma 2.1)

=
〈

f δ − f
∣

∣Kνt − Kµ†
〉

L2(ρ)
− 〈Kνt − Kµ† |Kνt − Kµ†〉L2(ρ)

≤ ‖ f δ − f‖L2(ρ)‖Kνt − Kµ†‖L2(ρ) − ‖Kνt − Kµ†‖2
L2(ρ) (Cauchy-Schwarz)

≤ 1

4
‖ f δ − f‖2

L2(ρ) (Young’s product ineq.)

≤ δ2

4
.

The proof is complete.

Proposition 4.1. We have

∂tD
qt
J (µ

†, νt) < 0 (4.8)

for all t ≥ 0, when
∥

∥ f δ − Kνt

∥

∥

L2(ρ)
> δ + ‖ f − Kµ†‖L2(ρ) (4.9)

as well as when
‖Kµ† − Kνt‖L2(ρ) > δ. (4.10)

Proof. For the first statement observe that

∂tD
qt

J (µ
†, νt)

≤ 〈∂tqt | νt − µ†〉M(Ω) (Lemma 3.2)

=
〈

L
(

f δ − Kνt

)
∣

∣ νt − µ†
〉

M(Ω)
(Eq. (2.3a))

=
〈

f δ − Kνt

∣

∣Kνt − Kµ†
〉

L2(ρ)
(Lemma 2.1)

=
〈

f δ − Kνt

∣

∣Kνt − f δ + f δ − f + f − Kµ†
〉

L2(ρ)

= −
∥

∥ f δ − Kνt

∥

∥

2

L2(ρ)
+
〈

f δ − Kνt

∣

∣ f δ − f + f − Kµ†
〉

L2(ρ)

≤ −
∥

∥ f δ−Kνt

∥

∥

2

L2(ρ)
+‖ f δ− f+ f−Kµ†‖L2(ρ)‖Kνt−Kµ†‖L2(ρ) (Cauchy-Schwarz)

≤ −
∥

∥ f δ − Kνt

∥

∥

2

L2(ρ)
+
(

δ + ‖ f − Kµ†‖L2(ρ)

)∥

∥ f δ − Kνt

∥

∥

L2(ρ)
. (Triangle ineq., Eq. (4.1))

Clearly, this is strictly negative when (4.9) is satisfied.
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For the second statement recall from the proof of Lemma 4.2 that

∂tD
qt
J (µ

†, νt) ≤ ‖ f δ − f‖L2(ρ)‖Kνt − Kµ†‖L2(ρ) − ‖Kνt − Kµ†‖2
L2(ρ).

Clearly, this is strictly negative when (4.10) is satisfied.

From Proposition 4.1 and Lemma 4.2 it follows that the Bregman distance D
qt

J (µ
†, νt)

is guaranteed to converge until R f δ(νt) is close to R f (µ
†). We know from Lemma 4.1

that R f δ(νt) will go to a minimum of R f δ . So we expect the Bregman distance D
qt

J (µ
†, νt),

unlike the Bregman distance D
qt
J (µ

†, µt), to not vanish. The following proposition exem-

plifies this.

Proposition 4.2. If µ† satisfies the source condition through φ ∈ L2(ρ), then

D
pt

J (µ†, νt) ≤
1

2t

(

‖φ‖L2(ρ) + δt
)2

+
δ2t

8
(4.11)

for almost every t ≥ 0.

Proof. Define

∂tet = f δ − Kνt + Kµ† − f , e0 = 0. (4.12)

Observe that
∂tqt = Lρ∂tet, q0 = 0 = Lρe0. (4.13)

Using this definition of et we obtain

∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

= 〈∂tet | et − φ〉L2(ρ)

=
〈

f δ − Kνt + Kµ† − f
∣

∣ et − φ
〉

L2(ρ)
(Eq. (4.12))

=
〈

f δ − f
∣

∣ et − φ
〉

L2(ρ)
+ 〈Kµ† − Kνt | et − φ〉L2(ρ)

≤ ‖ f δ − f‖L2(ρ)‖et − φ‖L2(ρ) + 〈Kµ† − Kνt | et − φ〉L2(ρ) (Cauchy-Schwarz)

≤ δ‖et − φ‖L2(ρ) + 〈Kµ† − Kνt | et − φ〉L2(ρ) (Eq. (4.1))

= δ‖et − φ‖L2(ρ) + 〈Lρ(et − φ) | µ† − νt〉M(Ω) (Lemma 2.1)

= δ‖et − φ‖L2(ρ) + 〈qt − p† | µ† − νt〉M(Ω) (Eq. (4.13), p† := Lρ(φ))

= δ‖et − φ‖L2(ρ) − 〈qt − p† | νt − µ†〉M(Ω).

Since

0 ≤ D
pt

J (µ†, νt) + D
p†

J (νt, µ†) = 〈qt − p† | νt − µ†〉M(Ω), (4.14)

where the inequality stems from that qt and p† are from the subgradients ∂J(νt) and ∂J(µ†)
respectively, we obtain
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∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

≤ δ‖et − φ‖L2(ρ). (4.15)

Solving this for ‖et − φ‖L2(ρ) gives

‖et − φ‖L2(ρ) ≤ ‖e0 − φ‖L2(ρ) + δt = ‖φ‖L2(ρ) + δt. (4.16)

Hence,

∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

+ D
pt

J (µ†, νt)

≤ δ‖et − φ‖L2(ρ) − D
p†

J (νt, µ†)

≤ δ‖φ‖L2(ρ) + δ2t. (4.17)

By integrating both sides of the equation, we obtain

∫ t

0
D

ps

J (µ†, νs)ds +
1

2
‖et − φ‖2

L2(ρ)

≤ 1

2
‖φ‖2

L2(ρ) + δ‖φ‖L2(ρ)t +
1

2
δ2t2

=
1

2

(

‖φ‖2
L2(ρ) + δt

)2
. (4.18)

Therefore,

D
pt

J (µ†, µt) =
1

t

∫ t

0
D

pt

J (µ†, µt)ds

=
1

t

∫ t

0
Dst

J (µ
†, µs) +

∫ t

s
∂τ D

pτ

J (µ†, µτ)dτds (Fund. th. of calc.)

≤ 1

t

∫ t

0
Dst

J (µ
†, µs) +

δ2

4

∫ t

s
dτds (Lemma 4.2)

=
1

t

∫ t

0
Dst

J (µ
†, νs) +

δ2

4
(t − s)ds

=
1

t

∫ t

0
Dst

J (µ
†, νs)ds +

δ2

8
t

≤ 1

t

(

1

2

(

‖φ‖2
L2(ρ) + δt

)2
− ‖et − φ‖2

L2(ρ)

)

+
δ2

8
t (Eq. (4.18))

≤ 1

2t

(

‖φ‖L2(ρ) + δt
)2

+
δ2

8
t.

The proof is complete.

Proposition 4.2 shows us that we should not continue to t → ∞, but should stop earlier.
In particular, the bound for (4.11) is lowest for t(δ) = O(δ−1).
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5 Biased sampling

In this section, we prove that a bias in the sampling gives a similar behaviour as noisy
measurements. However, the terms and bounds differ depending on how the biased sam-
pling is expressed. We consider sampling expressed in terms of a condition on either the
Radon-Nikodym derivative or the Wasserstein-1 distance.

For the remainder of this work, we consider ρε ∈ P2(X ) to be some perturbation of
the true distribution ρ ∈ P2(X ), also with bounded second moment. We assume that
f ∈ L2(ρ) ∩ L2(ρε). For this section, we will keep referring to the solution based on ρ
with µ and p whilst we will refer to the solution based on ρǫ with ν and q. We will also
assume that every ν† we refer to has J(ν†) finite.

Theorem 5.1 (Biased Sampling of ρ – Radon-Nikodym). If ρε ≪ ρ and
∥

∥

∥

∥

1 − dρε

dρ

∥

∥

∥

∥

L∞(ρ)

≤ ε, (5.1)

then
∂tD

pt(µ†, νt) < 0, (5.2)

when
‖ f − Kνt‖L2(ρε) > (1 + ε)‖ f − Kµ†‖L2(ρ). (5.3)

Moreover, if µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively,
then

D
pt

J (µ†, µt) ≤
1

2t
‖φ‖2

L2(ρ) +
ε

1 + ε

1

2t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

L2(ρε)dsdτ

+ (2ε + 1)
t

4
‖ f − Kµ†‖2

L2(ρ) +
t

4
‖ f − Kν†‖2

L2(ρε) (5.4)

for almost every t ≥ 0.

Theorem 5.2 (Biased Sampling of ρ – Wasserstein). If f ∈ C0,1(supp(ρ − ρε)) and

W1(ρ, ρε) ≤ ε, (5.5)

then
∂tD

pt(µ†, νt) < 0, (5.6)

when
‖ f − Kνt‖2

L2(ρε) > 2ε‖ f − Kµ†‖2
C(0,1)(supp(ρ−ρε))

+ ‖ f − Kµ†‖2
L2(ρ). (5.7)

Moreover, if µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively,
then

D
pt

J (µ†, νt) ≤
1

2t
‖φ‖2

L2(ρ) + ε
t

2
‖ f − Kµ†‖2

C0,1(supp(ρ−ρε))

+
ε

t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

C0,1(supp(ρ−ρε))dsdτ +
t

4
‖Kν† − Kµ†‖2

L2(ρε) (5.8)

for almost every t ≥ 0.
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Theorem 5.1 refers to the Radon-Nikodym derivative condition, whereas Theorem 5.2
refers to the Wasserstein-1 distance condition. To prove these theorems, we first consider
a general disturbance with no particular conditions on the perturbation ρε. Afterwards, we
refine the statements from the general disturbance under the two mentioned conditions in
Sections 5.1 and 5.2.

Lemma 5.1. We have

∂tD
qt

J (µ
†, νt) ≤

1

4
‖ f − Kµ†‖2

L2(ρε) (5.9)

as well as

∂tD
qt

J (µ
†, νt) ≤

1

4
‖Kν† − Kµ†‖2

L2(ρε) (5.10)

for almost every t ≥ 0.

Proof. The first statement follows from

∂tD
qt
J (µ

†, νt)

≤ 〈∂tqt | νt − µ†〉M(Ω) (Lemma 3.2)

= 〈Lρε( f − Kνt) | νt − µ†〉M(Ω) (Eq. (2.3))

= 〈 f − Kνt |K(νt − µ†)〉L2(ρε) (Lemma 2.1)

= 〈 f − Kνt |Kνt − f + f − Kµ†〉L2(ρε)

= −‖ f − Kνt‖2
L2(ρε) + 〈 f − Kµ† | f − Kνt〉L2(ρε)

≤ −‖ f − Kνt‖2
L2(ρε) + ‖ f − Kµ†‖L2(ρε)‖ f − Kνt‖L2(ρε) (Cauchy-Schwarz)

≤ 1

4
‖ f − Kµ†‖2

L2(ρε). (Young’s product ineq.)

The second statement follows from

∂tD
qt

J (µ
†, νt)

≤ 〈∂tqt | νt − µ†〉M(Ω) (Lemma 3.2)

= 〈Lρε( f − Kνt) | νt − µ†〉M(Ω) (Eq. (2.3))

= 〈−Lρε( f − Kν†) + Lρε( f − Kνt) | νt − µ†〉M(Ω) (Proposition 2.5)

= 〈Lρε(Kν† − Kνt) | νt − µ†〉M(Ω)

= 〈Kν† − Kνt |K(νt − µ†)〉L2(ρε) (Lemma 2.1)

= 〈Kν† − Kνt |Kνt − Kν† + Kν† − Kµ†〉L2(ρε)

= −‖Kν† − Kνt‖2
L2(ρε) + 〈Kν† − Kµ† |Kν† − Kνt〉L2(ρε)

≤ −‖Kν† − Kνt‖2
L2(ρε) + ‖Kν† − Kµ†‖L2(ρε)‖Kν† − Kνt‖L2(ρε) (Cauchy-Schwarz)

≤ 1

4
‖Kν† − Kµ†‖2

L2(ρε). (Young’s product ineq.)

The proof is complete.
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Proposition 5.1. We have

∂tD
qt

J (µ
†, νt) < 0, (5.11)

when
‖ f − Kνt‖L2(ρε) > ‖ f − Kµ†‖L2(ρε). (5.12)

Proof. Recall from the proof of Lemma 5.1 that

∂tD
qt
J (µ

†, νt) ≤ −‖ f − Kνt‖2
L2(ρε) + ‖ f − Kµ†‖L2(ρε)‖ f − Kνt‖L2(ρε). (5.13)

Clearly, this is strictly negative when (5.12) is satisfied.

Lemma 5.1 and Proposition 5.1 tell us, just like Lemma 4.1 for the noisy case, and as
intuitively expected, that the flow will converge until the solution matches the residual.
This, however, does not tell us how well it approximates the residual on ρ. We will refine
this when we consider the more specific disturbances.

We will now provide an upper bound for the Bregman distance.

Proposition 5.2. If µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε)
respectively, then

D
pt

J (µ†, νt) ≤
1

2t
‖φ‖2

L2(ρ) +
1

2t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

L2(ρε−ρ)dsdτ

+
t

4
‖ f − Kµ†‖2

L2(ρε−ρ) +
t

8
‖Kν† − Kµ†‖2

L2(ρε) (5.14)

for almost every t ≥ 0.

Proof. Define

∂tet = Kµ† − Kνt, e0 = 0. (5.15)

and
p† = Lρφ. (5.16)

With this we obtain

∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

= 〈∂tet | et − φ〉L2(ρ)

= 〈Kµ† − Kνt | et − φ〉L2(ρ) (Eq. (5.15))

= 〈Lρ(et − φ) | µ† − νt〉M(Ω) (Lemma 2.1)

= 〈Lρ(et − φ)− qt + qt | µ† − νt〉M(Ω)

= 〈qt − Lρφ + Lρet − qt | µ† − νt〉M(Ω)

= 〈qt − p† | µ† − νt〉M(Ω) + 〈Lρet − qt | µ† − νt〉M(Ω) (Eq. (5.16))

= −
(

Dqt(µ†, νt) + Dp†
(νt, µ†)

)

+ 〈Lρet − qt | µ† − νt〉M(Ω). (Eq. (4.14))

OPEN ACCESS

DOI https://doi.org/10.4208/jml.240123 | Generated on 2025-04-05 21:33:48



J. Mach. Learn., 4(1):48-88 71

The rightmost term can be bounded by

〈Lρet − qt | µ† − νt〉M(Ω)

=
∫ t

0
〈∂s(Lρes − qs) | µ† − νt〉M(Ω)ds (Fund. th. of calc.)

=
∫ t

0
〈Lρ(Kµ† − Kνs)− Lρε( f − Kνs) | µ† − νt〉M(Ω)ds (Eq. (5.15))

=
∫ t

0
〈Lρ( f − Kνs)− Lρε( f − Kνs) | µ† − νt〉M(Ω)ds (Proposition 2.5)

=
∫ t

0
〈Lρ−ρε( f − Kνs) | µ† − νt〉M(Ω)ds

=
∫ t

0
〈 f − Kνs |Kµ† − Kνt〉L2(ρ−ρε)ds (Lemma 2.1)

=
∫ t

0
〈 f − Kνs |Kνt − Kµ†〉L2(ρε−ρ)ds

=
∫ t

0
〈 f − Kµ† − Kνt + Kµ† + Kνt − Kνs |Kνt − Kµ†〉L2(ρε−ρ)ds

=
∫ t

0
〈 f − Kµ† + Kνt − Kνs |Kνt − Kµ†〉L2(ρε−ρ)

− ‖Kνt − Kµ†‖2
L2(ρε−ρ)ds

≤
∫ t

0
‖ f − Kµ† + Kνt − Kνs‖L2(ρε−ρ)‖Kνt − Kµ†‖L2(ρε−ρ)

− ‖Kνt − Kµ†‖2
L2(ρε−ρ)ds (Cauchy-Schwarz)

=
∫ t

0

(

‖ f − Kµ†‖L2(ρε−ρ) + ‖Kνt − Kνs‖L2(ρε−ρ)

)

× ‖Kνt − Kµ†‖L2(ρε−ρ) − ‖Kνt − Kµ†‖2
L2(ρε−ρ)ds (Triangle ineq.)

≤ 1

2

∫ t

0
‖ f − Kµ†‖2

L2(ρε−ρ)ds +
1

2

∫ t

0
‖Kνt − Kνs‖2

L2(ρε−ρ)ds (Young’s prod. ineq.)

=
t

2
‖ f − Kµ†‖2

L2(ρε−ρ) +
1

2

∫ t

0
‖Kνt − Kνs‖2

L2(ρε−ρ)ds.

Hence,

∂t

(

1

2
‖et − φ‖2

L2(ρ)

)

+ Dpt(µ†, νt)

≤ t

2
‖ f − Kµ†‖2

L2(ρε−ρ) +
1

2

∫ t

0
‖Kνt − Kνs‖2

L2(ρε−ρ)ds. (5.17)

Integrating from 0 to t gives

∫ t

0
Dps(µ†, νs)ds ≤ 1

2
‖φ‖2

L2(ρ) +
t2

4
‖ f − Kµ†‖2

L2(ρε−ρ)
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+
1

2

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

L2(ρε−ρ)dsdτ. (5.18)

Therefore, we obtain

Dpt(µ†, νt) =
1

t

∫ t

0
Dpt(µ†, νt)ds

≤ 1

t

∫ t

0
Dps(µ†, νs) +

∫ t

s
∂τ Dpτ(µ†, ντ)dτds (Fund. th. of calc.)

≤ 1

t

∫ t

0
Dps(µ†, νs) +

1

4
‖Kν† − Kµ†‖2

L2(ρε)

∫ t

s
dτds (Lemma 5.1)

=
1

t

∫ t

0
Dps(µ†, νs) +

1

4
‖Kν† − Kµ†‖2

L2(ρε)(t − s)ds

=
1

t

∫ t

0
Dps(µ†, νs)ds +

t

8
‖Kν† − Kµ†‖2

L2(ρε)

≤ 1

2t
‖φ‖2

L2(ρ) +
1

2t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

L2(ρε−ρ)dsdτ (Eq. (5.18))

+
t

4
‖ f − Kµ†‖2

L2(ρε−ρ) +
t

8
‖Kν† − Kµ†‖2

L2(ρε).

The proof is complete.

The bound of (5.14) in Proposition 5.2 is similar to that of (4.11) in Proposition 4.2. If νt

remains constant for all t after some time T ≥ 0, then

1

2t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖L2(ρε−ρ)dsdτ = O

(

1 +
1

t

)

(5.19)

for all t ≥ T. This implies that (5.14), just like (4.11), has a term that is inversely in time,
a term constant in time and a term that is linearly increasing in time.

5.1 Radon-Nikodym

The first type of disturbances is expressed in terms of a bound on the Radon-Nikodym
derivative. This allows for going from the norm using one measure to the norm using the
other measure by adding a multiplicative constant.

For this subsection, we refine our definition of ρε by assuming that ρε is absolutely
continuous with respect to ρ with

∥

∥

∥

∥

1 − dρε

dρ

∥

∥

∥

∥

L∞(ρ)

≤ ε. (5.20)

Lemma 5.2. For all g ∈ L2(ρ),

‖g‖2
L2(ρ−ρε) ≤ ε‖g‖2

L2(ρ), (5.21)

‖g‖2
L2(ρε) ≤ (1 + ε)‖g‖2

L2(ρ), (5.22)
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and for all g ∈ L2(ρε),

(1 − ε)‖g‖2
L2(ρ) ≤ ‖g‖2

L2(ρε). (5.23)

Proof. The first statement follows from

‖g‖2
L2(ρ−ρε) =

∫

X
g2(x)d(ρ − ρε)(x)

=
∫

X
g2(x)

d(ρ − ρε)

dρ
(x)dρ(x)

≤
∥

∥

∥

∥

1 − dρε

dρ

∥

∥

∥

∥

L∞(ρ)

∫

X
g2(x)dρ(x)

≤ ε‖g‖2
L2(ρ).

For the latter two observe that (5.20) means that

1 − ε ≤ dρε

dρ
≤ 1 + ε ρ a.e. . (5.24)

Hence,

‖g‖2
L2(ρε) =

∫

X
g2(x)dρε(x) =

∫

X
g2(x)

dρε

dρ
(x)dρ(x) ≤ (1 + ε)‖g‖2

L2(ρ)

as well as

‖g‖2
L2(ρε) =

∫

X
g2(x)dρε(x) =

∫

X
g2(x)

dρε

dρ
(x)dρ(x) ≥ (1 − ε)‖g‖2

L2(ρ).

The proof is complete.

Using the transformation rules of Lemma 5.2 we can provide conditions on when the
rate of change of the Bregman distance is negative, similar to before.

Lemma 5.3. We have
∂tD

qt
J (µ

†, νt) < 0 (5.25)

for every t ≥ 0, when

‖ f − Kνt‖L2(ρε) > (1 + ε)‖ f − Kµ†‖L2(ρ) (5.26)

as well as when

‖ f − Kνt‖L2(ρ) >
1 + ε

1 − ε
‖ f − Kµ†‖L2(ρ) (5.27)

and ε < 1.

Proof. Observe that

∂tD
qt

J (µ
†, νt) ≤ ‖ f − Kµ†‖L2(ρε)‖Kνt − f‖L2(ρε) − ‖Kνt − f‖2

L2(ρε) (Eq. (5.13))

≤ (1 + ε)‖ f − Kµ†‖L2(ρ)‖Kνt − f‖L2(ρ) − ‖Kνt − f‖2
L2(ρε) (Eq. (5.22))

≤ (1 + ε)‖ f − Kµ†‖L2(ρ)‖Kνt − f‖L2(ρ) − (1 − ε)‖Kνt − f‖2
L2(ρ). (Eq. (5.23))

Clearly, ∂tD
qt

J (µ
†, νt) is strictly negative when either (5.26) or (5.27) is satisfied.
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When comparing (5.26) with (4.9), we see that the sampling bias adds a multiplicative
term based on ε. This is unlike the noisy case, where we got an additive term. Like-
wise, the upper bound for the Bregman distance also gets some multiplicative constants
depending on ε.

Proposition 5.3. If µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε)
respectively, then

D
pt

J (µ†, µt) ≤
1

2t
‖φ‖2

L2(ρ) +
ε

1 + ε

1

2t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

L2(ρε)dsdτ

+ (2ε + 1)
t

4
‖ f − Kµ†‖2

L2(ρ) +
t

4
‖ f − Kν†‖2

L2(ρε) (5.28)

for almost every t ≥ 0.

Proof. From the transformation rules of Lemma 5.2 it follows that

t

4
‖ f − Kµ†‖2

L2(ρε−ρ) ≤ ε
t

4
‖ f − Kµ†‖2

L2(ρ) (5.29)

as well as

‖Kντ − Kνs‖2
L2(ρε−ρ)

= ‖Kντ − Kνs‖2
L2(ρε) − ‖Kντ − Kνs‖2

L2(ρ)

≤ ‖Kντ − Kνs‖2
L2(ρε) −

1

1 + ε
‖Kντ − Kνs‖2

L2(ρε)

=

(

1 − 1

1 + ε

)

‖Kντ − Kνs‖2
L2(ρε)

=
ε

1 + ε
‖Kντ − Kνs‖2

L2(ρε). (5.30)

Additionally,

‖Kν† − Kµ†‖2
L2(ρε)

= ‖Kν† − f + f − Kµ†‖2
L2(ρε)

= ‖Kν† − f‖2
L2(ρε) + ‖ f − Kµ†‖2

L2(ρε)

+ 2〈Kν† − f | f − Kµ†〉L2(ρε)

≤ ‖Kν† − f‖2
L2(ρε) + ‖ f − Kµ†‖2

L2(ρε)

+ 2‖Kν† − f‖L2(ρε)‖ f − Kµ†‖L2(ρε) (Cauchy-Schwarz)

≤ 2‖Kν† − f‖2
L2(ρε) + 2‖ f − Kµ†‖2

L2(ρε) (Young’s product ineq.)

≤ 2‖Kν† − f‖2
L2(ρε) + 2(1 + ε)‖ f − Kµ†‖2

L2(ρ). (Eq. (5.22)) (5.31)

Bounding (5.14) using (5.30), (5.29) and (5.31) gives the sought for expression.
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Note that when we take the limit of ε → 0 of (5.28), then we get

D
pt

J (µ†, µt) ≤
1

2t
‖φ‖2

L2(ρ) +
t

2
‖ f − Kµ†‖2

L2(ρ). (5.32)

This shows that the bound for the Bregman distance in Proposition 5.3, unlike the bound
in Proposition 5.2, is no longer tight in ε.

An interesting source of bias is when ρε is a subsampling of ρ such that ‖ f‖L2(ρε) is

a Monte Carlo estimator of ‖ f‖L2(ρ). Clearly, ρε ≪ ρ and ε is finite. This means that sub-

sampling is a special case of Radon Nikodym bias and that we can use Proposition 5.3.
At the same time, the fact that ‖ f‖L2(ρε) is a Monte Carlo estimator allows us to provide

an alternative to (5.28).

Proposition 5.4. Let ρ ∈ P4(X ) be a probability measure with bounded 4-th moment, ρε be
a subsampling of ρ with m(ε) ∈ N samples, δ > 0, and f ∈ L2(ρ) ∩ L4(ρ). If µ† and ν† satisfy
the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε) respectively, then

D
pt

J (µ†, νt) ≤
1

2t
‖φ‖2

L2(ρ) +
1

2t
√

m(ε)δ

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

L4(ρ)dsdτ

+
t

4
√

m(ε)δ
‖ f − Kµ†‖2

L4(ρ) +
t

8
‖Kν† − Kµ†‖2

L2(ρε) (5.33)

for almost every t ≥ 0 with probability at least 1 − δ.

Proof. Since ρ has bounded 4-th moment, we get by Proposition 1.2 that Kµ ∈ L4(ρ) for all
µ ∈ M(Ω).

From Chebychev’s inequality it follows that

∣

∣‖Kντ − Kνs‖2
L2(ρε−ρ)

∣

∣

2

=

∣

∣

∣

∣

∫

X
|Kντ(x)− Kνs(x)|2dρε(x)−

∫

X
|Kντ(x)− Kνs(x)|2dρ(x)

∣

∣

∣

∣

2

≤

∫

X
|Kντ(x)− Kνs(x)|4dρ(x)−

(

∫

X
|Kντ(x)− Kνs(x)|2dρ(x)

)2

m(ε)δ

=
‖Kντ − Kνs‖4

L4(ρ)
− ‖Kντ − Kνs‖4

L2(ρ)

m(ε)δ

≤
‖Kντ − Kνs‖4

L4(ρ)

m(ε)δ
(5.34)

with probability at least 1 − δ. Taking the square root on both sides gives

‖Kντ − Kνs‖2
L2(ρε−ρ) ≤

‖Kντ − Kνs‖2
L4(ρ)

√

m(ε)δ
. (5.35)
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Similarly,

‖ f − Kµ†‖2
L2(ρε−ρ) ≤

‖ f − Kµ†‖2
L4(ρ)

√

m(ε)δ
. (5.36)

Substitution of (5.35) and (5.36) into (5.14) gives (5.33).

Note that when we take the limit of m(ε) → ∞ of (5.33), then we get

D
pt

J (µ†, µt) ≤
1

2t
‖φ‖2

L2(ρ). (5.37)

This shows that the bound for the Bregman distance in Proposition 5.4, like the bound in
Proposition 5.2, is tight in ε.

5.2 Wasserstein

The second type of disturbances is expressed in terms of a bound on the Wasserstein met-
ric. This allows for going from the norm using one measure to the norm using the other
measure by using the duality between Wasserstein and the Lipschitz continuous function
with Lipschitz constant at most 1.

For this subsection, we refine our definition of ρε by assuming that the Wasserstein-1
distance between ρε and ρ is bounded through ε, i.e.

W1(ρ
ε, ρ) ≤ ε. (5.38)

We also assume that f ∈ C0,1(supp(ρ − ρε)).

Lemma 5.4. For all g ∈ C0,1(supp(ρ − ρε)),

‖g‖2
L2(ρε−ρ) ≤ 2‖g‖2

C0,1(supp(ρε−ρ))ε. (5.39)

Proof. Recall that
W1(ρ

ε, ρ) = sup
h∈C0,1(X )
Lip(h)≤1

〈h | ρε − ρ〉M(X ).

Since for all g ∈ C0,1(supp(ρε − ρ)),

Lip

(

g

Lip(g)

)

≤ 1, (5.40)

we obtain

〈g | ρε − ρ〉M(X ) = Lip(g)

〈

g

Lip(g)

∣

∣

∣
ρε − ρ

〉

M(X )

≤ Lip(g)W1(ρ
ε, ρ) ≤ Lip(g)ε, (5.41)

where we used (5.38). Furthermore,

Lip(|g|2) ≤ 2‖g‖2
C0,1(supp(ρε−ρ)) < ∞,
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since
∣

∣|g(x)|2 − |g(y)|2
∣

∣ = |g(x)− g(y)|
∣

∣|g(x)|+ |g(y)|
∣

∣

≤ 2‖g‖C(supp(ρε−ρ))Lip(g)‖x − y‖ℓ∞ (5.42)

for all x, y ∈ supp(ρε − ρ). Hence,

‖g‖2
L2(ρε−ρ) = 〈|g|2 | ρε − ρ〉M(X )

≤ Lip(|g|2)ε (Eq. (5.41))

≤ 2‖g‖2
C0,1(X )ε (Eq. (5.42))

for all g ∈ C0,1(supp(ρε − ρ)).

Proposition 5.5. We have

∂tD
qt(µ†, νt) < 0, (5.43)

when
‖Kνt − f‖2

L2(ρε) > 2ε‖ f − Kµ†‖2
C0,1(supp(ρ−ρε)) + ‖ f − Kµ†‖2

L2(ρ). (5.44)

Proof. f − Kµ† is a sum of two Lipschitz functions on supp(ρ − ρε); f by assumption
and Kµ† by Proposition 1.1. Thus, f − Kµ† is Lipschitz on supp(ρ − ρε). From Lemma 5.4
we obtain that

‖ f − Kµ†‖2
L2(ρε) ≤ 2ε‖ f − Kµ†‖2

C0,1(supp(ρ−ρε)) + ‖ f − Kµ†‖2
L2(ρ). (5.45)

Hence,

∂tD
qt

J (µ
†, νt) ≤ ‖ f − Kµ†‖L2(ρε)‖Kνt − f‖L2(ρε) − ‖Kνt − f‖2

L2(ρε) (Eq. (5.13))

≤
√

2ε‖ f − Kµ†‖2
C0,1(supp(ρ−ρε))

+ ‖ f − Kµ†‖2
L2(ρ)

× ‖Kνt − f‖L2(ρε) − ‖Kνt − f‖2
L2(ρε). (Eq. (5.45))

Clearly, this is strictly negative when (5.44) is satisfied.

When comparing (5.26) with (4.9), we see that the sampling bias adds an additive term
based on ε. This is like the noisy case, but unlike when the sampling bias was given in
terms of the Radon-Nikodym derivative.

Proposition 5.6. If µ† and ν† satisfy the source condition through φ ∈ L2(ρ) and φ ∈ L2(ρε)
respectively, then

D
pt

J (µ†, νt) ≤
1

2t
‖φ‖2

L2(ρ) + ε
t

2
‖ f − Kµ†‖2

C0,1(supp(ρ−ρε))

+
ε

t

∫ t

0

∫ τ

0
‖Kντ − Kνs‖2

C0,1(supp(ρ−ρε))dsdτ +
t

8
‖Kν† − Kµ†‖2

L2(ρε) (5.46)

for almost every t ≥ 0.
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Proof. Recall from the proof of Proposition 5.5 that f −Kµ† ∈ C0,1(supp(ρ− ρε)). Eq. (5.45)
can be rewritten as

‖ f − Kµ†‖2
L2(ρε−ρ) ≤ 2ε‖ f − Kµ†‖2

C0,1(supp(ρ−ρε)). (5.47)

Similarly, Kντ − Kνs ∈ C0,1(supp(ρ − ρε)) by Proposition 1.2. Hence,

‖Kντ − Kνs‖2
L2(ρε−ρ) ≤ 2ε‖Kντ − Kνs‖2

C0,1(supp(ρ−ρε)). (5.48)

Bounding (5.14) using (5.47) and (5.48) gives the sought for expression.

Note that when we take the limit of ε → 0 of (5.28), then we get

D
pt

J (µ†, µt) ≤
1

2t
‖φ‖2

L2(ρ). (5.49)

This shows that the bound for the Bregman distance in Proposition 5.6, like the bound in
Proposition 5.2, is tight in ε.

6 Parameter space discretization

One issue with the inverse scale space of (1.11) is that pt is defined on Ω. To ensure that
pt ∈ ∂J(µt) we need to have full knowledge of pt. This cannot be implemented. Hence, Ω

needs to be discretized. In this section, we study a particular discretization based on the
Voronoi tessellation. In Section 6.1, we show, for a given sequence of Voronoi tessellations
with mild assumptions, that the inverse scale space flow on these tessellations converges
to the full flow for N → ∞. In Section 6.2, we show the rate of convergence for the flow
with fixed N to the optimal solution. Combined, these sections prove Theorem 6.1.

Given a set ωN ⊆ Ω with |ωN | = N, a Voronoi tessellation divides Ω into N subsets

ΩN
n =

{

w ∈ Ω
∣

∣ ∀m ∈ {1, . . . , N} :
∣

∣w − ωN
n

∣

∣ ≤
∣

∣w − ωN
m

∣

∣

}

(6.1)

such that

Ω =
N
⋃

n=1

ΩN
n . (6.2)

We consider sequences of sets {ωN}∞
N=1 with ωN ⊆ Ω, |ωN | = N and

lim
N→∞

max
n

diam
(

ΩN
n

)

= 0.

For this section, we will keep referring to the solution over Ω with µ and p whilst we will
refer to the solution over ωN with ν and q. With ν† we denote a minimizer of R f with

J(ν†) < ∞ over the measures supported on ωN . We will make use of the Lagrangian

F : M(Ω) → [0, ∞), µ 7→ J(µ) + λR f (µ) (6.3)
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of (2.3) and its restriction to ωN

FNµ =

{

Fµ, supp(µ) ⊆ ωN ,

∞, otherwise
(6.4)

in the proofs. We will also assume that Ω is compact.

Theorem 6.1. The minimizers of the sequence {FN}∞
N=1 converge in weak∗ to the minimizer of F.

Moreover,

‖Kνt − f‖2
L2(ρ) ≤ 2‖Kµ† − f‖2

L2(ρ)

+ 2Lip(σ)2
(

max
n

diam
(

ΩN
n

)

)2
‖µ†‖2 + 2

J(ν†)

t
(6.5)

for almost every t ≥ 0.

The first part of the theorem follows from Section 6.1 and the second part from Sec-
tion 6.2.

6.1 Convergence of the discrete flow to the full flow

Both the discrete flow and full flow are well-defined flows, so what remains to show is
that the solutions to the discrete flow for increasing N converge to the solution for the full
flow. To prove this, we will show that the minimizers associated to the Lagrangians of the
discrete flows FN converge in weak∗ to the minimizer of F. This can be concluded from the
fundamental theorem of Γ-convergence [7]. The requirements for the fundamental theo-
rem are that FN satisfies the lim inf property, that there exists a Γ-realizing sequence and
that the family (FN)N is equicoercive. The three propositions at the end of this subsection
show that these requirements hold. These propositions rely on some properties of F that
carry over to FN . We will prove those first.

Lemma 6.1. F is proper, convex, weak* lower semi-continuous and coercive.

Proof. F is proper, since 0 ∈ dom(F).
Since V is continuous, J is convex. Since K is a bounded, linear (and thus continuous)

operator and the square of the L2(ρ) norm is convex, R f is convex. Since F is a sum of
two convex functions, F is convex.

Let (µn) be a sequence of measures and µn, µ ∈ M(Ω) such that µn
w⋆

−→ µ. Then for all
φ ∈ L2(ρ),

lim
n→∞

〈Kµn | φ〉L2(ρ) = lim
n→∞

〈Lρφ | µn〉M(Ω) = 〈Lρφ | µ〉M(Ω) = 〈Kµ | φ〉L2(ρ). (6.6)

This shows that Kµn
L2(ρ)−−−→ Kµ. Since

w 7→ 1

2
‖w − f‖2

L2(ρ) (6.7)
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is continuous and convex, it is sequentially weak lower-semicontinuous. The combination
implies that R f is sequentially weak⋆ lower-semicontinuous. Since J is continuous, it is
weak⋆ lower-semicontinuous. This implies that F is weak⋆ lower-semicontinuous.

F is coercive if and only if
lim

‖µ‖M(Ω)→∞
F(µ) = ∞. (6.8)

For measures µ /∈N(K) outside the kernel of K we have that R f (µ)→∞ as ‖µ‖M(Ω)→∞.
Since J is non-negative, F will grow without bound for those measures too. What remains
is the measures µ ∈ N(K) inside the kernel of K. For these measures R f (µ) is constant,
but the conditions on V imply that J will grow without bound. Hence, F is coercive.

Now, we can prove the three properties needed for the sequence of FN ’s.

Proposition 6.1 (Liminf Property). For all µ ∈ M(Ω) and every sequence (µn) such that

µn
w∗
−→ µ, we have

lim inf
µn→∞

Fn(µn) ≥ F(µ). (6.9)

Proof. From construction of Fn it follows that

Fn(µ) ≥ F(µ). (6.10)

Hence, combined with the lower semi-continuity of F proven in Lemma 6.1, we obtain

lim inf
µn→∞

Fn(µn) ≥ lim inf
µn→∞

F(µn) ≥ F(µ). (6.11)

The proof is complete.

Proposition 6.2 (Γ-Realizing Sequence). Let µ ∈ M(Ω) and define a sequence of measures
µN ∈ M(Ω) by

µN =
N

∑
n=1

µ
(

ΩN
n

)

δωN
n

. (6.12)

We have µN
w∗
−→ µ as well as

lim
N→∞

FN(µN) = F(µ). (6.13)

Proof. Recall that M(Ω) is dual to C(Ω), so the weak* convergence is defined in terms of
g ∈ C(Ω). Since Ω is compact, g is absolutely continuous. Recall that this implies that

∀ ε > 0 ∃ δ > 0 ∀ (a, b), (c, d) ∈ Ω :

‖(a, b)− (c, d)‖ < δ =⇒ |g(a, b)− g(c, d)| < ε. (6.14)

Since the diameter of the Voronoi cells vanishes as N goes to infinity, there must be an Ñ
such that for all N > Ñ and n ∈ {1, . . . , N}, we have that ‖(a, b)− (aN

n , bN
n )‖ < δ for all

(a, b) ∈ ΩN
n . Hence, for all g ∈ C(Ω) and all ε > 0,

lim
N→∞

∣

∣

∣

∣

∫

Ω
g(a, b)d(µ − µN)(a, b)

∣

∣

∣

∣
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= lim
N→∞

∣

∣

∣

∣

∣

∫

Ω
g(a, b)d

(

µ −
N

∑
n=1

µ
(

ΩN
n

)

δωN
n

)

(a, b)

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

∫

Ω
g(a, b)dµ(a, b) −

N

∑
n=1

g
(

aN
n , bN

n

)

µ(ΩN
n )

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

∫

Ω
g(a, b)dµ(a, b) −

N

∑
n=1

∫

ΩN
n

g
(

aN
n , bN

n

)

dµ(a, b)

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

N

∑
n=1

∫

ΩN
n

g(a, b)dµ(a, b) −
N

∑
n=1

∫

ΩN
n

g
(

aN
n , bN

n

)

dµ(a, b)

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

N

∑
n=1

∫

ΩN
n

(

g(a, b)− g
(

aN
n , bN

n

))

dµ(a, b)

∣

∣

∣

∣

∣

≤ lim
N→∞

N

∑
n=1

∫

ΩN
n

∥

∥g(a, b)− g
(

aN
n , bN

n

)
∥

∥d|µ|(a, b)

< lim
N→∞

N

∑
n=1

∫

ΩN
n

εd|µ|(a, b)

= ε‖µ‖M(Ω).

Since ε was arbitrary, we must have that

lim
N→∞

∫

Ω
g(a, b)d(µ − µN)(a, b) = 0. (6.15)

This shows that µN
w∗
−→ µ, and by construction of µN we have FN(µN) = F(µN). Fur-

thermore, we showed in Lemma 6.1 that F was weak∗ lower semi-continuous. If fact, by
similar arguments, it is sequentially weak∗ continuous. Hence, it follows that

lim
N→∞

FN(µN) = lim
N→∞

F(µN) = F(µ). (6.16)

The proof is complete.

Proposition 6.3 (Equicoercivity). The family (FN)N is equicoercive.

Proof. The family (FN)N is equicoercive if and only if every member of the family is coer-
cive. In Lemma 6.1 it was proven that F is coercive. Hence, by construction of FN

lim
‖µ‖M(Ω)→∞

FN(µ) ≥ lim
‖µ‖M(Ω)→∞

F(µ) = ∞. (6.17)

This means that FN is coercive. Since N was arbitrary, it holds for all members FN of the
family (FN)N .

We have now shown that the requirements for the fundamental theorem of Γ-conver-
gence hold, which implies that the sequence of minimizers of FN converges in weak∗ to
the minimizer of F.
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6.2 Convergence error for the discrete flow

In the previous section, we showed that the discrete flow converges to the full flow. In this
section, we will fix N and show the convergence rates of the discrete flow to the optimal
solution. We will first show the generic bound, also shown in Theorem 6.1. Afterward, we
will look at a special case.

Observe that the finite ωN satisfies the required properties for a proper inverse scale
space flow. The following proposition shows the generic bound.

Proposition 6.4. We have

‖Kνt − f‖2
L2(ρ) ≤ 2‖Kµ† − f‖2

L2(ρ) + 2
J(ν†)

t

+ 2‖µ†‖2
M(Ω)

(

max
n

diam
(

ΩN
n

)

)2
Lip(σ)2

∫

X
max(1, ‖x‖)2dρ(x) (6.18)

for almost every t ≥ 0.

Proof. From Proposition 3.3 it follows that

‖Kνt − f‖2
L2(ρ) ≤ ‖Kν† − f‖2

L2(ρ) + 2
J(ν†)

t
. (6.19)

Since ν† is a minimizer of R f over ωN , we have for the measure

µN =
N

∑
n=1

µ†
(

ΩN
n

)

δωN
n

, (6.20)

that

‖Kν† − f‖L2(ρ) ≤ ‖KµN − f‖L2(ρ)

≤ ‖KµN − Kµ†‖L2(ρ) + ‖Kµ† − f‖L2(ρ), (6.21)

and thus by Young’s inequality for products with p = q = 2,

‖Kν† − f‖2
L2(ρ) ≤ 2‖KµN − Kµ†‖2

L2(ρ) + 2‖Kµ† − f‖2
L2(ρ). (6.22)

We observe that by a similar argument as in the proof of Proposition 6.2 that

‖KµN − Kµ†‖2
L2(ρ)

=
∫

X

∣

∣

∣

∣

∫

Ω
σ(a⊺x + b)d(µn − µ†)(a, b)

∣

∣

∣

∣

2

dρ(x)

≤
∫

X

(

N

∑
n=1

∫

ΩN
n

∥

∥σ(a⊺x + b)− σ
((

aN
n

)⊺
x + bN

n

)
∥

∥d|µ†|(a, b)

)2

dρ(x)
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≤
∫

X

(

N

∑
n=1

∫

ΩN
n

Lip(σ)
∥

∥(a⊺x + b)−
((

aN
n

)⊺
x + bN

n

)
∥

∥d|µ†|(a, b)

)2

dρ(x)

≤
∫

X

(

N

∑
n=1

∫

ΩN
n

Lip(σ)
(∥

∥a − aN
n

∥

∥‖x‖+
∣

∣b − bN
n

∣

∣

)

d|µ†|(a, b)

)2

dρ(x)

≤
∫

X
max(1, ‖x‖)2

(

N

∑
n=1

∫

ΩN
n

Lip(σ)
(
∥

∥a − aN
n

∥

∥+
∣

∣b − bN
n

∣

∣

)

d|µ†|(a, b)

)2

dρ(x)

= Lip(σ)2
∫

X
max(1, ‖x‖)2

(

N

∑
n=1

∫

ΩN
n

diam
(

ΩN
n

)

d|µ†|(a, b)

)2

dρ(x)

≤ ‖µ†‖2
M(Ω)

(

max
n

diam
(

ΩN
n

)

)2
Lip(σ)2

∫

X
max(1, ‖x‖)2dρ(x).

Substituting this into (6.22) and the resulting expression into (6.19) gives (6.18).

In [23], it was shown that a Voronoi cell’s radius decreases with a rate of O(N−1/d)
when the points in ωN are i.i.d. sampled from an absolutely continuous probability mea-
sure over Ω. We can use the direct approximation theorem of Barron spaces to achieve
a better rate [26, Theorem 3.8].

Proposition 6.5. Let N ∈ N. Denote with M f the set of all measures µN of N atoms that satisfy
the bounds

‖KµN − Kµ†‖2
L2(ρ) ≤

J(µ†)2

N
Lip(σ)2

∫

X
max(1 + ‖x‖)2dρ(x), (6.23)

and choose ωN such that M f is non-empty. Then,

‖Kνt − f‖2
L2(ρ) ≤ 3‖Kµ† − f‖2

L2(ρ) + 2
J(ν†)

t

+ 3
J(µ†)2

N
Lip(σ)2

∫

X
max(1, ‖x‖)2dρ(x)

+ 3 inf
µN∈M f

‖Kν† − KµN‖2
L2(ρ). (6.24)

Proof. Kµ† ∈ B, so by [24, Theorem 4] there exists a suitable choice for ωN . Let µN ∈ M f .
Observe that

‖Kνt − f‖2
L2(ρ) ≤ ‖Kν† − f‖2

L2(ρ) + 2
J(ν†)

t
(Proposition 3.3)

≤ 3‖Kν† − KµN‖2
L2(ρ) + 3‖Kµ† − KµN‖2

L2(ρ)

+ 3‖Kµ† − f‖2
L2(ρ) + 2

J(ν†)

t
(Triangle ineq., Young’s)

≤ 3‖Kν† − KµN‖2
L2(ρ)
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+ 3
J(µ†)2

N
Lip(σ)2

∫

X
max(1, ‖x‖)2dρ(x)

+ 3‖Kµ† − f‖2
L2(ρ) + 2

J(ν†)

t
. (Eq. (6.23))

Taking the infimum over µN ∈ M f gives (6.24).

7 Discussion

In this work, we have studied the convergence and error analysis of finding the best mea-
sure µ such that the Barron function Kµ is close to f using the inverse scale space flow.
After having established the existence and regularity of the solution, we considered the
ideal, noisy, biased, and discretized cases. For each of these cases, we analysed the evolu-
tion of the Bregman divergence with respect to the optimal solution Dpt(µ†, νt) and the L2

loss R f (µt).
In the ideal case, we got monotonic and linear evolution to the optimal solution. In the

noisy case, we still got monotonic and linear evolution to the optimal solution but only
up to an error level determined by the noise level δ. These results agree with the known
results for inverse scale spaces.

In the novel case of biased sampling,

Dpt(µ†, νt) ≤ O
(

1 +
1

t
+ t

)

with the suppressed factors in the big O notation depending on ε. When we work with
noisy measurements, Dpt(µ†, νt) has a similar upper bound but depending on δ. In that
setting, the smallest upper bound for Dpt(µ†, νt) is attained for t(δ) = O(δ−1). When
dealing with biased sampling, this smallest upper bound is attained for

t(ε) = O
(

√
1 + ε√

1 + ε + ε2

)

, t(ε) = O
(
√

1 + ε√
ε

)

for a Radon-Nikodym and a Wasserstein perturbation respectfully. However, whilst in
many cases it is straightforward to provide an estimate for δ, it is not the case for ε.

A second issue with the upper bounds for Dpt(µ†, νt) is that we typically do not know
f , φ, µ†, ν† or ρ. What we do know is Kνt on supp(ρε). This means the bound in Proposi-
tion 5.3 has more terms that can be explicitly computed than the bounds in Proposition 5.2,
Proposition 5.4 or Proposition 5.6. That makes Proposition 5.3 arguably the most useful
proposition.

When the parameter space Ω is discretized, we have shown that we still have a proper
inverse scale space flow. In this setting, we get an additional additive factor depending
on N in convergence. When we don’t make any additional assumptions on ωN , this addi-

tional factor is of the form O(N−1/d). This 1/d factor shows that the discretization method
suffers from the curse of dimensionality, meaning that the method performs poorly when

working with high dimension. Although we show that an O(N−1/2) can be attained in
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theory, it is unclear how to find the required N points without solving a different sparse
minimization problem first.

When applied in practice, the true data distribution needs to be sampled. This in-
troduces an error that can either be bounded by a Monte-Carlo rate or using one of the
approaches outlined in Section 5. Whilst the sampling introduces an error, it allows for po-
tential improvements to the iterative scheme. When the data distribution is concentrated
on finitely many atoms, we get for the chosen regularizer J that there exists a minimizing
measure also concentrated on at most that many atoms due to the represented theorem.
This makes the flow piecewise linear in time, and makes µt be concentrated on a finite
number of atoms for all t > 0 due to the optimality condition. More work is needed to
determine whether these effects combined can be used within this framework to provide
a better discretization of the parameter space Ω or avoid the discretization all together in
order to beat the curse of dimensionality.

In this work, we focussed on finding a sparse representation of a Barron space function.
These functions represent shallow neural networks. For deep networks, there are several
candidates spaces, like the Tree-like spaces [25], the Neural Hilbert Ladders [20], the Deep
Variational Splines [35] and the Deep RKBS [3]. These candidates spaces have different
structures than the Barron space. For example, in the Tree-like spaces the measure is de-
fined over an infinite dimensional parameter space Ω instead of a finite dimensional set,
and for the Deep RKBS a sequence of measures has to be optimised over simultaneously
instead of just one measure µt. These function spaces pose specific challenges that need to
be addressed, before the method can be applied successfully. We leave the investigation to
which of these structures the methods in this paper can be best extended to future work.

8 Conclusion

This paper investigates an inverse problem for neural networks in the infinite width limit,
which is to find a sparse representation of a Barron function that fits the data well. Sparse
neural networks are known to improve generalization from training to test data, yet ex-
isting methods for identifying infinite width neural networks do not guarantee sparse
solutions. We propose solving the inverse problem using the inverse scale space flow.
The study systematically analyzes the convergence properties of this flow under ideal
conditions and in the presence of measurement noise, sampling bias, and discretization.
In the ideal setting, the objective decreases monotonically at a rate of O(1/t) to a mini-
mizer, while in perturbed settings, convergence is achieved up to a bounded error. Dis-
cretized solutions are shown to converge to the full-space optimum when the mesh-size
gets smaller.

Appendix A Notation and definitions

Let R denote the real numbers, and N denote the natural numbers without 0. The space
of all Radon measures – regular, signed Borel measures with bounded total variation – on
a locally compact Hausdorff Ω is denoted by M(Ω). It is a Banach space with the norm
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‖µ‖M(Ω) =
∫

Ω
d|µ|(x),

where |µ| is the total variation measure of µ. When Ω is compact and M(Ω) is equipped
with the weak*-topology, then M(Ω) is dual to C(Ω), the space of continuous functions on
Ω. When Ω is unbounded, then it is dual to C0(Ω), the space of continuous functions on Ω

that go to zero at infinity. All Radon measures µ ∈ M(Ω) have a polar decomposition, i.e.
there exists a sgn{µ} ∈ L1(Ω, |µ|) with |sgn{µ}| ≤ 1 such that

dµ(x) = sgn{µ}(x)d|µ|(x).

The space of all probability measures on a set U with finite k-th moments is denoted by
Pk(U)⊆M(U). The Wasserstein-1 metric between two probability measures ρ, π∈P1(Ω),
can be computed by

W1(ρ, π) = sup

{

∫

Ω
f (ω)dρ(ω)−

∫

Ω
f (ω)dπ(ω)

∣

∣

∣

∣

f ∈ C0(Ω), Lip( f ) ≤ 1

}

,

where Lip( f ) denotes the Lipschitz constant of f . Given a set X, a positive number
p ∈ [1, ∞] and a radon measure ρ ∈ M(X), we write Lp(ρ) instead of Lp(X, ρ). If
f : L∞([0, ∞)) → U with U a normed vector space, then ft := f (t) ∈ U , f is Bochner
integrable, and f has norm ‖ f‖L∞([0,∞),U ) = ess supt∈[0,∞)‖ ft‖U . If f : U → V is an opera-

tor from U to V , then the operator norm is denoted ‖ f‖U→V . If U ⊂ V is a convex set, V is
a locally convex space and J : U → R is a convex function, then the convex conjugate is
written as J∗ and the subgradient ∂J of J at u0 is given by

∂J(u0) = {v ∈ V∗ | J(u)− J(u0) ≥ 〈v | u − u0〉V∗ , ∀ u ∈ U}.

(Fréchet) derivatives of a function or operator f are also denoted ∂ f . If the derivative is
a partial derivative, then a subscript will be added to indicate the variable with which the
derivative is taken.
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