@Article{AAMM-16-1, author = {Xu, Minqiang and Zou, Qingsong}, title = {A Hessian Recovery Based Linear Finite Element Method for Molecular Beam Epitaxy Growth Model with Slope Selection}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2024}, volume = {16}, number = {1}, pages = {1--23}, abstract = {
In this paper, we present a Hessian recovery based linear finite element method to simulate the molecular beam epitaxy growth model with slope selection. For the time discretization, we apply a first-order convex splitting method and second-order Crank-Nicolson scheme. For the space discretization, we utilize the Hessian recovery operator to approximate second-order derivatives of a $C^0$ linear finite element function and hence the weak formulation of the fourth-order differential operator can be discretized in the linear finite element space. The energy-decay property of our proposed fully discrete schemes is rigorously proved. The robustness and the optimal-order convergence of the proposed algorithm are numerically verified. In a large spatial domain for a long period, we simulate coarsening dynamics, where 1/3-power-law is observed.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2021-0193}, url = {https://global-sci.com/article/72798/a-hessian-recovery-based-linear-finite-element-method-for-molecular-beam-epitaxy-growth-model-with-slope-selection} }