@Article{AAMM-10-2, author = {Luoping, Chen and Yanping, Chen}, title = {A Novel Discretization Method for Semilinear Reaction-Diffusion Equation}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2018}, volume = {10}, number = {2}, pages = {409--423}, abstract = {

In this work, we investigate a novel two-level discretization method for semilinear reaction-diffusion equations. Motivated by the two-grid method for nonlinear partial differential equations (PDEs) introduced by Xu [18] on physical space, our discretization method uses a two-grid finite element discretization method for semilinear partial differential equations on physical space and a two-level finite difference method for the corresponding time space. Specifically, we solve a semilinear equations on a coarse mesh $\mathcal{T}_H(\Omega)$ (partition of domain $\Omega$ with mesh size $H$) with a large time step size $\Theta$ and a linearized equations on a fine mesh $\mathcal{T}_h(\Omega)$ (partition of domain $\Omega$ with mesh size $h$) using smaller time step size $\theta$. Both theoretical and numerical results show that when $h=H^2, \theta=\Theta^2$, the novel two-grid numerical solution achieves the same approximate accuracy as that for the original semilinear problem directly by finite element method with $\mathcal{T}_h(\Omega)$ and $\theta$.

}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2017-0011}, url = {https://global-sci.com/article/73180/a-novel-discretization-method-for-semilinear-reaction-diffusion-equation} }