@Article{AAMM-6-3, author = {Hai-Yan, Cao and Zhi-Zhong, Sun and Zhao, Xuan}, title = {A Second-Order Three-Level Difference Scheme for a Magneto-Thermo-Elasticity Model}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2014}, volume = {6}, number = {3}, pages = {281--298}, abstract = {

This article deals with the numerical solution to the magneto-thermo-elasticity model, which is a system of the third order partial differential equations. By introducing a new function, the model is transformed into a system of the second order generalized hyperbolic equations. A priori estimate with the conservation for the problem is established. Then a three-level finite difference scheme is derived. The unique solvability, unconditional stability and second-order convergence in $L_{\infty}$-norm of the difference scheme are proved. One numerical example is presented  to demonstrate the accuracy and efficiency of the proposed method.

}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.12-m1295}, url = {https://global-sci.com/article/73440/a-second-order-three-level-difference-scheme-for-a-magneto-thermo-elasticity-model} }