@Article{ATA-37-2, author = {Seok, Jinmyoung and Younghun, Hong}, title = {Ground States to the Generalized Nonlinear Schrödinger Equations with Bernstein Symbols}, journal = {Analysis in Theory and Applications}, year = {2021}, volume = {37}, number = {2}, pages = {157--177}, abstract = {

This paper concerns with existence and qualitative properties of ground states to generalized nonlinear Schrödinger equations (gNLS) with abstract symbols. Under some structural assumptions on the symbol, we prove a ground state exists and it satisfies several fundamental properties that the ground state to the standard NLS enjoys. Furthermore, by imposing additional assumptions, we construct, in small mass case, a nontrivial radially symmetric solution to gNLS with $H^1$-subcritical nonlinearity, even if the natural energy space does not control the $H^1$-subcritical nonlinearity.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2021.pr80.06}, url = {https://global-sci.com/article/73769/ground-states-to-the-generalized-nonlinear-schrodinger-equations-with-bernstein-symbols} }