@Article{ATA-37-3, author = {Zhidan, Wang and Wu, Huoxiong and Xue, Qingying}, title = {Borderline Weighted Estimates for Commutators of Fractional Integrals}, journal = {Analysis in Theory and Applications}, year = {2021}, volume = {37}, number = {3}, pages = {404--425}, abstract = {
Let $I_{\alpha,\vec{b}}$ be the multilinear commutators of the fractional integrals $I_{\alpha}$ with the symbol $\vec{b}=(b_1, \cdots,b_k )$. We show that the constant of borderline weighted estimates for $I_{\alpha}$ is $\frac{1}{{\varepsilon}}$, and for $I_{\alpha,{\vec{b}}}$ is $\frac{1}{{\varepsilon}^{k+1}}$ with each $b_i$ belongs to the Orlicz space $Osc_{\exp L^{s_i}}$.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2021.lu80.08}, url = {https://global-sci.com/article/73788/borderline-weighted-estimates-for-commutators-of-fractional-integrals} }