@Article{ATA-31-4, author = {}, title = {Spectral Self-Affine Measures on the Generalized Three Sierpinski Gasket}, journal = {Analysis in Theory and Applications}, year = {2015}, volume = {31}, number = {4}, pages = {394--406}, abstract = {
The self-affine measure $\mu_{M,D}$ associated with an iterated function system$\{\phi_{d} (x)=M^{-1}(x+d)\}_{d\in D}$ is uniquely determined. It only depends upon an expanding matrix $M$ and a finite digit set $D$. In the present paper we give some sufficient conditions for finite and infinite families of orthogonal exponentials. Such research is necessary to further understand the non-spectral and spectral of $\mu_{M,D}$. As an application, we show that the $L^2(\mu_{M, D})$ space has infinite families of orthogonal exponentials on the generalized three Sierpinski gasket. We then consider the spectra of a class of self-affine measures which extends several known conclusions in a simple manner.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2015.v31.n4.5}, url = {https://global-sci.com/article/73970/spectral-self-affine-measures-on-the-generalized-three-sierpinski-gasket} }