@Article{ATA-30-1, author = {}, title = {Weighted Integral Means of Mixed Areas and Lengths Under Holomorphic Mappings}, journal = {Analysis in Theory and Applications}, year = {2014}, volume = {30}, number = {1}, pages = {1--19}, abstract = {

This note addresses monotonic growths and logarithmic convexities of the weighted ($(1-t^2)^\alpha dt^2$, $-\infty <\alpha <\infty$, $0< t< 1$) integral means $\mathsf{A}_{\alpha,\beta}(f,\cdot)$ and $\mathsf{L}_{\alpha,\beta}(f,\cdot)$ of the mixed area $(\pi r^2)^{-\beta}A(f,r)$ and the mixed length $(2\pi r)^{-\beta}L(f,r)$($0\le\beta\le 1$ and $0< r< 1$) of $f(r\mathbb D)$ and $\partial f(r\mathbb D)$ under a holomorphic map $f$ from the unit disk $\mathbb D$ into the finite complex plane $\mathbb C$.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2014.v30.n1.1}, url = {https://global-sci.com/article/73973/weighted-integral-means-of-mixed-areas-and-lengths-under-holomorphic-mappings} }