@Article{ATA-27-2, author = {}, title = {On Extremal Properties for the Polar Derivative of Polynomials}, journal = {Analysis in Theory and Applications}, year = {2011}, volume = {27}, number = {2}, pages = {150--157}, abstract = {
If $p(z)$ is a polynomial of degree $n$ having all its zeros on $|z| = k$, $k \leq 1$, then it is proved[5] that $$\max_{|z|=1}|p′(z)| \leq\frac{n}{k^{n−1}+k^n}\max_{|z|=1}|p(z)|.$$In this paper, we generalize the above inequality by extending it to the polar derivative of a polynomial of the type $p(z) = c_nz^n +\sum\limits_{j=\mu}^{n}c_{n-j}z^{n-j}$, $1 \leq \mu \leq n$. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros.
}, issn = {1573-8175}, doi = {https://doi.org/10.1007/s10496-011-0150-3}, url = {https://global-sci.com/article/74101/on-extremal-properties-for-the-polar-derivative-of-polynomials} }