@Article{ATA-27-4, author = {Vanda, Fülöp, and Mόricz, Ferenc}, title = {On Double Sine and Cosine Transforms, Lipschitz and Zygmund Classes}, journal = {Analysis in Theory and Applications}, year = {2011}, volume = {27}, number = {4}, pages = {351--364}, abstract = {

We consider complex-valued functions $f \in  L^1(\mathbf{R}^2_+)$, where $\mathbf{R}_+ := [0,\infty)$, and prove sufficient conditions under which the double sine Fourier transform $\hat{f}_{ss}$ and the double cosine Fourier transform $\hat{f}_{cc}$  belong to one of the two-dimensional Lipschitz classes $Lip(\alpha,\beta )$ for some $0 < \alpha,\beta \leq 1$; or to one of the Zygmund classes Zyg$(\alpha,\beta )$ for some $0 < \alpha,\beta  \leq 2$. These sufficient conditions are best possible in the sense that they are also necessary for nonnegative-valued functions $f \in L^1(\mathbf{R}^2_+)$.

}, issn = {1573-8175}, doi = {https://doi.org/10.1007/s10496-011-0351-9}, url = {https://global-sci.com/article/74120/on-double-sine-and-cosine-transforms-lipschitz-and-zygmund-classes} }