@Article{CAM-20-11, author = {}, title = {【期刊信息】SCIENCE CHINA Mathematics, Vol. 66, No. 6, 2023}, journal = {CAM-Net Digest}, year = {2023}, volume = {20}, number = {11}, pages = {7--7}, abstract = {

URL: http://link.springer.com/journal/11425/66/6/page/1
URL: https://www.sciengine.com/SCM/issue/66/6
URL: https://link.springer.com/journal/11425

Weak scalar curvature lower bounds along Ricci flow
Wenshuai Jiang, Weimin Sheng, Huaiyu Zhang
Sci China Math, 66(6), 2023, 1141-1160
https://doi.org/10.1007/s11425-021-2037-7

Local cohomology for Gorenstein homologically smooth DG algebras
Xuefeng Mao, Huan Wang
Sci China Math, 66(6), 2023, 1161-1176
https://doi.org/10.1007/s11425-021-2003-2

Maurer-Cartan characterizations and cohomologies of compatible Lie algebras
Jiefeng Liu, Yunhe Sheng, Chengming Bai
Sci China Math, 66(6), 2023, 1177-1198
https://doi.org/10.1007/s11425-021-2014-5

A $q$-operational equation and the Rogers-Szegő polynomials
Zhiguo Liu
Sci China Math, 66(6), 2023, 1199-1216
https://doi.org/10.1007/s11425-021-1999-2

Bubbling solutions of fourth order mean field equations on $\mathbb{S}^4$
Changfeng Gui, Yeyao Hu, Weihong Xie
Sci China Math, 66(6), 2023, 1217-1236
https://doi.org/10.1007/s11425-022-1993-x

Normalized solutions for a fourth-order Schrödinger equation with a positive second-order dispersion coefficient
Xiao Luo, Tao Yang
Sci China Math, 66(6), 2023, 1237-1262
https://doi.org/10.1007/s11425-022-1997-3

Vanishing viscosity limits for the free boundary problem of compressible viscoelastic 
fluids with surface tension
Xumin Gu, Yu Mei
Sci China Math, 66(6), 2023, 1263-1300
https://doi.org/10.1007/s11425-022-1998-9

Morrey smoothness spaces: A new approach
Dorothee D. Haroske, Hans Triebel
Sci China Math, 66(6), 2023, 1301-1358
https://doi.org/10.1007/s11425-021-1960-0

Gaussian limit for determinantal point processes with $J$-Hermitian kernels
Zhaofeng Lin, Yanqi Qiu, Kai Wang
Sci China Math, 66(6), 2023, 1359-1374
https://doi.org/10.1007/s11425-021-1977-x

Regularization by transport noises for 3D MHD equations
Dejun Luo
Sci China Math, 66(6), 2023, 1375-1394
https://doi.org/10.1007/s11425-021-1981-9

}, issn = {}, doi = {https://doi.org/2023-CAM-21857}, url = {https://global-sci.com/article/74663/science-china-mathematics-vol-66-no-6-2023} }