@Article{CAM-12-13, author = {}, title = {期刊内容:Journal of Scientific Computing,Volume 63, Number 3, June 2015}, journal = {CAM-Net Digest}, year = {2015}, volume = {12}, number = {13}, pages = {10--10}, abstract = {

http://www.springeronline.com/journal/10915

Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws
Willem Hundsdorfer, David I. Ketcheson and Igor Savostianov, pp.633-653.

A Numerical Comparison Between Degenerate Parabolic and Quasilinear Hyperbolic Models of Cell Movements Under Chemotaxis
Roberto Natalini, Magali Ribot and Monika Twarogowska, pp.654-677.

Well-Balanced Central Schemes on Overlapping Cells with Constant Subtraction Techniques for the Saint-Venant Shallow Water System 
Suo Yang, Alexander Kurganov and Yingjie Liu, pp.678-698.

Pressure Recovery for Weakly Over-Penalized Discontinuous Galerkin Methods for the Stokes Problem 
Min Yang, Jiangguo Liu and Yanping Lin, pp.699-715.

Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations 
Long Chen, Ming Wang and Lin Zhong, pp.716-744.

A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces 
Varun Shankar, Grady B. Wright, Robert M. Kirby and Aaron L. Fogelson, pp.745-768.

Contraction and Optimality Properties of an Adaptive Legendre–Galerkin Method: The Multi-Dimensional Case 
Claudio Canuto, Valeria Simoncini and Marco Verani, pp.769-798.

Computing Interacting Multi-fronts in One Dimensional Real Ginzburg Landau Equations 
Tasos Rossides, David J. B. Lloyd and Sergey Zelik, pp.799-819.

Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation 
Helene Mathis, Clement Cances, Edwige Godlewski and Nicolas Seguin, pp.820-861.

Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes 
Shengxin Zhu and Andrew J. Wathen, pp.862-884.

Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations 
T. Chacon Rebollo, M. Gomez Marmol and M. Restelli, pp.885-912.

Local Discontinuous Galerkin Methods for the Functionalized Cahn–Hilliard Equation
Ruihan Guo, Yan Xu and Zhengfu Xu, pp.913-937.

}, issn = {}, doi = {https://doi.org/2015-CAM-15038}, url = {https://global-sci.com/article/76770/journal-of-scientific-computingvolume-63-number-3-june-2015} }