@Article{CiCP-33-4, author = {Huang, Haohan and Tian, Liang and Lin, Fu}, title = {A Five-Point TENO Scheme with Adaptive Dissipation Based on a New Scale Sensor}, journal = {Communications in Computational Physics}, year = {2023}, volume = {33}, number = {4}, pages = {1106--1131}, abstract = {
In this paper, a new five-point targeted essentially non-oscillatory (TENO) scheme with adaptive dissipation is proposed. With the standard TENO weighting strategy, the cut-off parameter $C_T$ determines the nonlinear numerical dissipation of the resultant TENO scheme. Moreover, according to the dissipation-adaptive TENO5-A scheme, the choice of the cut-off parameter $C_T$ highly depends on the effective scale sensor. However, the scale sensor in TENO5-A can only roughly detect the discontinuity locations instead of evaluating the local flow wavenumber as desired. In this work, a new five-point scale sensor, which can estimate the local flow wavenumber accurately, is proposed to further improve the performance of TENO5-A. In combination with a hyperbolic tangent function, the new scale sensor is deployed to the TENO5-A framework for adapting the cut-off parameter $C_T,$ i.e., the local nonlinear dissipation, according to the local flow wavenumber. Overall, sufficient numerical dissipation is generated to capture discontinuities, whereas a minimum amount of dissipation is delivered for better resolving the smooth flows. A set of benchmark cases is simulated to demonstrate the performance of the new TENO5-A scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0286}, url = {https://global-sci.com/article/79444/a-five-point-teno-scheme-with-adaptive-dissipation-based-on-a-new-scale-sensor} }