@Article{CiCP-29-2, author = {Kang, Jian and Xinliang, Li}, title = {A Sufficient and Necessary Condition of the Existence of WENO-Like Linear Combination for Finite Difference Schemes}, journal = {Communications in Computational Physics}, year = {2021}, volume = {29}, number = {2}, pages = {534--570}, abstract = {

In the finite difference WENO (weighted essentially non-oscillatory) method, the final scheme on the whole stencil was constructed by linear combinations of highest order accurate schemes on sub-stencils, all of which share the same total count of grid points. The linear combination method which the original WENO applied was generalized to arbitrary positive-integer-order derivative on an arbitrary (uniform or non-uniform) mesh, still applying finite difference method. The possibility of expressing the final scheme on the whole stencil as a linear combination of highest order accurate schemes on WENO-like sub-stencils was investigated. The main results include: (a) the highest order of accuracy a finite difference scheme can achieve and (b) a sufficient and necessary condition that the linear combination exists. This is a sufficient and necessary condition for all finite difference schemes in a set (rather than a specific finite difference scheme) to have WENO-like linear combinations. After the proofs of the results, some remarks on the WENO schemes and TENO (targeted essentially non-oscillatory) schemes were given.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0112}, url = {https://global-sci.com/article/79639/a-sufficient-and-necessary-condition-of-the-existence-of-weno-like-linear-combination-for-finite-difference-schemes} }