@Article{CiCP-25-2, author = {}, title = {Effective Time Step Analysis of a Nonlinear Convex Splitting Scheme for the Cahn–Hilliard Equation}, journal = {Communications in Computational Physics}, year = {2019}, volume = {25}, number = {2}, pages = {448--460}, abstract = {

We analyze the effective time step size of a nonlinear convex splitting scheme for the Cahn–Hilliard (CH) equation. The convex splitting scheme is unconditionally stable, which implies we can use arbitrary large time-steps and get stable numerical solutions. However, if we use a too large time-step, then we have not only discretization error but also time-step rescaling problem. In this paper, we show the time-step rescaling problem from the convex splitting scheme by comparing with a fully implicit scheme for the CH equation. We perform various test problems. The computation results confirm the time-step rescaling problem and suggest that we need to use small enough time-step sizes for the accurate computational results.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0260}, url = {https://global-sci.com/article/79901/effective-time-step-analysis-of-a-nonlinear-convex-splitting-scheme-for-the-cahnhilliard-equation} }