@Article{CiCP-24-2, author = {}, title = {Integrated Linear Reconstruction for Finite Volume Scheme on Arbitrary Unstructured Grids}, journal = {Communications in Computational Physics}, year = {2018}, volume = {24}, number = {2}, pages = {454--480}, abstract = {
In [L. Chen and R. Li, Journal of Scientific Computing, Vol. 68, pp. 1172–1197, (2016)], an integrated linear reconstruction was proposed for finite volume methods on unstructured grids. However, the geometric hypothesis of the mesh to enforce a local maximum principle is too restrictive to be satisfied by, for example, locally refined meshes or distorted meshes generated by arbitrary Lagrangian-Eulerian methods in practical applications. In this paper, we propose an improved integrated linear reconstruction approach to get rid of the geometric hypothesis. The resulting optimization problem is a convex quadratic programming problem, and hence can be solved efficiently by classical active-set methods. The features of the improved integrated linear reconstruction include that i). the local maximum principle is fulfilled on arbitrary unstructured grids, ii). the reconstruction is parameter-free, and iii). the finite volume scheme is positivity-preserving when the reconstruction is generalized to the Euler equations. A variety of numerical experiments are presented to demonstrate the performance of this method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0137}, url = {https://global-sci.com/article/79955/integrated-linear-reconstruction-for-finite-volume-scheme-on-arbitrary-unstructured-grids} }