@Article{CiCP-23-3, author = {}, title = {Pseudospectral Methods for Computing the Multiple Solutions of the Schrödinger Equation}, journal = {Communications in Computational Physics}, year = {2018}, volume = {23}, number = {3}, pages = {822--845}, abstract = {

In this paper, we first compute the multiple non-trivial solutions of the Schrödinger equation on a square, by using the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory, combined with Legendre pseudospectral methods. Then, starting from the non-trivial solution branches of the corresponding nonlinear problem, we further obtain the whole positive solution branch with $D_4$ symmetry of the Schrödinger equation numerically by pseudo-arclength continuation algorithm. Next, we propose the extended systems, which can detect the fold and symmetry-breaking bifurcation points on the branch of the positive solutions with $D_4$ symmetry. We also compute the multiple positive solutions with various symmetries of the Schrödinger equation by the branch switching method based on the Liapunov-Schmidt reduction. Finally, the bifurcation diagrams are constructed, showing the symmetry/peak breaking phenomena of the Schrödinger equation. Numerical results demonstrate the effectiveness of these approaches.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0020}, url = {https://global-sci.com/article/80032/pseudospectral-methods-for-computing-the-multiple-solutions-of-the-schrodinger-equation} }