@Article{CiCP-19-1, author = {}, title = {Efficient Algorithm for Many-Electron Angular Momentum and Spin Diagonalization on Atomic Subshells}, journal = {Communications in Computational Physics}, year = {2016}, volume = {19}, number = {1}, pages = {192--204}, abstract = {

We devise an efficient algorithm for the symbolic calculation of irreducible angular momentum and spin (LS) eigenspaces within the $n$-fold antisymmetrized tensor product $Λ^n$$V_u$, where n is the number of electrons and $u$ = s,p,d,··· denotes the atomic subshell. This is an essential step for dimension reduction in configuration-interaction (CI) methods applied to atomic many-electron quantum systems. The algorithm relies on the observation that each $L_z$ eigenstate with maximal eigenvalue is also an $L^2$ eigenstate (equivalently for $S_z$ and $S^2$ ), as well as the traversal of LS eigenstates using the lowering operators $L_−$ and $S_−$. Iterative application to the remaining states in $Λ^n$$V_u$ leads to an implicit simultaneous diagonalization. A detailed complexity analysis for fixed $n$ and increasing subshell number $u$ yields run time $\mathcal{O}$($u^{3n−2}$). A symbolic computer algebra implementation is available online.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.281014.190615a}, url = {https://global-sci.com/article/80250/efficient-algorithm-for-many-electron-angular-momentum-and-spin-diagonalization-on-atomic-subshells} }